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With quantum resources a precious commodity, their efficient use is highly desirable. Quantum

autoencoders have been proposed as a way to reduce quantum memory requirements. Generally, an

autoencoder is a device that uses machine learning to compress inputs, that is, to represent the input data in

a lower-dimensional space. Here, we experimentally realize a quantum autoencoder, which learns how to

compress quantum data using a classical optimization routine. We demonstrate that when the inherent

structure of the dataset allows lossless compression, our autoencoder reduces qutrits to qubits with low

error levels. We also show that the device is able to perform with minimal prior information about the

quantum data or physical system and is robust to perturbations during its optimization routine.

DOI: 10.1103/PhysRevLett.122.060501

Introduction.—Quantum technologies promise to pro-
vide us with advantages over their classical counterparts in

a variety of tasks, including faster computation [1], secure

communication [2], and increased measurement precision

[3,4]. However, they depend on quantum resources, for

example, quantum coherence, which can be challenging to

produce, control, and preserve effectively. As such, quan-

tum resources are precious, and devices that allow us to

minimize the use of these resources are valuable. One such

device is the quantum autoencoder [5–8].
An autoencoder uses machine learning to represent data

in a lower-dimensional space, as illustrated in Fig. 1(a).

Autoencoders for classical data form one of the core

architectures in machine learning, and offer a range of

tools for image processing and other applications [9–11].

Models of autoencoders that compress quantum data were

recently proposed and theoretically studied inRefs. [5–8,12].
Quantum data compression can benefit applications such

as quantum simulation [5,14] and the communication and

distributed computation between nodes in a quantum net-

work [7,8], by reducing requirements on quantum memory

[5,15], quantum communication channels [8], and the size of

quantum gates [7,13]. Reversible, and therefore lossless,

compression is possible if a set of quantum states does not

span the fullHilbert space inwhich they are initially encoded.

Some methods of compressing quantum data have been

proposed and demonstrated previously [15,16]. In those

methods, the compression was based on specific assump-

tions about properties of the quantum states, for example,

that a set of qubits be separable. The main advantage of

autoencoders is that they do not rely on assumptions of this

kind; instead of exploiting a fixed structure of the data, they

are capable of learning the structure based on a training

dataset. This ability to learn makes them versatile.

Here, we propose and experimentally realize a simple
quantum autoencoder scheme. Our device works on a
similar principle to the theoretical model of Ref. [5], but
with some notable differences. Whereas the proposal of
Ref. [5] concerns the compression of some number of
qubits to fewer qubits, we pursue a dimensionality reduc-
tion in a qudit representation [see Fig. 1(b)]. Consequently,
the desired outputs of our device, as well as the definition
and evaluation of the cost function, differ from the original
model, as described later on. Generally, our scheme supports
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FIG. 1. (a) The concept of an autoencoder. Through an
encoding process (E), autoencoders represent data in a lower-
dimensional space; if the compression is lossless, the original
inputs can be perfectly recovered through a decoding process (D).
(b) The scheme of our qudit-based autoencoder, equivalent to the
gray shaded section in (a), for the case of a compression of qutrits
to qubits. A unitary transformation U characterized by a set of
parameters converts between three input modes and three output
modes. The iterative training of the parameters aims to minimize
the occupation probability of the third output mode, the “junk”
mode, across a set of training input states. Lossless compression
is achieved when the junk mode is unoccupied. Given that the
encoding step is performed with a unitary transformation, the
decoding step would simply be the inverse of the unitary, using a
vacuum state in the third input mode.
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a compression of qudits to qunits, where d > n [17]. We
demonstrate it experimentally for the case of d ¼ 3, n ¼ 2,
with a photonic device that reduces qutrits to qubits. One
potential use of this type of compression lies in applications
of quantum communication, for instance between nodes in a
quantumnetwork. In quantumcommunication, photons are a
natural choice as quantum information carriers due to their
high speed and strong coherence properties. Moreover, the
output qubit from our device is encoded in the polarization
degree of freedom, which is easily manipulated and can be
transmitted over long distances [18].
The combination of machine learning and quantum

information processing is a growing research area, which
aims to either draw on classical machine learning techniques
to aid quantum information tasks or utilize quantum infor-
mation processing to speed up classical machine learning
calculations [19,20]. The quantum autoencoder belongs to
the former category. Complementary to recent demonstra-
tions of several classification tasks [21–23], Hamiltonian
learning [24], and the reconstruction of quantum states [25],
the present work experimentally establishes the compression
of quantumdata as another use of quantummachine learning.
In this work, we apply the quantum autoencoder to the

task of lossless compression, for which we use families of
qutrit states that are compressible to qubits. The device can
be trained based on a few examples of the family of qutrit
states, and can subsequently be tested with other qutrits
from the family. Our autoencoder uses a classical machine
learning algorithm, gradient descent, to optimize a unitary
transformation for compressing the quantum states [17].
The automated experimental unitary optimization circum-
vents the need to obtain a classical description of the
training states, externally design the appropriate unitary,
and carry out a full characterization of the optical elements.
As an additional benefit, the device is also robust to

disturbances during its optimization routine, as discussed
later. These advantages of optimizing directly based on
experimental data are akin to previous observations in other
systems [23,26].
Experimental scheme.—Our autoencoder consists of a

3 × 3 unitary transformation with four free parameters,
along with a feedback mechanism that is based on measure-
ments of one of the output modes. The setup of our photonic
implementation is depicted in Fig. 2. The input qutrits are
encoded as superpositions over three optical modes: one
spatialmode supporting two polarizationmodes, and another
spatial mode with a fixed polarization. The transformation is
implemented as a sequence of 2 × 2 unitaries, each realized
by a set of half- and quarter-wave plates, while mode
permutations are realized by beam displacers and half-wave
plates set to 45° [27–29]. Such an implementation using joint
polarization and spatial modes provides high stability,
because all the spatial modes enter and exit the beam
displacers through the same facets, and it allows a simple
way of controlling the unitary transformation.
Our quantum states are encoded in single photons. In

principle, the training process could also be performed with
coherent states instead of single photons. However, in
applications of the quantum autoencoder within quantum
technologies, the training states are more likely to be
available in the form of single photons. Given a set of
training states, the device performs a unitary transformation
with the aim to map all of the training qutrits onto qubits.
The desired mapping is achieved when the third output
mode, which we will refer to as the “junk”mode, is unused,
that is, when the photon cannot be found in that mode
[see Fig. 1(b)]. In that case, the mode can be discarded
without any effect, leaving the outputs in a qubit space.
By contrast, whenever the compression to the qubit output
is imperfect, there is a nonzero probability of finding
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FIG. 2. Experimental layout. (a) Single photon source. We use a 410 nm continuous-wave diode laser to pump a beta barium borate
(BBO) crystal to produce photon pairs via type-I spontaneous parametric down-conversion. One photon is collected and detected to
herald the second photon; this second photon is fiber coupled and passes through a fiber polarization controller (FPC). (b) State
preparation. First, a qubit is encoded in the polarization state of the photon via a motorized half-wave plate (HWP) and quarter-wave
plate (QWP). Then the photon passes through a polarizing beam displacer. In the lower spatial mode, a random but fixed birefringent
element (a randomly oriented wave plate for a different wavelength) scrambles the polarization, mapping vertical polarization to some
superposition of horizontal and vertical. The top spatial mode has matching optical elements (not shown) set to the optic axis, in order to
match the optical path length to within the photon’s coherence length. By changing the motorized wave plates, sets of qutrits are created
in polarization and path modes in such a way that they are compressible into qubits. (c) Autoencoder. A 3 × 3 unitary transformation
with four free parameters is implemented via a series of wave plates, which perform 2 × 2 unitaries, and beam displacers, which realize
mode permutations. The training of the unitary transformation is performed through the rotation of the motorized half- and quarter-wave
plates, using a gradient descent routine. The cost function is evaluated based on the measured photon occupation probability of the upper
output mode, which contains only one polarization.

PHYSICAL REVIEW LETTERS 122, 060501 (2019)

060501-2



photons in the junk output, and this can be interpreted as a
measure of error. The occupation probability of the junk
mode Pj quantifies the compression performance twofold:
(i) the success probability of the encoding process is
1 − Pj, and (ii) the fidelity between the given input state

and the output after an encoding-decoding sequence is
likewise 1 − Pj [17]. Therefore, the goal of the training

process is to minimize the occupation probability of the
junk mode across the training states, ideally to zero. In our
experiment, we define the cost function as the average junk
mode occupation probability over the different training
states. We probe the junk output, calculate the cost
function, and use a classical gradient descent optimization
routine to adjust the unitary [17].
In order to prepare our input states, polarization qubits

are created with a single photon source paired with a half-
and quarter-wave plate. We then map these states onto
qutrits by using a beam displacer and scrambling the
polarization of one spatial output mode. Although the
resulting qutrits occupy all three modes, by construction,
they lie within a subspace that allows them to be com-
pressed to qubits. We obtain the training states, as well as
further states to test the performance of the autoencoder, by
varying the half- and quarter-wave plate settings in the state
preparation.

Results.—The training process is illustrated in Fig. 3,
which shows how the device adapts to the training states
over time. The training process was repeated 20 times, each
time with a different random initialization of the unitary.
We observe that the device was able to achieve a high-
quality performance, reducing the occupation probability
of the junk output mode to 0.03� 0.03. The training was
performed with a random but fixed set of two training states
and no prior calibration of any wave plates, other than the
two half-wave plates fixed at 45°. This demonstrates our
device performing in general conditions, with no prior
information needed about the unitary transformation or
quantum states.
The quality of the unitary found by the machine learning

process depends on the number of different training states
used, as shown in Fig. 4. We explored this relationship by
training the unitary with different sized sets of qutrits from
a compressible subspace, terminating the training at 200
cost function evaluations, and then testing the device with
new, random qutrits from the same subspace. Using a single
training state, a low occupation probability of the junk
mode was obtained for the training state, but randomized
test states were unable to pass through with a similarly low
probability of exiting the junk mode. This is unsurprising
because a single state does not span the qubit subspace.
Using two training states, we saw a consistently high level
of performance for all of the test states. Repeating this
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FIG. 3. Training starting from different initializations of the
unitary. Here, we used two fixed, randomly selected training
states to perform the optimization routine. The cost function,
which is the occupation probability of the junk mode averaged
over the two training states, is plotted against the number of cost
function evaluations. The optimization was carried out 20 times,
each time starting with a different randomly initialized unitary.
To save training time, a training run was terminated once the
average occupation probability reached a threshold of 0.02, and
the average occupation probability for that training run was
thereafter set to the last measured value. The red line shows the
mean values of the 20 training runs, with the gray shaded area
indicating �1 standard deviation of the results. We observe an
average occupation probability of 0.03� 0.03 after 160 cost
function evaluations. The green circles illustrate a sample
trajectory. The uncertainties of individual occupation probability
measurements, calculated based on Poissonian counting statis-
tics, are smaller than the markers used.
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FIG. 4. The effect of the number of training states. The
optimization routine was run using one, two, and three training
states taken from a compressible subspace. After each training
process, 20 random states from the same subspace were prepared
and sent through the device to test the compression performance
of the unitary. The occupation probability of the junk mode after
using one training state (blue circles) was 0.4� 0.3, with two
training states (red squares) it was 0.03� 0.02, and with three
training states (green diamonds) it was 0.02� 0.02. The un-
certainties of individual data points, calculated based on Pois-
sonian counting statistics, are smaller than the markers used.
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process with three training states, we found that the unitary
achieved a slightly lower occupation probability of the junk
mode across the test states. However, the total training time
increased by approximately 40% compared to the run time
for two training states (about 90 min), with only minor
benefits to the performance. This is why we used two
training states in the other parts of the experiment. Note,
however, that the run times in our experiment were limited
by wave plate rotations, rather than the calculations of the
algorithm, and could be made much faster by using fast
switching with electro-optic devices. The choice of feed-
back routine also affects the training time and compression
performance. We chose a gradient descent algorithm as a
simple way of achieving a reliable device performance, but
alternatives, for instance genetic algorithms, could also be
considered.
Finally, we investigated the robustness of the device by

introducing a channel drift during the optimization routine,
as shown in Fig. 5. The aim was to emulate a drift in
environmental conditions that affect the required encoding.
We performed this by systematically rotating the polarization
scrambling wave plate in the state preparation by 4° per five
cost function evaluations. Despite an increase in the number
of required cost function evaluations, the autoencoder was
able to achieve an average occupation probability below
0.05. This shows that it is capable of adapting to changes in

environmental conditions. The learned transformations are
provided in the Supplemental Material [17], Sec. D.
Discussion.—In this work, we have proposed and exper-

imentally demonstrated a new, simple scheme for a quantum
autoencoder. We have shown that our device is able to
compress qutrits to qubits by exploiting the underlying
structure of the dataset. The autoencoder is an example of
a hybrid quantum-classical machine that optimizes quantum
information processing via classical machine learning based
on training data. This unsupervised learning provides the
valuable capability of adjusting to different datasets, which
is absent in alternative methods of compressing quantum
data. Indeed, the choice of qubit subspace in our experiment
was arbitrary, and was even subjected to a drift during the
optimization.
Comparing our scheme with the proposal of Ref. [5], we

use a different cost function. Our cost function is defined in

terms of the occupation probability of the junk mode, which

requires a simple measurement of the mode. By contrast, the

cost function of Ref. [5] is defined in terms of the overlap

between a fixed reference state and part of the output of the

encoding unitary, and is estimated via a SWAP test. Although

these definitions and measurements appear quite different,

they are based on the same principle that no information

should be contained in the discarded parts of the state.
Of the encoding-decoding sequence illustrated in

Fig. 1(a), we have implemented the encoding step. Since
this encoding is based on a unitary transformation, the
decoding step would simply be the inverse of that trans-
formation [17]. Furthermore, although our experiment was
designed for qutrits, the same design can be extended to
compress higher-dimensional qudits. In that case, the
number of input modes and the size of the unitary would
be increased, with a polynomial scaling in the number of
parameters to be optimized [17]. Depending on the desired
output dimensionality, one or more output modes could be
monitored. The setup we use can be extended beyond
qutrits because of the good stability of beam displacer
interferometers and polarization-based two-mode unitary
transformations with wave plates [27,28]. However, an
even more promising approach for large unitaries lies in
integrated photonics, where a reconfigurable unitary trans-
formation in six dimensions has been demonstrated [31].
Indeed, a recent optical implementation of machine learn-
ing for a classical application, vowel recognition, has
already shown the feasibility of training unitaries in a
photonic waveguide architecture [32].
To assess the performance of our device, we have

focused on lossless compression, for which we prepared
families of qutrits that are in principle perfectly compress-
ible into qubits. The opportunity for lossless compression
can arise in certain situations, for example, when a physical
symmetry restricts quantum states to a subspace of the full
Hilbert space [5], or when a signal originates from a lower-
dimensional encoding, but is spread over a larger Hilbert
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FIG. 5. Test of a channel drift during training. A set of two
training states was used to optimize the device under normal
conditions, providing a control dataset (red circles) of the
occupation probability of the junk mode, averaged over the
two training states, versus the number of cost function evalua-
tions. For the green and blue datasets, the same unitary initial-
ization was used, but the necessary encoding was perturbed. This
was done by keeping the initial qubits in the state preparation
fixed but rotating the wave plate of the scrambling stage by 4° per
five cost function evaluations. The datasets of blue squares and

green diamonds correspond to different rotation directions. The
connecting lines in the plot serve merely as a guide to the eye.
The uncertainties of individual occupation probability measure-
ments, calculated based on Poissonian counting statistics, are
smaller than the markers used.
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space through an imperfect transmission channel. However,
compression can also be of interest in cases where it is
impossible to compress the input data completely faithfully.
For instance, it might be worth sacrificing the ability to
recover the exact input states for the sake of reducing
quantum memory requirements. Exploring such irrevers-
ible compression with the autoencoder presents an inter-
esting future research direction.
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