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ABSTRACT
Large wood is often transported by rivers into reservoirs during heavy rainfall events. When a critical section like a spillway is blocked and discharge
capacity reduced, an uncontrolled increase of the reservoir water level may occur. This study aims to statistically analyse the importance of repetitions
for the accuracy of experimental campaigns when studying blocking probabilities at ogee crested spillways equipped with piers. Systematic and
reliable estimations based on physical models are critical for developing preventive measures against large wood blockage. Two statistical methods
have been described and applied to calculate confidence intervals. A minimum number of repetitions for a maximum acceptable error is recommended
for blocking probabilities. The minimum number of experimental repetitions has been statistically justified in accordance with a reasonable use of
resources for experimental campaigns. In addition, a maximum acceptable level of error is proposed as a common metric of accuracy in large wood
studies.

Keywords: Large wood; spillway blockage; physical model; Bernoulli trials; confidence intervals

1 Introduction

Reliable spillway operation depends on the knowledge of the
characteristics of large wood (LW) at its source, on the pro-
cess of its generation and transportation to the reservoir, and
its potential effect on spillway capacity (Hartford et al., 2016).
LW consists of stems longer than 1.00 m and greater than
0.10 m in diameter (Braudrick, Grant, Ishikawa, & Ikeda, 1997;
Ruiz-Villanueva, Piégay, Gurnell, Marston, & Stoffel, 2016;
Wohl et al., 2016).

Few studies focus on the fact that drifting debris, such as
wood, leaves, aquatic vegetation, and other buoyant objects,
may clog water-intake or water-release structures. The US
National Research Council reported in 1983 that about 30%
of spillway malfunctions in the USA were caused by spillway

blockage due to floating debris (National Research Coun-
cil, 1983). In 2015, the National Performance of Dams Program
reported 23 accidents at US dams involving debris blockage
of spillways (Hartford et al., 2016). Excessive LW accumu-
lations can block flow sections at bridges, weirs or spillways
and limit their functionality during extreme flood events, when
discharge capacity is mostly needed (Ettema, Arndt, Roberts,
& Wahl, 2000; Godtland & Tesaker, 1994; Marche, 2009).
By reducing flow capacity, sedimentation processes can also
be enhanced given the increasing upstream water levels, thus
the potential for upstream flooding may be substantially raised
(Lyn, Cooper, & Yi, 2003).

To assess LW interactions with hydraulic structures, simpli-
fied physical models have been implemented (Comiti, Lucía, &
Rickenmann, 2016). The behaviour and interactions between
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LW and structures involves random processes, and so, an
experiment can result in different outcomes even though it is
performed in the same manner systematically (Montgomery
& Runger, 2011). Experiments should be repeated multiple
times in order to have statistically sound results, but currently
literature gives no guidance regarding the number of repeti-
tions. The purpose of this study was to analyse the influence of
test repetitions for the estimation of blocking probabilities when
performing experiments in physical models of drifting stems.
Hence, for the present study a probabilistic approach was chosen
to define the importance of repetitions by means of confidence
intervals and accuracy of estimations.

2 LW behaviour in physical models

Model tests are an invaluable tool when designing structures
exposed to appreciable amounts of LW. Physical models can
reproduce the behaviour of drifting wood except for the mechan-
ical breakage of the stems under hydrodynamic loads (Hartung
& Knauss, 1976). Nevertheless, model testing with LW is chal-
lenging due to its intrinsic uncertainties, scaling and diversity of
governing parameters.

An experimental protocol based on a significant number
of test repetitions is of primary importance to obtain sta-
tistically sound conclusions on LW dynamics and blocking
processes, as a consequence of the complex and stochastic inter-
actions observed (Schmocker & Hager, 2013; Welber, Bertoldi,
& Tubino, 2013). The complexity and stochasticity inherent
to wood recruitment processes, transportation, and deposition
leaves deterministic models as unsuitable tools (Rigon, Comiti,
& Lenzi, 2012). Reliable procedures of experimentation to
estimate accurate probabilities need to be undertaken, linking
statistical existing tools with engineering practice.

Previously, statistical accuracy in experimental campaigns
had only been examined in Schmocker and Hager (2011) where
an evaluation of number of repetitions was performed. Recent
research of Schalko (2017) proposed a maximum standard devi-
ation limit of 0.10 to define the necessary number of exper-
imental repetitions. In spite of their relevance to the topic,
these works do not provide general methods or guidelines to
be used by others. Like any other statistical tryouts, LW exper-
iments provide estimations of reality (Piton & Recking, 2016),
where uncertainty and data scattering are present (Schmocker
& Hager, 2013). The scattering of results can be correlated to
the accuracy of such estimation and thus, it should be treated
with caution.

In the experimental campaigns to analyse LW movement and
transport parameters inside streams, Braudrick et al. (1997) and
Braudrick and Grant (2000) performed five trials per experi-
ment. Braudrick and Grant (2001) sought to obtain accurate
and reliable results minimizing statistical errors by repeating
each experiment a maximum of 10 times. Bocchiola, Rulli,
and Rosso (2006a,b) used three repetitions per experiment to

Table 1 LW experiments in contact with hydraulic structures, past
research

Author Subject of study Repetitions

Godtland
and Tesaker (1994)

Ogee crested spillway design
against LW clogging

?

Johansson
and Cederström (1995)

LW blocking probabilities at
gated ogee spillway

?

Lyn et al. (2003) LW accumulations at bridge
pier

16 to 50

Bocchiola, Rulli,
and Rosso (2008)

LW accumulation patterns 4

Schmocker
and Hager (2011)

LW blocking probabilities for
bridges

8

Shrestha, Nakagawa,
Kawaike, Baba,
and Zhang (2011)

LW and debris interaction for
slit-check dam

?

Hartlieb (2012) LW jam at gated ogee crested
spillway

20

Schmocker
and Hager (2013)

LW accumulation at debris
rack

3

Pfister, Capo-
bianco, Tullis,
and Schleiss (2013)

LW blocking probabilities at
piano key weir

25 to 50

De Cicco, Paris,
and Solari (2016)

LW accumulation at bridge
piers

10

Gschnitzer, Gems,
Mazzorana,
and Aufleger (2017)

LW blocking process at
bridge piers

8

Schalko (2017) LW accumulation probability
at bridge pier

40

improve accuracy and minimize human errors when estimating
entrainment of LW in rivers. Welber et al. (2013) repeated
experiments 10 times to study bed morphology and LW
dispersal.

Table 1 illustrates the repetitions found in literature for
studies of LW interacting with hydraulic structures. Godtland
and Tesaker (1994) used physical experiments to define con-
struction recommendations for an overflow spillway. These
guidelines, to avoid blocking probabilities higher than 10–
20% of the drifting trees, were later used in Galeati (2009),
Hartlieb (2015), Johansson and Cederström (1995), Wallerstein,
Thorne, and Abt (1996) and Wallerstein and Thorne (1995),
among others. However, their methodology of experiments and
the respective analysis was not documented.

Blocking probabilities were evaluated in Johansson and Ced-
erström (1995) for an overflow spillway. The main parameters
tested were the ratio of stem length to the bay opening and the
vertical clearance between a bridge and the spillway. Fifty stems
were tested, individually or in pairs. It is not clear if each stem
was considered as one experiment or if a stem would repre-
sent one repetition of an experiment for the case of individual
blockage. The same question arises in the case of pairs, that
is, did an experiment consist of providing two stems simulta-
neously and was it repeated 25 times? For the case of piano key
weirs Pfister, Capobianco, et al. (2013) studied individual LW
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blocking probabilities. Repetitions ranged between 25 and 50
times.

Bocchiola et al. (2008) used four repetitions to predict wood
accumulation patterns that can be used for evaluation of haz-
ard at hydraulic structures, giving a simplified overview of the
multifaceted process of LW jams with a statistical approach.
To describe LW characteristics and their effect on the jam
shape and on the discharge capacity at blocked overflow spill-
way inlets, Hartlieb (2012) repeated experiments 20 times. In
Hartlieb (2015) the LW jamming process and its effects were
applied to the design of a debris rack.

Shrestha et al. (2011) studied the interaction between debris
flows and LW for slit-check dams with a numerical and physical
model. Experiments were repeated many times (unknown quan-
tity) under the same initial conditions. A relation was obtained
for blocking probability at a slit-check dam as a function of the
number of stems reaching the structure simultaneously.

When estimating blocking probabilities at bridge decks,
Schmocker and Hager (2011) performed preliminary experi-
ments seeking a compromise between test effort and accurate
probability interpretation. It was noted that from eight to 30
repetitions, no improvement in the statistical accuracy was
achieved although the statistical analysis was not documented.
A risk assessment tool was defined by using their blocking
probability equation to estimate, before a flood, if blockage of
single logs or rootstock would occur at a bridge. Gschnitzer,
Gems, Aufleger, Mazzorana, and Comiti (2015) and Gschnitzer
et al. (2017) used eight repetitions for a statistical assessment
on bridge clogging process with LW, associated to flood risk
management.

Gschnitzer et al. (2017) provided a probabilistic descrip-
tion of LW related clogging mechanisms at bridges that con-
tributes to a better comprehension of LW interactions. With their
work, LW blocking probabilities can be estimated for bridges
including geometrical, hydraulic and LW characteristics in one
formula. De Cicco et al. (2016) defined 10 repetitions per exper-
iment to investigate LW accumulation at historical bridge piers.
For congested transport regime and five different pier shapes,
the capacity of LW blocking for each pier shape was tested and
compared. Lyn et al. (2003) aimed to have higher accuracy with
the experiments using a maximum of 50 repetitions. However,
it was concluded that 50 repetitions were not enough to obtain
so-called “stable results”, in order to understand the physical
processes involved in single-pier debris accumulation at bridge
crossings. Schalko (2017) performed 300 repetitions of a single
experiment to determine a statistical reliable number of repeti-
tions. Under the tested conditions, it was observed that after 40
repetitions the standard deviation calculated was less than 0.10
(maximum limit defined by the authors). Other combinations of
parameters tested required 60 repetitions to reach the desired
standard deviation.

A sensitivity analysis of repetitions for head increase exper-
iments due to LW blockage of a debris rack was made in
Schmocker and Hager (2013). It was verified if repetitions of

tests resulted in the same relative flow depth upstream. For that
purpose, it was found that repeating each experiment three times
was appropriate.

The above described experimental methods seem to give
only an order of magnitude of LW related processes (Piton &
Recking, 2016). The intrinsic variability of LW requires enough
repetitions to clearly identify causal relationships, as any other
estimation of a random parameter. A statistically justified num-
ber of repetitions per experiment in the analysis of LW inter-
actions with hydraulic structures will guide towards reliable
and accurate blockage assessment. When dealing with prob-
ability estimations, in this case LW blocking, the tools given
in statistical inference should be used. LW blockage processes
will depend of different LW characteristics, the hydraulics of
the stream and the involved structure. This estimated proba-
bility should be sufficiently accurate and that accuracy can be
evaluated by standard error calculations or confidence intervals.
In LW-related literature, methods to quantify the accuracy of
results were not found. The innovation of this paper is therefore
to link statistical tools, to calculate accuracy of estimations, with
LW research.

3 Experimental set-up and methodology

3.1 Physical model

Experiments were conducted at the Laboratory of Hydraulic
Constructions (LCH) of the École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland. The flume is a straight channel
of 1.50 m width, 0.70 m high and 10 m long and has a glass side
wall to allow visual observation. Water was supplied through
a tank upstream of the channel. A baffle was placed 2.40 m
downstream of the channel inlet to assure homogeneous flow
(Fig. 1). Water velocity was measured in a cross-section 4 m
upstream the model using a flow probe (in total 36 points were
measured, every 0.20 m along the channel width, four vertical
points separated by 0.16 m) to verify that the velocity field was
uniform where the LW was supplied. This was performed for
three different water discharges.

The model was situated perpendicular to the flow and
included an ogee crested spillway, four round nose piers, and
two half piers for completion at the walls of the channel (cre-
ating five bays of width b = 0.26 m, Fig. 2a). A metallic beam
held the piers above the spillway and was attached outside of
the flume. The spillway and piers were fabricated from PVC
and they were considered hydraulically smooth.

The ogee weir was designed with standard profiles (US Army
Corps of Engineers, 1990) for a design head (Hd) of 0.15 m and
weir height of 0.42 m (Fig. 2b). This type of weir was chosen
due to its effective discharge capacity and frequent application
in practice.

Using a round pier nose, three different configurations were
tested focussing on the intrusion of the nose in the upstream face
of the spillway, namely (Fig. 2a):
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Figure 1 3D representation of the channel (dimensions in m)

Figure 2 Schematic representation of the model built (dimensions in m). (a) Top view of the physical model. (b) Longitudinal view of the channel

N1 : Aligned with the front of the spillway
N2 : Protrudes 0.04 m from the weir spillway into the reservoir
N3 : Protrudes 0.08 m from the weir spillway into the reservoir

Furthermore, the number of open bays was varied using ver-
tical gates. For the experiments of five bays, all the gates were
fully opened. For one bay scenarios, only the central bay was
opened and the four lateral gates were fully closed.

3.2 Model stems

Artificial cylindrical plastic stems were chosen to represent LW
in the model. The idealized shape excludes geometrical irregu-
larities. Based on the work of Gschnitzer et al. (2015) it can be
assumed that, if the geometry of the stems is more complex, the
blocking probability may increase. Idealized stems were used to
reduce the number of parameters involved in this complex prob-
lem. Although the geometry of LW is an important variable, the
objective is to quantify the influence of the number of repetitions
on the accuracy of blocking probability estimations. Regardless
of the idealized or natural shape used to represent LW, the pro-
posed methods for calculating confidence intervals are valid if
results can be considered Bernoulli-type experiments.

Stems were separated in classes A to E according to their
length L and diameter d (Table 2). For each class, different stem
density intervals were defined based on observed data of aver-
age dry wood density along Europe and its standard deviation

Table 2 Artificial stems used (model dimensions)

Class Length L [m] Diameter d [m] L/b [%]
Stem density

ρs [–]

A 0.210 0.010 80 0.59
0.79
0.99

B 0.260 0.012 100 0.56
C 0.300 0.016 120 0.43

0.56
0.97

D 0.400 0.020 150 0.63
E 0.520 0.025 200 0.40

0.54
0.76
0.99

(Chave et al., 2009). The average dry wood density for Europe
taken from a sample of 77 different trees, is ρw = 0.525 t m−3

and its standard deviation σw = 0.119 (subscript w stands for
wood). Stem’s densities were normalized with respect to water
density ρ and identified herein with subscript s. Stems were
separated into four categories of density: ρs1 = [0.40 − 0.47];
ρs2 = [0.47 − 0.67]; ρs3 = [0.67 − 0.88]; ρs4 = [0.88 − 0.99].

The length range of the stems was chosen in order to cover
different relative stem lengths L/b compared to bay opening, but
keeping constant L/d ≃ 20 as seen in field observations after
the 2005 flood in Switzerland (Bezzola & Hegg, 2007). Class A
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Table 3 Table of experiments

N ◦ Class Density ρs [–] H/d [–] N ◦ of open bays Nose type Repetitions Supply angle [◦]

1 E 0.54 0.82 5 N1 60 90
2 E 0.54 1.08 1 N1 40 90
3 C 0.56 0.81 5 N1 60 90
4 E 0.54 0.72 5 N1 60 90
5 E 0.76 0.76 5 N1 20 90
6 E 0.76 1.08 5 N1 70 0
7 B 0.56 1.25 5 N1 60 45
8 D 0.63 0.90 5 N1 70 0
9 E 0.54 0.88 1 N2 58 0
10 B 0.56 1.25 1 N2 70 90
11 B 0.56 0.83 5 N3 60 45
12 E 0.40 0.72 5 N3 60 135
13 C 0.43 0.81 5 N3 70 90
14 A 0.79 0.80 5 N3 60 135

with a stem length of 80% of the bay width is of particular inter-
est since it was recommended by Godtland and Tesaker (1994)
as a minimum bay width for spillways in contact with LW.

3.3 Methodology

Different flow conditions on the ogee were established by vary-
ing the inflow discharge. Ratios of head over the crest to stem
diameter (H /d) ranged from 0.72 to 1.25. These limits were
defined based on preliminary experiments. A reservoir flow
type was analysed, implying close to zero flow velocity. The
maximum model discharge used for the repetition analysis was
0.011 m3 s−1.

The surface tension effect on the rating curve is neg-
ligible if the flow depth exceeds some 0.025 m (Ettema
et al., 2000) and 0.02 m particularly for standard ogee weirs
(Breitschneider (1978), in Pfister, Battisacco, De Cesare,
and Schleiss (2013)). Pfister, Battisacco, et al. (2013) state that
a head of 0.015 m generates an error of 5% only in terms of
discharge coefficient at a piano key weir. Herein, heads ranging
from 0.008 to 0.027 m were tested. The rating curve of some
tests was accordingly potentially influenced by viscosity. How-
ever the evaluation of accuracy in stems blockage probability
estimation was our focus and not the determination of rating
curves for the ogee crested spillway.

Fourteen experiments were defined testing all parameters in
random combinations (Table 3). Thus, a wide range of results
was assured. The angle of supply was changed testing four
different possibilities, taking 0◦ as parallel to the flow. It was
seen that the angle of supply was not influential in the stems
movement as they were observed to be capable of self-pivoting
and, normally, stems aligned themselves with the flow direction
upstream of the ogee.

For every experiment, an initial condition was defined and
the flow depth was measured without the presence of any stems.
Only one stem was supplied at the time and it was noted if
the stem passed or blocked at the spillway inlet. In the case of

blockage the stem was removed, to avoid interactions between
stems, and the procedure was repeated with the same initial
hydraulic conditions.

In order to reduce errors induced by human interaction, every
stem was supplied in the flume centre axis, with a mechanical
device guaranteeing equal conditions per repetition. The device
was placed at approximately 4.00 m upstream of the ogee. As the
centre bay was used in both scenarios (one or five open bays) to
be systematic, stems were supplied only in the centre line of the
flume.

3.4 Instrumentation

The water level in the channel was measured using a point
gauge ( ± 0.5 mm), 2.60 m upstream of the physical model
(Fig. 1). The discharge Q was measured with a magnetic induc-
tive flow metre ( ± 0.5% at full span). Photographs were taken
systematically in order to record each experiment.

4 Statistical analysis

An experiment was defined as one combination of parameters
(Table 3) and it was composed of several repetitions or trials
under constant initial conditions. The 14 experiments performed
represent 818 independent results. To analyse the influence of
the number of repetitions on the blocking probability estima-
tion, each experiment was considered as a Bernoulli trial where
only two outcomes were possible (blocked or passed). For each
experiment, n independent repetitions (trials) were performed,
where π denotes the probability of blockage and 1 − π the
probability of passage.

The maximum likelihood estimator, �̂, of the blocking
probability π is given by (Eq. (1)):

�̂(n) =
X

n
(1)
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Figure 3 Normalized estimated blocking probability, in function of repetitions n

where X is the number of blocked stems, and n is the total num-
ber of repetitions. This means that the blocking probability π is
estimated as the ratio of the number of stems that blocked with
the number of stems that were supplied. Without loss of gener-
ality, both the estimator and the estimate will be denoted by the
same symbol �̂.

The blocking probability of a stem will depend on the param-
eters defined in Table 3 according to the literature review
(Table 1). For each experiment, results were normalized with
�̂ of the last repetition. This normalization helps to examine the
variation of π as a function of the number of repetitions.

Figure 3 shows how normalized blocking probabilities
obtained for the 14 experiments performed varies with the
repetitions. For example, the normalized estimated blocking
probability for experiments 1, 2, 3, 7 and 12 with fewer than
six repetitions is more than twice the value than after 60 repeti-
tions. The overall behaviour observed in the figure is that after
some 30 repetitions, the dispersion magnitude of the normalized
estimated blocking probability starts to range in ± 0.10.

To infer from the experiments, with some confidence, what
the real value of π might be, confidence intervals were com-
puted. Confidence intervals allow to understand the variability
related to the number of repetitions (sample size) and thus the
error of the estimation.

A confidence interval states that, with a given level of “cer-
tainty”, the true value will likely be in the identified range
(Wallis, 2013). The width of the interval will be smaller when
more accuracy in the estimation is achieved. A lower and upper

limit defines the interval estimator of π with a pre-defined con-
fidence or coverage, and will be denoted by [LL; UL]. [LL; UL]
will have a nominal confidence level of 100(1 − α)% (being α

the error level) assuring that the interval constructed based on
the sampling distribution of �̂ will contain the true value of
π , that percentage of times (Pires & Amado, 2008). The ran-
dom variables LL and UL depend on X, n and on the method of
calculation.

Two common methods were applied to calculate the con-
fidence intervals for π , the Wald method and the Clopper–
Pearson method.

4.1 Wald method

The Wald method is the most common approach for calculat-
ing symmetric binomial confidence intervals, and is based on
the approximation of the binomial by the Normal distribution.
If X is binomially distributed with parameters n and π , then X
has the same distribution as the sum of n independent Bernoulli
random variables (Montgomery & Runger, 2011; Ross, 2010).
Then, by the central limit theorem, the binomial distribution
can be approximated using a standard Normal distribution as
n approaches +∞. A rule of thumb to well-approximate a bino-
mial by a normal can be given by the relation: nπ(1 − π) ≥ 10
(Ross, 2010). The [LL; UL] Wald interval estimator of π was
calculated according to Eq. (2):

�̂ − zα/2

√

�̂(1 − �̂)

n
≤ π ≤ �̂ + zα/2

√

�̂(1 − �̂)

n
(2)
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where zα/2 denotes the 1 − α/2 quantile of the standard Normal
distribution (Agresti & Coull, 1998; Vollset, 1993). The follow-

ing term,
√

�̂(1 − �̂)/n is called the standard error (SE) of the

point estimator �̂.
Apart from being asymptotic, the Wald method may have two

limitations. First, when π tends to the extremes {0} or {1}, the
product π(1 − π) tends to 0, leading to an underestimation of
the error. Second, the interval can exceed [0; 1] limits (Agresti
& Coull, 1998; Wallis, 2013).

4.2 Clopper–Pearson method

To overcome the normal theory approximations of Wald inter-
vals, the Clopper–Pearson method is suggested to calculate
confidence intervals for π . The Clopper–Pearson confidence
interval for π with a coverage probability of at least 1 − α

can be obtained by solving Eq. (3) for LL and UL (Clopper
& Pearson, 1934):

n
∑

k=x

(

n

k

)

Lk
L(1 − LL)

n−k = α′ (3a)

x
∑

k=0

(

n

k

)

Uk
L(1 − UL)

n−k = α′′ (3b)

where α′ + α′′ = 1. For α′ = α′′ = α/2 these correspond to the
inversion of the two sided exact binomial test and lead to the
central exact interval. For x = 0 the solution of Eq. (3) is explicit
and given by LL = 0 and UL = 1 − (α/2)1/n. For x = n the solu-
tion is also explicit and given by LL = (α/2)1/n and UL = 1.
When x = 1, 2, . . . , n − 1, the lower endpoint is the α/2 quantile
of a beta distribution with parameters x and n − x + 1, and the
upper endpoint is the 1 − α/2 quantile of a beta distribution with
parameters x + 1 and n − x (Agresti & Coull, 1998). The relation
between the beta distribution and the Snedecor’s F distribution
leads to the following result (Eq. (4)) for the Clopper-Pearson

confidence interval for π :

[

1 +
n − x + 1

xF2x,2(n−x+1),1−α/2

]−1

< π

<

[

1 +
n − x

(x + 1)F2(x+1),2(n−x),α/2

]−1

(4)

for x = 1, 2, . . . , n − 1, and Fa,b,c denotes the 1 − c quantile
from the F distribution with degrees of freedom a and b.

The Clopper–Pearson method provides more reliable con-
fidence intervals with smaller samples than the Wald method
(Clopper & Pearson, 1934; Sauro & Lewis, 2005). Clopper–
Pearson produces conservative confidence intervals, and are
therefore wider (Agresti & Coull, 1998).

5 Discussion

Figure 4 shows the results obtained from an experiment with
class E, density ρs1 and pier nose configuration N3 for H/d =

0.72 and five bays open (experiment 12 of Table 3). It can
be seen that the first and second stem were blocked but the
third one passed. For example, the repetition n = 30 consid-
ers 13 individually provided stems that blocked, divided by 30
provided stems and results in a (estimated) blocking probabil-
ity of �̂ = 0.43. The last repetition performed n = 60, shows
that 31 of 60 stems blocked at the spillway inlet, resulting in
a blocking probability of �̂ = 0.52. Between repetition n = 30
[�̂(30) = 0.43] and n = 60 [�̂(60) = 0.52], there is a differ-
ence between blocking probabilities of ��̂ = 0.09. If only four
(like in Bocchiola et al., 2008) or 20 (like in Hartlieb, 2012)
repetitions of an experiment were considered, the estimation of
the blocking probability would be 0.75 and 0.50 respectively.
This analysis highlights the importance of knowing the vari-
ance of the estimated �̂ and how it changes with the number
of repetitions.

(-
)

(n
)

Figure 4 Estimated blocking probability for experiment 12 (Table 3)
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(-
)

(n
)

Figure 5 Estimated blocking probability for experiment 4 (Table 3)

Figure 5 shows the results obtained for experiment 4
(Table 3). In this case, the blocking probability after 30 rep-
etitions is �̂(30) = 0.63, meaning that 19 out of 30 stems
supplied blocked at the spillway inlet. For the repetition n = 60,
�̂(60) = 0.62. Between repetition n = 30 [�̂(30) = 0.63] and
n = 60 [�̂(60) = 0.62], there is a difference between blocking
probabilities of ��̂ = 0.01 for individual stems.

For each repetition, 90% confidence intervals are presented in
Figs 4 and 5 with the respective error bars. As expected, the con-
fidence interval width reduces when n increases, meaning that
the error in the estimation of π decreases, therefore the accuracy
of the estimation increases. A confidence level of 95% was also
evaluated but the results showed that an excessive number of
repetitions (n ≥ 90) would be needed to achieve errors smaller
than 0.10 in the estimation of blocking probabilities.

With the results obtained from the physical experiments,
it was shown that the blocking probability depends on the
variables of Table 3 as the estimated probability of blockage
changed from one experiment to the other. Nevertheless, the
main focus of the present paper relies on the influence of rep-
etitions for the accuracy of probability estimations and not on

the parameters involved in the process of blockage. The differ-
ent magnitude of ��̂(n) of Figs 4 and 5 is influenced by the
variables combined for those experiments, but the width of the
confidence interval (considering any method) has a similar mag-
nitude, therefore the accuracy of those results can be considered
similar.

The results shown in Figs 4 and 5 were obtained in the exper-
imental facility using augmented design. The experiments were
repeated 60 times. In order to achieve a consolidated analy-
sis, different sample sizes by subsampling bootstrap (Politis,
Romano, & Wolf, 1999) have been computed for the estimated
blockage probability. Figure 6 shows experiment 12 (Table 3)
as an example of the error bars obtained after 1000 re-samples
with different sample sizes. It can be seen that the variability
in the width of the confidence interval is similar to that seen in
Fig. 4 based on augmented design; as the sample size and the
repetitions increased, the confidence in the estimated blocking
probability increased accordingly. Nonetheless, due to the time
and cost incurred per experiment in physical models, this type
of analysis is only feasible numerically. Hence, the augmented
design was kept as the remaining methodology.

R
es

am
p
le

d
(-

)

Sample size (-)

Figure 6 Variability of blockage estimation for different sample sizes
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SE
 (

-)
0.50 (1–0.50)

n (Max SE)
Exp. 1

Exp. 2

Exp. 3

Exp. 4

Exp. 5

Exp. 6

Exp. 7

Exp. 8

Exp. 9

Exp. 10

Exp. 11

Exp. 12

Exp. 13

Exp. 14

Figure 7 Standard error of the point estimator

Table 4 Width of confidence intervals

n = 4 n = 10 n = 30 n = 60
Experiment �̂ W CP �̂ W CP �̂ W CP �̂ W CP

1 0.50 0.82 0.80 0.20 0.42 0.47 0.33 0.28 0.31 0.28 0.19 0.20
2 0.25 0.71 0.74 0.10 0.31 0.39 0.10 0.18 0.21 – – –
3 0.25 0.71 0.74 0.10 0.31 0.39 0.20 0.24 0.27 0.20 0.17 0.18
4 0.50 0.82 0.80 0.50 0.52 0.56 0.63 0.29 0.31 0.62 0.21 0.22
5 1.00 0.00 0.53 0.90 0.31 0.39 – – – – – –
6 0.00 0.00 0.53 0.00 0.00 0.26 0.03 0.11 0.15 0.02 0.05 0.08
7 0.25 0.71 0.74 0.10 0.31 0.39 0.10 0.18 0.21 0.08 0.12 0.13
8 0.00 0.00 0.53 0.20 0.42 0.47 0.17 0.22 0.25 0.22 0.17 0.19
9 0.50 0.82 0.80 0.50 0.52 0.56 0.67 0.28 0.31 0.68a 0.19a 0.21a

10 0.25 0.71 0.74 0.60 0.51 0.55 0.80 0.24 0.27 0.67 0.20 0.21
11 0.75 0.71 0.74 0.50 0.52 0.56 0.53 0.30 0.32 0.43 0.21 0.22
12 0.75 0.71 0.74 0.70 0.48 0.52 0.43 0.30 0.32 0.52 0.21 0.23
13 0.75 0.71 0.74 0.80 0.42 0.47 0.67 0.28 0.31 0.68 0.20 0.21
14 0.50 0.82 0.80 0.60 0.51 0.55 0.70 0.28 0.30 0.75 0.18 0.20

W: Wald method. CP: Clopper–Pearson method.aOnly 58 repetitions considered

The limitation of the Wald method when dealing with
extreme blocking probabilities becomes visible (Figs 4 and 5) as
the confidence interval for the first two repetitions could not be
calculated. In the case of the Clopper–Pearson method, it can be
seen that for n < 10 the width of the interval tends to be larger,
hence more conservative, than the Wald interval.

The standard errors can be seen in Fig. 7, for all the replica-
tions and experiments performed. For a given n, the maximum
standard error (SE) was obtained for �̂ = 0.50. If n = 60, the
maximum error in the estimation of π is about 0.06. For the
case of n = 30, the maximum error is about 0.09. If n continues
to decrease, it can take values up to 0.50 as it can be seen in
Fig. 7 with the continuous line for the maximum standard error.

The width of the intervals according to both methods, for
n = 4; 10; 30; 60 with 90% confidence is shown in Table 4. For
the Wald method, when [LL; UL] exceeded [0; 1] it was taken

either 0 or 1. Experiments 5 and 6 are good examples of the lim-
itations of the Wald method. For experiment 5, as the number
of repetitions was smaller than 30 and the estimated blockage
probability was close to 1, the confidence interval calculated
exceeded the [0; 1] interval therefore the external limits had
to be taken. Experiments 6 and 7 had 70 and 60 repetitions
respectively but �̂ was close to 0, leading to forced calcula-
tions of confidence intervals. The use and interpretation of the
Wald method should be done thoughtfully as the calculation
is always feasible but can be misleading if the data cannot be
approximated by a Normal distribution.

The maximum standard error after one repetition can be of
0.50 (Fig. 7), being the worst case scenario with a blocking
probability of 0.50. For a small number of repetitions n ≤ 4, the
estimation has a wide confidence interval or a significant pos-
sible difference with the real blockage probability. For example
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experiment 3 has a width of 0.71 (Wald method, Table 4) with
a confidence level of 90%. Thus if that experiment is per-
formed twice again and the outcomes, after four repetitions,
are �̂1(4) = 0.25 and �̂2(4) = 0.75, both estimations could
be inside the first confidence interval although they represent
different blockage scenarios. With this perspective, the results
obtained in Bocchiola et al. (2008) after four repetitions can
have a maximum error of 0.25 in the probability of stems being
entrapped into a jam in function of their length, for example.

Increasing the number of repetitions to 8 ≤ n ≤ 10 as in
Schmocker and Hager (2011), De Cicco et al. (2016) and
Gschnitzer et al. (2017) reduces the width of the confidence
interval to almost half of the width given for n ≤ 4 and the max-
imum standard error is 0.16. With n ≤ 30 and n ≤ 60 the width
is notably reduced meaning that the difference of the estimation
from experiments with the real value is small. Also, the max-
imum standard error is 0.09 and 0.06 respectively. Although,
to repeat an experiment 60 times means a significant use of
resources for achieving better accuracy.

The Wald method needs to have at least n > 30 and block-
ing probabilities different than 0 or 1 to be correctly applied.
It can provide a false sense of accuracy because of slender
intervals (Agresti & Coull, 1998). The Clopper–Pearson method
performs better when having small amounts of repetitions and
avoids the assumption of a Normal distribution. It allows to cal-
culate confidence intervals even if the probabilities are close
to the extremes (for example, experiment 8 Table 4 for n = 4),
although it gives wider intervals to be more conservative. Wald
and Clopper–Pearson methods provide a good overview of the
variability of blocking probabilities related to repetitions and
can be easily applied with high levels of confidence. Both are
adequate for binomial results, having a simple calculation pro-
cess and being present in most of statistical software. The cho-
sen method will depend on the type of data available and if the
assumption of a Normal distribution is possible. If more com-
plex approximations are to be used, they can be found among
statistical literature (Correa and Sierra, 2001; Newcombe, 1998;
Pires & Amado, 2008; Sauro & Lewis, 2005; Vollset, 1993).

Thus, the achieved accuracy per experiment will be depen-
dant on the number of repetitions. It is recommended that n ≥

30 is used, as it will give an estimated blocking probability with
standard errors less than 0.09 for 90% confidence levels. This
number of repetitions will give a statistically reliable estimation
of the unknown value of the blockage probability. Furthermore,
it is recommended to express the blockage probability of LW
with its confidence interval and its level of confidence, as it
remains a point estimator of an unknown quantity. As men-
tioned in Wohl et al. (2010), some common metrics are needed
in complex topics such as LW behaviour.

6 Conclusion

Experiments have been conducted to evaluate the influence
of repetitions on the accuracy of LW blockage probability

estimations at an ogee crested spillway with piers. This research
has pointed out that stem experiments require a systematic
approach and common metrics. Physical models are used to
study LW processes, hence a statistically justified minimum
number of repetitions is valuable. Nevertheless, previous works
often ignored the importance of defining this number based on
statistical accuracy. As a result, the importance of accuracy in
probabilistic estimations has been a minor topic. To provide a
blocking probability estimation �̂ with any information of how
close it is of π is inconclusive. When this point estimate is
reported, it is necessary to give an order of the accuracy of that
estimation.

A wide range of typical stem dimensions and hydraulic con-
ditions were tested, simultaneously with changing parameters
regarding the stems characteristics or the hydraulic structure.
Experiments indicate that the variability of the estimated block-
ing probability has a strong relation with the number of repe-
titions per experiment. Herein, the application of mathematical
tools related to the problem of LW behaviour by determining an
interval estimate for a binomial proportion is analysed. Knowing
the error in an estimation is the first step in inferential statis-
tics and it allows calculation of how reliable an observation is,
without the need for further sampling (Wallis, 2013). Based on
the results and the statistical methods presented, it is recom-
mended for experimental campaigns to make n ≥ 30 repetitions
per experiment so that estimations of blockage probabilities
with errors smaller than 0.09 occur (with 90% confidence).
In accordance with Schalko (2017), the maximum acceptable
error of the experimental estimations should be 0.09 to have
rigorous assessments of LW blockage risk. This number of rep-
etitions can be decreased if less accuracy of results is tolerable.
Blocking experiments with fewer than 10 repetitions are not rec-
ommended as they have large scattering of results and large
width of confidence intervals. Confidence intervals are valu-
able methods for estimating accuracy of observations and they
should be included when referring to an estimated probability,
with their implicit confidence level. As a common metric for
calculating confidence intervals, the Wald or Clopper–Pearson
methods are proposed with confidence levels of 90%.
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7 Notation

b = bay width (m)
d = stem diameter (m)
H = hydraulic head (m)
Hd = hydraulic design head (m)
L = stem length (m)
LL; UL = lower and upper limit of confidence interval (–)
n = number of repetitions (–)
N = nose configuration (–)
Q = discharge (m3 s−1)
SE = standard error (–)
X = number of blocked stems (–)
W = weir height (m)
α = error level (–)
θ = pier nose diameter (m)
π = blocking probability (–)
�̂ = estimated blocking probability (–)
�̂(nmax) = estimated blocking probability for maximum

number of repetitions (–)
ρ = water density (t m−3)
ρs = stem density (–)
ρw = wood density (t m−3)
σw = standard deviation wood density (t m−3)
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