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Abstract— Feedback controllers that guarantee asymptotic
stabilization of either the hanging equilibrium or the inverted
equilibrium of the 3D pendulum are presented and experi-
mentally evaluated using the Triaxial Attitude Control Testbed
(TACT). Asymptotic stabilization results obtained previously
are shown to guarantee almost global response properties,
but the local response properties near the equilibrium show
non-exponential convergence. These feedback controllers are
modified to guarantee almost global response properties and
improved local response near the equilibrium. Experimental
results illustrate the closed loop time responses for various
feedback controllers.

I. INTRODUCTION

Pendulum models have provided a rich source of examples
that have motivated and illustrated many recent developments
in nonlinear dynamics and in nonlinear control [1]. An
overview of pendulum control problems was given in [2],
which provides motivation for the importance of such control
problems. Much of the published research treats 1D planar
pendulum models or 2D spherical pendulum models or some
multibody version of these. In [3], we summarized much of
this published research, emphasizing papers that treat control
issues, and we introduced a new 3D pendulum model.

This paper provides experimental verification of stabiliza-
tion results for a 3D rigid pendulum presented in [4]. In [4],
we studied stabilization problems for a 3D rigid pendulum
defined in terms of the reduced attitude. The reduced attitude
is the attitude of the pendulum, modulo rotations about the
vertical. In other words, two attitudes have identical reduced
attitudes if they differ only by a rotation about the vertical.

A 3D rigid pendulum is supported at a pivot. The pivot
is assumed to be frictionless and inertially fixed. The rigid
body is asymmetric and the location of the center of mass is
distinct from the location of the pivot. Forces that arise from
uniform and constant gravity act on the rigid body. Three
independent control moments are assumed to act on the rigid
body. The 3D pendulum has two natural equilibria, namely
hanging and inverted equilibria. The hanging equilibrium
represents the case for which the center of mass lies below
the pivot point, whereas the inverted equilibrium represents
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the case for which the center of mass lies above the pivot
point.

We follow the development and notation introduced in
[4]. In particular, the formulation of the model depends on
construction of a Euclidean coordinate frame fixed to the
rigid body with origin at the pivot and an inertial Euclidean
coordinate frame with origin at the pivot. Without loss of
generality, we assume that the inertial coordinate frame is
selected so that the first two axes lie in a horizontal plane
and the “positive” third axis points down. The relevant
mathematical model is expressed in terms of the angular
velocity vector and the reduced attitude vector of the rigid
body. The reduced attitude vector is a unit vector in the
direction of gravity, expressed in the body fixed coordinate
frame. The control problem treated in this paper is global
stabilization of an equilibrium of the 3D pendulum defined
by zero angular velocity and a reduced attitude vector that
corresponds to either the hanging or the inverted equilibrium
configuration.

The Triaxial Attitude Control Testbed (TACT), shown in
Figure 1, is used to perform experiments on global stabiliza-
tion of the hanging and the inverted equilibrium. The TACT
is an experimental testbed at the University of Michigan,
created to study problems in attitude dynamics and control
for a rigid body having three rotational degrees of freedom. It
has been described in detail in [5] with mathematical models
given in [6].

The main contribution of this paper is its summary and
experimental verification of results for almost global stabi-
lization of the hanging and the inverted equilibrium of a
3D rigid pendulum and the development of an improved
controller that, in addition to global stability, also locally ex-
ponentially stabilizes the inverted equilibrium. These results
provide almost global asymptotic stabilization in a direct way
using a single nonlinear controller, in contrast to a switched
control strategy used in [7] for the swing up problem of
a spherical pendulum. We also present experimental results
on the swing up problem for a 3D pendulum using our
experimental testbed.

Thus, experiments verify the stabilization theory presented
in [4] for the hanging equilibrium and for the inverted equi-
librium. We present a slight modification of the controller in
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[4], and we show that it results in improved performance
of the closed-loop. The theory presented for exponential
stabilization is then verified by experiments performed on
our experimental testbed.

Fig. 1. Triaxial Attitude Control Testbed (TACT)

II. BACKGROUND

In [4], we studied almost global asymptotic stabilization
of the hanging and inverted equilibrium, based on feedback
of angular velocity and the reduced attitude vector. We also
proposed two controllers that almost globally asymptotically
stabilize the hanging and the inverted equilibrium.

By almost global asymptotic stabilization of an equi-
librium, we mean that for every initial condition in the
phase-space contained in an open and dense set and whose
complement is a set of Lebesgue measure zero, the solution
converges to this equilibrium. Thus, the domain of attraction
of the equilibrium is the whole of the phase-space, excluding
a closed set of Lebesgue measure zero.

As shown in [3], the control model for the fully actuated
3D pendulum is given by{

Jω̇ = Jω × ω + mgρ × Γ + u,

Γ̇ = Γ × ω,
(1)

where, ω ∈ R
3, Γ ∈ S2, and u ∈ R

3. The phase-space for
this system is given by TSO(3)/S1 � S2 × R

3.
In [4] we proposed a family of controllers that asymptoti-

cally stabilize the hanging equilibrium using angular velocity
feedback. We state the result for completeness. Let Ψ : R

3 �→
R

3 be a smooth function such that

ε1‖x‖
2 ≤ xTΨ(x) ≤ α(‖x‖), ∀x ∈ R

3, (2)

where ε1 > 0, and α(·) is a class-K function. Choose

u = −Ψ(ω), (3)

where Ψ(·) satisfies (2). Then, (3) renders the hanging equi-
librium of a 3D pendulum almost globally asymptotically
stable.

In [4], we also proposed controllers that asymptotically
stabilize the hanging or the inverted equilibrium using both
angular velocity and reduced attitude feedback.

Let Φ : [0, 1) �→ R be a C1 monotonically increasing
function such that Φ(0) = 0 and Φ(x) → ∞ as x → 1. Let
Ψ : R

3 → R
3 be a smooth function satisfying (2). Consider

a class of controllers given by

u = K(Γ)(Γd × Γ) − Ψ(ω), (4)

where K(Γ) = [Φ′
(

1
4
(ΓT

d Γ − 1)2
)
(1−ΓT

d Γ)−ΓT
dΓhmg‖ρ‖]

and Γd is equal to Γh �
ρ

‖ρ‖ or Γi � − ρ
‖ρ‖ . Then (4) renders

the equilibrium Γd (either Γd = Γh or Γd = Γi) almost
globally asymptotically stable.

III. IMPLEMENTATION OF THE CONTROLLER

For experimental implementation on the TACT [5], we
choose

Φ(x) = −k ln(1 − x),

where k > 0, and Ψ(x) = Px, where P is a positive definite
matrix. The resulting control law (4) is given by

u = −Pω − mgρ × Γ + k
ΓT

d Γ − 1

1 − 1
4
(ΓT

d Γ − 1)2
(Γ × Γd). (5)

Next, denote μ = mg‖ρ‖. Thus, for stabilization of the
hanging equilibrium, we obtain the controller

u = −Pω−μ(Γh ×Γ)+k
ΓT

h Γ − 1

1 − 1
4
(ΓT

h Γ − 1)2
(Γ×Γh), (6)

and for stabilization of the inverted equilibrium, we obtain
the controller

u = −Pω + μ(Γi × Γ) + k
ΓT

i Γ − 1

1 − 1
4
(ΓT

i Γ − 1)2
(Γ× Γi). (7)

The scalar parameter μ needs to be estimated.

IV. ESTIMATION OF μ

Note that it is difficult to measure the mass m of
the TACT and the moment arm length ‖ρ‖ for the TACT.
However, it is much simpler to estimate μ alone. It equals
the gravitational moment on the TACT when the vector from
the pivot point to the center of mass lies in the horizontal
plane.

To estimate μ, we start with the TACT in the hanging
equilibrium position. The value for Γ at this position is
Γh. Next, we command the pitch-axis thrusters to deliver
a constant thrust so that the TACT is in equilibrium with a
pitch-angle θ that can be measured, as shown in Figure 2. In
Figure 2, C is the pivot point, O is the center of mass, AB
and HG are the square plates and EF is the pipe that passes
through the air bearing. Note that ρ is the vector from the
pivot point to the center of mass and the thrust by the fans
is applied to the plate HG.

Since we know the mapping from the voltage to torque,
we know the applied torque τ . Then it is clear from Figure
2 that |τ | = mg‖ρ sin θ‖ = μ| sin θ|. Thus, μ = |τ |/| sin θ|.
Since τ and θ are measured, μ can be estimated. With the
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Fig. 2. A schematic of the TACT when it pitches due to a known applied
torque

above procedure, we compute the value of μ for various
thrust values. These values are presented in Table I. The
maximum torque applied to TACT during the tests is τmax =
0.4 N-m, since for higher pitch axis torque the TACT collides
with the supporting pillar.

TABLE I

ESTIMATION OF μ FOR VARIOUS CONSTANT THRUST VALUES

Test Torque (τ) θ μ = τ/sin θ
Case [N-m] [Deg] [kg-m2-s−2]

(1) 0.1 9.3592 0.6149
(2) 0.2 20.4815 0.5716
(3) 0.3 32.9207 0.5520
(4) 0.4 46.3972 0.5524

From Table I, the average value of μ was computed to
be μavg = 0.5727 kg-m2-s−2. Thus, we have the parameter
required to implement the proposed control laws.

V. EXPERIMENTS ON STABILIZATION OF THE HANGING

EQUILIBRIUM

In this section, we present experimental results for two
almost global controllers for stabilization of the hanging
equilibrium. The first one is based on angular velocity
feedback alone and the other is based on angular velocity and
reduced attitude feedback. The angular velocity feedback is
a simple dissipation controller given by u = −Pω, where P
is a positive definite matrix gain. The hanging equilibrium
corresponds to Γh = [0 0 1]T and ω = 0.

In all the experiments, we chose two sets of gains. These
are P = diag(5, 20, 10) and P = diag(5, 5, 10). These gains
were obtained after performing some trial experiments to
find one that results in a good performance of the controlled
system, in terms of convergence of the error to zero. These
same gains were used later in the reduced attitude feedback
experiments to contrast the performance of the angular
velocity feedback controller with the angular velocity and
reduced attitude feedback controller. However, we present

results corresponding to the control gain P = diag(5, 5, 10)
only.

A. Angular Velocity Feedback

First, we present the results obtained for the angular
velocity feedback controller. The plots for the reduced at-
titude vector Γ and angular velocities for the controller with
P = diag(5, 5, 10) are presented in Figures 3 and 4. As can
be seen, Γ → [0 0 1]T = Γh and ω → 0.
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Fig. 3. Plot of the Γ vector for P = diag(5, 5, 10) in angular velocity
feedback controller
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Fig. 4. Plot of the angular velocities for P = diag(5, 5, 10) in angular
velocity feedback controller

B. Angular Velocity and Reduced Attitude Feedback

Next, we present experimental results obtained for the
angular velocity and reduced attitude feedback controller. To
contrast the performance with the angular velocity feedback
controller, we chose the same value of P and chose two
gain values for k namely, k = 30 and k = 50. The gains for
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k were chosen by trial and error to obtain reasonable error
convergence rates while avoiding excessively high torques.
We present results for k = 30.

The plots for the reduced attitude vector Γ and angular
velocities for the controller with P = diag(5, 5, 10) and k =
30 are presented in figures 5 and 6. Note that the initial
transients are faster than the pure angular velocity feedback
case. This is because of the potential that is created by the
control. However, the final convergence rate is still not fast.
As will be seen in the next section, this occurs due to the
fact that the closed-loop system is not exponentially stable.

0 50 100 150
−1

−0.5

0

0.5

1

Γ x

0 50 100 150
−1

−0.5

0

0.5

1

Γ y

0 50 100 150
−0.5

0

0.5

1

1.5

Γ z

Time [sec]

Fig. 5. Plot of the Γ vector for P = diag(5, 5, 10) and k = 30 in angular
velocity and reduced attitude feedback controller
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Fig. 6. Plot of the angular velocities for P = diag(5, 5, 10) and k = 30
in angular velocity and reduced attitude feedback controller

VI. LOCAL EXPONENTIAL CONVERGENCE FOR THE

ANGULAR VELOCITY AND REDUCED ATTITUDE

FEEDBACK CONTROLLER

From the results presented in the previous section, it is
clear that even though the initial transients are faster for

the angular velocity and reduced attitude feedback con-
troller than for the angular velocity feedback controller, the
asymptotic convergence is still slow, since the controller
(4) is not locally exponentially stable. Thus, to improve
the performance, we modify the controller to obtain local
exponential stability.

We now present a modified controller which improves the
local performance of the closed-loop system giving local
exponential stability in addition to almost global asymptotic
stability. We present the analysis for the inverted equilibrium;
the analysis is similar for the hanging equilibrium.

Consider the modified controller

u = −Ψ(ω) + K(Γ)[Γi × Γ]. (8)

where K(Γ) =
[
Φ′

(
1
4
(ΓT

i Γ − 1)2
)
(1 − ΓT

i Γ) + κκκ
]
, κκκ > μ

and Ψ′(0) is positive definite and symmetric. Thus, K(Γ)
is a nonlinear gain, such that K(Γ) ≥ K(Γi) = κκκ > μ.
Furthermore, K(Γ) → ∞ as Γ → Γh.

We next show that this controller almost globally asymp-
totically stabilizes the inverted equilibrium with the domain
of attraction given by

(
R

3 × S2\{Γh}
)

. Furthermore, the
controller improves the performance of the closed-loop sys-
tem by locally exponentially stabilizing the inverted equilib-
rium.

The proof of almost global asymptotic stability of the
controller (8) is similar to the proof of Theorem 4, in [8].
However, the Lyapunov function is modified corresponding
to the new controller in (8). Consider the modified Lyapunov
function on R

3 × S2

V(ω, Γ) =
ωTJω

2
+ 2Φ

(
(ΓT

iΓ − 1)2

4

)
+ (κκκ − μ)(1 − ΓT

iΓ).

(9)
Note that V(0,Γi) = 0 and that V is a proper function

on R
3 × S2. Next, direct computations reveal that V̇ =

−ωTΨ(ω), which is negative semidefinite. The rest of the
proof proceeds as in [8].

To see that the modified controller also gives local expo-
nential convergence, we linearize the nonlinear closed-loop
equations given by (1) and (8). Since dim

[
TSO(3)/S1

]
= 5,

the linearized system should evolve on R
5.

VII. LINEARIZATION OF THE CLOSED-LOOP SYSTEM

First, note that the closed-loop can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Jω̇ = Jω × ω +

[
Φ′

(
1

4
(ΓT

i Γ − 1)2
)

(1 − ΓT
i Γ)Γi

+ (κκκ − μ)

]
(Γi × Γ) − Ψ(ω),

Γ̇ = Γ × ω.
(10)

As in [8], we consider a perturbation in Γ and ω in terms
of ΔΘ, where ΔΘ represents a perturbation of the rotation
matrix in exponential coordinates. Then, the linearization of
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(10) in terms of the full attitude is given as⎧⎨⎩JΔω̇ = −(κκκ − μ)
ρ̂

‖ρ‖
Γ̂iΔΘ − Ψ′(0)Δω,

ΔΘ̇ = Δω,

(11)

where the operator ∧ : R
3 �→ R

3×3 is the skew-symmetric
operator defined in [3], [8] as â b � a × b.

Equation (11) can be expressed as

JΔΘ̈ + Ψ′(0)ΔΘ̇ − (κκκ − μ)
ρ̂ 2

‖ρ‖
ΔΘ = 0. (12)

Now note that ρ̂ 2 is a rank 2, symmetric, negative-
semidefinite matrix. Thus, it follows that one can simultane-
ously diagonalize both J and the matrix given by ρ̂ 2. Thus,
there exists a non-singular matrix H such that J = HHT

and

−(κκκ − μ)
ρ̂ 2

‖ρ‖
= HΩHT,

where Ω is a diagonal matrix [9]. Clearly, the diagonal
elements of Ω are the eigenvalues of −(κκκ/‖ρ‖ − mg).

Denote Ω = diag(λ1, λ2, 0), where λ1 and λ2 are
positive numbers. Define x � HTΔΘ and denote D =
H−1Ψ′(0)H−T. Note that since Ψ′(0) is symmetric and
positive definite, DT = D and D is positive definite. Now,
one can express (12) as

ẍ + Dẋ + Ωx = 0. (13)

If Ψ is chosen such that D is diagonal, then equation (13)
represents a set of three decoupled second order differential
equations. The coordinates x = (x1, x2, x3) are the modal
coordinates of the linearized equations.

Note that (13) does not depend on x3. Since Γ = RTe3,
to the first order, Γ is approximated by [I − Δ̂Θ]Γi. Then,
denoting ΔΓ � Γ − Γi = Γ̂iΔΘ, it can be shown that ΔΓ
depends on (x1, x2) only and hence, is independent of the
value of x3. Thus, the linearization of (10) is independent
of x3. Next, we state a result whose proof is similar to
Proposition 1 in [8].

Proposition 1: Consider the fully actuated 3D pendulum
given by (1). Choose a controller as given in (5). Then, the
inverted equilibrium of the closed-loop (10) is asymptotically
stable and the convergence is locally exponential.

Remark 1: Note that the controller presented in [4] for
stabilization of the inverted equilibrium is equivalent to
the controller (8) with the value of κκκ chosen exactly to
be μ. Thus, the closed-loop system in [4] is not locally
exponentially stable.

Remark 2: Another advantage of the modified control
law given by (8) is that it modifies the gravity potential
forces by domination rather than by cancellation. Thus, we
only need an upper bound on the value of μ.

VIII. EXPERIMENTS ON STABILIZATION OF THE

INVERTED EQUILIBRIUM: MODIFIED CONTROLLER

In this section, we present experimental results obtained
for stabilization of the inverted equilibrium. The inverted

equilibrium corresponds to Γi = [0 0 − 1]T and ω = 0. We
use the modified controller to obtain both global asymptotic
stability and local exponential stability. Note that the upper
bound on μ is given by μmax = 0.6149. Thus, the control
law is given as

u = −Pω + k

[
1 − ΓT

i Γ

1 − 1
4
(ΓT

i Γ − 1)2
+ κκκ

]
(Γi × Γ), (14)

where κκκ > μmax = 0.6149. For the experiments we choose
κκκ = 10. This gain was selected by trial and error to achieve
reasonably fast local responses without large control torques.
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Fig. 7. Plot of the Γ vector for P = diag(5, 5, 10) and k = 15
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Fig. 8. Plot of the angular velocities for P = diag(5, 5, 10) and k = 15

The experiments were performed for two values of damp-
ing gain P . However, we present results corresponding to
the damping gain P = diag(5, 5, 10) and k = 15. The
gains were chosen by trial and error to obtain reasonable
convergence rate while avoiding excessively high control
torques. The plots for the reduced attitude vector Γ and
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angular velocities of the closed-loop system for the controller
with P = diag(5, 5, 10) and k = 15 are presented in figures
7 and 8.

IX. SWING-UP PROBLEM OF THE 3D PENDULUM

In this section, we present results obtained for swinging
up the TACT using the controller (14). The control torque is
saturated due to the limited torque the thrusters can produce.
Although the controller may demand large torque, the satu-
rated controller still stabilizes the inverted equilibrium and
swings up the TACT successfully.

Experiments were done for four different sets of gains. In
this paper, however, we present results for the gains P =
diag(5, 5, 10) and k = 30. Figures 9 and 10 depict plots for
the reduced attitude vector Γ and angular velocities for the
swing up problem.
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Fig. 9. Plot of the Γ vector for swing-up problem of 3D pendulum for
P = diag(5, 5, 10) and k = 30
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Fig. 10. Plot of the angular velocities for swing-up problem of 3D
pendulum for P = diag(5, 5, 10) and k = 30

X. CONCLUSIONS

In this paper, we present experimental results that verify
the theory of stabilization of the hanging equilibrium and the
inverted equilibrium for the 3D rigid pendulum, using con-
trollers designed in [4]. These experiments were performed
on the TACT, an experimental testbed at the University
of Michigan [5]. We discuss implementation issues and
present a method to estimate the parameter required for the
controller.

Experimental results for the stabilization of the hanging
equilibrium indicate slow convergence due to lack of expo-
nential stability. Thus, a modification for the controller is
presented for improved local performance. It is shown that
the modified controller provides local exponential stabiliza-
tion of the inverted equilibrium of a 3D pendulum, with an
almost global domain of attraction. Experimental results are
presented for stabilization of the inverted equilibrium using
the modified controller. Finally, we use this controller to
successfully swing up the TACT from rest at the hanging
equilibrium to the inverted equilibrium. Thus, experimental
results illustrate the closed loop properties of the 3D pendu-
lum system.

One important assumption of this paper is full control
actuation. Controllers can be developed to stabilize an
equilibrium in the case of underactuation; see for example
[10]. As part of our future work, this will be studied by
experiments on a TACT implementation.
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