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Global position system (GPS) is being widely used in land vehicles to provide positioning information. However, in urban
canyons, rural tree canopies, and tunnels, the GPS satellite signal is usually blocked and there is an interruption in the positioning
information. To obtain positioning solution during GPS outages, GPS can be augmented with an inertial navigation system
(INS). However, the utilization of full inertial measurement unit (IMU) in land vehicles could be quite expensive despite the
use of the microelectromechanical system (MEMS)-based sensors. Contemporary research is focused on reducing the number of
inertial sensors inside an IMU. This paper explores a multisensor system (MSS) involving single-axis gyroscope and an odometer
to provide full 2D positioning solution in denied GPS environments. Furthermore, a Kalman filter (KF) model is utilized to
predict and compensate the position errors of the proposed MSS. The performance of the proposed method is examined by
conducting several road tests trajectories using both MEMS and tactical grade inertial sensors. It was found that by using proposed
MSS algorithm, the positional inaccuracies caused by GPS signal blockages are adequately compensated and resulting positional
information can be used to steer the land vehicles during GPS outages with relatively small position errors.

Copyright © 2009 Umar Iqbal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Global positioning system (GPS) provides positioning,
velocity, and time information with consistent and accept-
able accuracy when there is direct line of sight to four or
more satellites [1, 2]. However, it may suffer from outages,
jamming, and multipath effects in urban canyons and rural
foliage canopies. Inertial navigation system (INS), on the
other hand, is self-contained which is immune to external
interference, but its accuracy deteriorates in the long-
term due to sensor’s bias, drift, scale factor instability and
misalignment [3–5]. By integrating the GPS and INS signals,
a complementary solution can be obtained that is often
more accurate than that of each independent system [3]. For
instance, GPS derived positions have approximately white
noise characteristics with bounded errors and can therefore
be used to update INS and improve its long-term accuracy
[4, 5], whereas INS provides positioning information during
GPS outages, assists GPS signal reacquisition after an outage,
and reduces the search domain required for detecting and

correcting GPS cycle slips [1–5]. INS is also capable of
providing positioning, velocity, and attitude information at
higher data rates than GPS. Kalman filter (KF) is traditionally
used to optimally fuse the position and velocity information
from both INS and GPS [6–13]. However, cost and space
constraints are the two primary obstacles that have prevented
the utilization of either navigation or tactical grade INS
inside land vehicles or other low cost applications [14].
The recent developments of microelectromechanical systems
(MEMSs) inertial sensors have enabled production of lower
cost and smaller size inertial measurement units (IMUs).
However, the utilization of full IMU in land vehicles and
personal location systems is still relatively expensive despite
the use of MEMS-based sensors. The price of the gyroscopes
mostly contributes to the overall cost of an IMU. Current
research trend is to investigate the applicability of reduced
number of sensors inside an IMU and examine the influence
of this reduction on the overall positioning accuracy [15].

This research focuses on analyzing the merits and limi-
tations of implementing a multisensor system (MSS) using
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a single-axis gyroscope and an odometer. It also discusses
the integration of GPS with INS using KF to obtain the best
possible positioning solution which can fill the niche of low
cost and small size systems for vehicular positioning without
increasing installation complexity and compromising ease of
use.

2. Background

Several research activities have been reported to achieve
navigation solutions using alternative approaches with fewer
numbers of sensors and their integration with GPS. In a
gyro-free inertial measurement unit (GF-IMU) approach by
Chen, accelerometers-only configuration is used to measure
the three accelerations and the attitude of a rigid body in 3D
space [16]. Chen developed optimal cube-like configuration
of six distributed accelerometers that allows rotational
acceleration to be directly calculated as a function of the
accelerometer outputs. The position and velocity estimates
are obtained by integration of the accelerometer data which
leads to errors growth with time. Mostov et al. [17] developed
a calibration method for compensating the configuration
errors in Chen’s scheme. However, the errors diverge quickly
in case of the GPS outages. Park and Tan [18] showed
an integrated GPS and GF-IMU system using KF error
models to estimate the errors. However, GF-IMU diverges at
a rate greater than that of gyroscope-based IMU. Another
GF-IMU technique is based on Parsa et al. [19] which
uses a network of four or more triaxial accelerometers for
GPS/INS integration. However, Parsa’s system requires long
calibration and configuration procedures [20].

The problem of keeping the accuracy of the INS within
bounds can also be addressed by considering the vehicle
motion constraints arising from the fact that the land vehicles
mostly travel on roads [21]. Previous studies show that a
lateral constraint applied to wheel speed sensor integration
is effective only when the vehicle operates on a flat road
and no side slip occurs [22]. Brandt and Gardner [23]
proposed a system based on one accelerometer and three
gyroscopes. In addition, the odometer was used to provide
auxiliary information about the vehicle’s speed. Constraints
on the motion of the land vehicles are used to derive set of
navigation equations. However the proposed system mainly
relies on keeping all three gyroscopes which are costly as
compared to accelerometers.

To make a simple, practical, and low-cost solution, Wang
[24] proposed an accelerometer and magnetometer-based
system that relied on constrains defined by Brandt and
Gardner [23] to reduce the navigation errors. The vehicle’s
velocity, obtained from the time integration of the measure-
ments of a forward accelerometer, was compensated by a pre-
trained neural network. The magnetic disturbances, which
are usually present in down town areas, are unpredictable
and could bias the magnetometer output significantly. Even
in areas where modest magnetic disturbances are present, the
performance of proposed system was inversely proportional
to the length of the GPS outages, which results into large
errors for long GPS outages.

Recently, El-Sheimy [15] also analyzed and compared
the performance of two “Partial IMU” systems which are
based on (1) a single gyro and three accelerometers denoted
as 1G3A and (2) a single gyro and two accelerometers
(1G2A). He also applied nonholonomic constraints and
odometer updates during GPS outages. His partial IMU
systems promise to reduce the cost of an IMU up to 65%
while maintaining reasonable navigation performance as
compared to full IMU systems.

Aforementioned studies focused on reducing the cost of
the navigation systems based on reducing the number of
sensors. However, most of them affected the performance
and others are quite complex. Earlier, the authors have
also presented an algorithm for reduced sensor system [25]
which only pertained to the high end tactical grade sensors.
However, there is a need for a lower cost solution with
MEMS grade sensors for maximum affordability. This calls
for different sensor error models and subtle compromise
in tuning of KF parameters which has been addressed in
this paper. The results of MEMS grade sensor have been
juxtaposed with high end tactical grade sensors for ready
comparison.

3. Research Objectives

The primary objective of this research is to reduce the cost
of the overall positioning system for land vehicles without
appreciable performance compromise. The gyroscopes tech-
nology is what mostly contributes to the overall cost of an
IMU. Hence, this research investigates the applicability of
reduced number of gyroscopes inside an IMU and examines
its influence on the overall positioning accuracy. A key
advantage includes reduction of the gyroscope error char-
acteristics especially when MEMS inertial sensors are used.
This paper suggests a multisensor system (MSS) involving
single-axis gyroscope and a speed sensor to provide full 2D
positioning solution, especially in denied GPS environments.
With the reasonable assumption that the vehicle mostly
stays in the horizontal plane, the vehicle’s speed from the
speed sensor is used together with the heading information
obtained from the gyroscope to determine the velocities
along the East and North directions. Consequently, the
vehicle’s longitude and latitude are determined. MSS-based
position and velocity are integrated with GPS data using KF
to provide robust positioning solution. The MSS is tested on
real-life road trajectories to assess its performance and results
are analyzed in detail.

4. Methodology

4.1. Multisensor System (MSS). To cater for all the three-
dimensional dynamics of the vehicle, traditionally, a total
of six sensors are used in a full IMU which comprise
three gyroscopes and three accelerometers. However, for
the reasons mentioned earlier, simpler sensor configurations
are being investigated by contemporary researchers. In this
paper, only one gyroscope and one odometer are used as
sensor configuration to provide the positioning solution in
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Figure 1: Block diagram of MSS mechanization.

the horizontal plane. The MSS mechanization is developed
assuming the vehicle is mostly travelling in the horizontal
plane. Thus, the vehicle’s velocity along the East and North
directions as well as the latitude and longitude can be
obtained by measuring the vehicle speed along its forward
axis and the heading angle. Therefore, one gyroscope and an
odometer can be used to provide complete two-dimensional
positioning solution. It is a recursive process based on
initial conditions or the previous output and the new
measurements. The overview of the MSS mechanization can
be reviewed in Figure 1.

5. MSS Implementation Details

5.1. MSS Mechanization. For the MSS, one single-axis
gyroscope, mounted with its sensitive axis along the vertical
direction of the vehicle, is used to measure the orientation
of the vehicle in horizontal plane (the azimuth angle). This
gyroscope measures the rotation rate in the body frame
which cannot be deduced directly in the local-level frame
(LLF) for two reasons. The first reason is the component
of Earth rotation rate along the vertical direction (ωesinϕ),
where ωe is the Earth rotation rate and ϕ is the latitude.
The second reason is of the change of orientation of the LLF
with respect to earth (Ve tanϕ/(RN + h)), where Ve is the
velocity along the East direction, h is the altitude, and RN

is the meridian radius of curvature. Therefore, rate of change
of the azimuth angle (A) can be written as follows:

Ȧ = ωz − ωe sinϕ−
Ve tanϕ

RN + h
. (1)

Velocities along the East and North directions are determined
using the vehicle speed obtained from the odometer along
with the heading information obtained from the gyroscope,
with the assumption that the vehicle mostly stays in the
horizontal plane. An odometer is a device used for indicating
distance traveled by the vehicle. In modern systems, odome-
ter is an electronic device that generates an integer number
of digital pulses each time a wheel on the vehicle makes one
revolution. These numbers of pulses are multiplied by an
odometer scale factor to measure the distance traveled by the

vehicle in a specific time interval [26]. The vehicle speed can
then be obtained from the odometer measurements. Some
errors contribute to the odometer measurement accuracy.
For instance, the odometer scale factor depends on the
radius of the vehicle’s wheel, which can change with tire
pressure, temperature, tread wear, and speed. Wide-ranging
sources and analysis of error for speed and odometer
measurements are available in the literature [27, 28]. The
MSS mechanization process is summarized in a detailed
block diagram in Figure 2.

To obtain MSS positional information in the East and
North directions, the initial heading (azimuth angle A) must
be known. In this study, we rely on the GPS driven azimuth
which is computed using the GPS east and north velocities
once the vehicle starts to move to give the initial azimuth
angle for the MSS mechanization. The change in the azimuth
angle is then obtained by numerically integrating (1). The
computed azimuth allows the transformation of the vehicle’s
speed along the forward direction Vod (obtained from the
odometer measurements) to east and north velocities as
follows:

V =

⎛
⎝Ve

Vn

⎞
⎠ =

⎛
⎝ Vod sinA

Vod cos A

⎞
⎠. (2)

The east and north velocities are transformed into geodetic
coordinates and then integrated over the sample interval to
obtain positions in latitude (φ) and longitude (λ) as per the
following equation:

ṙ =

⎛
⎝ϕ̇
λ̇

⎞
⎠ =

⎛
⎜⎜⎝

0
1

RM + h
1

(RN + h) cos ϕ
0

⎞
⎟⎟⎠

⎛
⎝Ve

Vn

⎞
⎠. (3)

5.2. Overview of Kalman Filter. Kalman filtering is an
optimal estimation tool that provides a sequential recursive
algorithm for the optimal least mean variance (LMV)
estimation of the system states [29]. In addition to its benefits
as an optimal estimator, the KF provides real-time statistical
data related to the estimation accuracy of the system states,
which is very useful for quantitative error analysis [7]. The
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Figure 2: Detailed block diagram of MSS mechanization.

filter generates its own error analysis with the computation
of the error covariance matrix, which gives an indication of
the estimation accuracy.

5.2.1. Discrete Linearized Kalman Filter. Since we are dealing
with nonlinear system and the low-cost MEMS inertial
sensors are of relatively poor performance, it was therefore
decided to use linearized KF (LKF) where nonlinear systems
are linearized about the known trajectory (which, in our
case, is output of the mechanization) and then well-known
KF equations are applied to the linearized equations. This is
done through the open-loop (feedback) implementation of
INS/GPS integration as shown in Figure 3. The theory of KF
is well established and details can be found in [6–10, 12, 13];
however, a brief review of the linearization process is in order.

The discrete time nonlinear dynamic model state equa-
tion is given as follows [8]:

xk = f (xk−1, k − 1) + g(xk−1, k − 1)wk−1, wk ∼ N(0,Qk).
(4)

The nonlinear measurement equation is

zk = h(xk, k) + vk, vk ∼ N(0,Rk). (5)

If x̃k−1 is a known (or nominal) trajectory of the system, then
we can write the equation of the system (neglecting the noise)
as follows:

x̃k = f (x̃k−1, k − 1). (6)

An arbitrary trajectory of the system described by (4) can be
described as follows:

xk−1 = x̃k−1 + ∆xk−1, (7)

where ∆xk−1 is the deviation of xk−1 from x̃k−1. By these
definitions, (4) can be represented as follows:

x̃k+∆xk= f (x̃k−1 +∆xk−1, k−1)+g(x̃k−1 +∆xk−1, k−1)wk−1.
(8)

Applying Taylor’s expansion about x̃k−1 and neglecting
higher order terms, we have

x̃k+∆xk≈ f (x̃k−1, k−1)+
∂ f

∂x
(x̃k−1)∆xk−1 +g(x̃k−1, k−1)wk−1.

(9)

From definition of (6), (9) can be written as follows:

∆xk ≈
∂ f

∂xk−1
(x̃k−1, k − 1)∆xk−1 + g(x̃k−1, k − 1)wk−1. (10)

Now, (5) can be expressed as follows:

zk = h(x̃k + ∆xk, k) + vk . (11)

By using Taylor’s expansion about x̃k,

zk ≈ h(x̃k, k) +
∂h

∂x
(x̃k, k)∆xk + vk . (12)

By letting Φk−1 = ∂ f (x̂k−1, k − 1)/∂xk−1, Gk−1 � g(x̃k−1, k −

1), Hk � (∂h/∂x)(x̃, k), and yk � zk − h(x̃k, k), (10) and (12)
can be written as follows:

∆xk ≈ Φk−1∆xk−1 + Gk−1wk−1,

yk ≈ Hk∆xk + vk.
(13)

Now, the KF equations can be applied to this linearized state
space model to obtain (LMV) estimate ∆x̂k of ∆xk based on
y1, . . . , yk. Estimate of state xk can now be calculated by using

x̂k = x̃k + ∆x̂k. (14)

A summary of KF equations is summarized in Table 1.

5.3. Kalman Filter for GPS/MSS Data Fusion. KF used in
this study operates in a loosely coupled fashion to fuse the
MSS computed position and velocity components along the
horizontal channels with the corresponding GPS positions
and velocities. This enables the computation of the MSS
positions, velocities, and azimuth errors as well as the
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Table 1: Summary of Kalman filter equations.

Summary of Kalman filter equations

Linear perturbation prediction:

∆x̂−k = Φk−1∆x̂k−1.

Conditioning the predicted perturbation on the measurement:

∆x̂k = ∆x̂−k + Kk(yk − ŷ−k ).

Predicted measurement:

ŷ−k = Hk∆x̂
−
k−1.

A priori covariance matrix:

P−k = Φk−1Pk−1Φ
T
k + Gk−1Qk−1G

T
k−1.

Kalman gain:

Kk = (P−k )HT
k (HkP

−
k H

T
k + Rk)−1.

A posteriori covariance matrix:

Pk = (I − KkHk)P−k (I − KkHk)T + KkRkK
T
k .

gyroscope and odometer residual random errors. A block
diagram of the MSS and GPS integration is shown in
Figure 3.

KF outputs two important variables, the estimated state
vector x and the covariance matrix P. The estimated state
vector is a vector of MSS positions, velocities, and azimuth
errors augmented with the sensors random errors (for
both gyroscope and the odometer driven acceleration). The
covariance matrix is a measure of the estimation uncertainty
which takes into consideration how the sensor noise and
dynamic uncertainty contribute to the uncertainty about the
estimated error states [30]. By maintaining an estimate of its
own estimation uncertainty and the relative uncertainty in
the sensor outputs, the KF is able to optimize the estimate
to minimize the estimation error. The measurements update
(GPS position and velocity) may be corrupted with additive
zero-mean white noise. In order for a KF to produce a
statistically optimal estimate of its state, the filter’s model
equations, measurement equations, and spectral density
matrices should accurately describe the dynamical and
statistical properties of the system of interest.

5.3.1. MSS Error Model. The error state vector of the MSS
error model includes coordinate errors (δϕ, δλ), velocity
errors (δVe, δVn), azimuth error (δA), and residual random
errors of odometer driven acceleration δaod and gyroscope
δωz as follows:

x =
(
δϕ δλ δVe δVn δA δaod δωz

)T
. (15)

These errors are passed from one estimate to another with
the overall uncertainty in the precision of the estimated
quantity drifting with time [6, 12]. Therefore, error models
are required for analysis and estimation of different error
sources associated with the proposed MSS.

Since the errors in dynamic systems are function of
time, they are described by differential equations [31].
Linearization of a nonlinear dynamic system is the most
common approach to derive a set of linear differential
equations that define the error states of a dynamic system
[4, 32]. Thus, the time rate of change of the MSS position
errors can be derived from following equations:

⎛
⎝δϕ̇
δλ̇

⎞
⎠ =

⎛
⎜⎜⎝

0
1

RM + h
1

(RN + h) cos ϕ
0

⎞
⎟⎟⎠

⎛
⎝δVe

δVn

⎞
⎠. (16)

Similarly, time rate of change of the MSS velocity errors can
be obtained starting from (2) and written as follows:

⎛
⎝δV̇e

δV̇n

⎞
⎠ =

⎛
⎝ sinA aod cos A

cos A −aod sinA

⎞
⎠
⎛
⎝δaod

δA

⎞
⎠, (17)

where aod is the odometer driven acceleration, and δaod

is the corresponding residual random error. It should be
highlighted that in obtaining (22), the time rate of change
of the azimuth Ȧ is neglected. This is one of the limitation
of the proposed method and the accuracy may deteriorate
during the sharp turns of the vehicle.
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The azimuth errors mostly depend on the gyroscope
residual random error (mostly due to the residual long term
drifts) and can be written as follows:

δȦ = δωz. (18)

5.3.2. Stochastic Modeling of Inertial Sensor Errors. In most
KF implementations, the sensor noise portion of the state
transition matrix F is based on a 1st-order Gauss-Markov
(GM) model. The GM process is frequently used in engi-
neering applications because of its simplicity and partly
because the designer often lacks the detailed knowledge of
the process under consideration that is needed to devise a
more complicated model [33].

5.3.3. The Gauss-Markov Process. A stationary Gaussian
process x(t) that has an exponential autocorrelation is
called a Gauss-Markov (GM) process [29]. The statistics
of a stationary GM process are completely described by its
autocorrelation function as follows:

Rxx(τ) = σ2e−β|τ|, (19)

where σ2 is the variance of the sensor noise, and β is the
reciprocal of the correlation time which corresponds to
decaying exponential autocorrelation sequence.

First-order Gauss-Markov process x(t) is described as
follows:

ẋ(t) = −βx(t) +
√

2σ2βw(t), (20)

where w(t) is modeled as unity variance white Gaussian
noise. A typical autocorrelation plot of a first- order GM
process is shown in Figure 4. By computing the autocorre-
lation function, the variance (σ2) can be determined from
the maximum value and the correlation time (τ) can be
calculated from the time corresponding to (1/e)σ2. These
parameters are determined from actual experimental data
from a stationary run. In discrete-time domain, (20) is
written as follows [6, 34]:

xk =
(
I − β∆t

)
xk−1 +

√
2βσ2wk∆t, (21)

where t △ is the sampling interval.

5.3.4. Gauss-Markov Model for GPS/MSS Data Fusion. In
this study, the errors characteristics of both the odometer
and gyrocope were observed by obtaining the autocorre-
lation sequence of the static data. It was noticed that the
autocorrelaton of the gryroscope resembled that of first GM
process. The noise from odometer was observed to be white
and its autocorrelaton showed a peak around zero with
some power at other frequencies. Therefore, the odometer
errors were also modeled by first-order GM process with a
short correlation time. These error models can be written as
follows [6, 29]:

⎛
⎝δȧod

δω̇z

⎞
⎠ =

⎛
⎝−γod 0

0 −βz

⎞
⎠
⎛
⎝δaod

δωz

⎞
⎠ +

⎛
⎜⎝

√
2γodσ

2
od√

2βzσ2
z

⎞
⎟⎠w(t), (22)

−
1

β
= −τcorr

1

β
= τcorr: correlation time

τ−τ

1

e
σ2

Rxx(τ) = σ2e−β|τ|

σ2: variance

Figure 4: The autocorrelation sequence of a 1st-order Gauss-
Markov process.

where βz is the reciprocal of the correlation time of the
random process associated with the gyroscope measurement,
σz is the standard deviation of this random process, and
w(t) is unity variance white Gaussian noise. Similarly, γod is
the reciprocal of the correlation time of the random process
associated with the odometer driven acceleration; σod is the
standard deviation of this random process.

5.4. Kalman Filter Implimentation for MSS/GPS Data Fusion.
The random processes associated with the components of
the error state vector x were represented by a group of first-
order state equations, which can be augmented together and
described by the following discrete linear state equation:

xk = Fk,k−1xk−1 + Gk−1wk−1, (23)

where xk is the error state vector x at time tk,

xk =
(
δϕ δλ δVe δVn δA δaod δωz

)T
. (24)

Fk,k−1 is a dynamic matrix relating xk−1 to xk; wk−1 is a
random forcing function which can be regarded as unity-
variance white Gaussian noise with Gk−1 being its coefficient
vector [32]. Dynamic coefficient matrix Fk,k−1 and noise
coupling matrix Gk−1 can be written using 1st-order Taylor
series approximation as follows:

Fk,k−1 = I + F∆t,

Gk−1 = G∆t.
(25)

For MSS system error equations, the dynamic matrix F can
be written as follows:

F=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1

RM+h
0 0 0

0 0
1

(RN +h) cos ϕ
0 0 0 0

0 0 0 0 aod cos A sinA 0

0 0 0 0 −aod sinA cos A 0

0 0 0 0 0 0 1

0 0 0 0 0 −γod 0

0 0 0 0 0 0 −βz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)
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and G is noise coupling matrix for the MSS dynamic model
and is written as follows:

G =
(

0 0 0 0 0
√

2γodσ
2
od

√
2βzσ2

z

)T
. (27)

Finally the MSS error model in discrete time domian can be
expressed as follows:

xk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δϕ

δλ

δVe

δVn

δA

δaod

δωz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I7×7 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1

RM + h
0 0 0

0 0
1

(RN + h) cos ϕ
0 0 0 0

0 0 0 0 aod cos A sinA 0

0 0 0 0 −aod sinA cos A 0
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(28)

In order to provide optimal estimation of the above error
state vecotor xk, observations for the above discrete system
can be provided in the following form:

yk = Hxk + vk, (29)

where yk is the observations vector at time tk giving the
difference between the MSS and GPS positions and velocities,
Hk is the design matrix giving the ideal noiseless relationship
between the observations vector and the state vector, and vk
is the vector of observations random noise, which is assumed
to be white sequence not correlated with the MSS system
noise wk (i.e., E(wk, vTk ) = 0). For the MSS proposed in this
study, the parameters of the measurement model are given as
follows:

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕMSS − ϕGPS

λMSS − λGPS

VMSS
e −VGPS

e

VMSS
n −VGPS

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
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1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(30)

So observations for the above discrete system can be written
as follows:

yk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
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(31)

5.4.1. Kalman Filter Parameter Tuning. For the proper
implementation of KF and to avoid divergence, some
KF parameters must be properly tuned which include
initial values of error covariance matrix P, process noise
covariance matrix Q, and measurment noise covariance
matrix R. Initial values of P determine the initial tran-
sient response of the filter whereas Q and R matrices
dictate long-term performance of the filter. The tun-
ing process is akin to numerical optimizaton problem
which can be sovled by autmatic search methods or
by manual calculation. Manual optimization is usually
preferred [35] which has been used in this study. In
manual optimizaton, an initial estimate of measurment
noise covariance is obtained through offline measurments,
which is adjusted untill performance of the filter no longer
improves. Process noise covariance is difficult to estimate
as, typically, the process cannot be observed directly [36].
Therefore, a very small initial value of process noise is
injected which is gradually increased to enhance the filter
performance.



8 International Journal of Navigation and Observation

For autmatic tuning of the above mentionied paramters,
sensivity analysis is perfromed and reader is refered to
[35] for a detailed account. Adaptive (self-learning) filtering
techqniques are also used for filter tuning where the esti-
mated ouput of the filter is adjusted to adapt to the incoming
measurments in such a way that errors in the system model
are minimized [8]. Some nifty KF tuning technniques have
been addressed in recent work which can be found in [37–
39].

5.4.2. Operation of KF during Prediction and Update Mode.
In this implementation, KF normally operates in update
mode where prediction of position state ∆x̂−k is updated
with the GPS measurement based on gain K as per Kalman
gain equation in Table 1. The gain K largely depends on the
tuned value of R matrix and P matrix as depicted in Kalman
gain equation in Table 1. The measurement error covariance
matrix R represents noise in the GPS measurements. The
diagonal elements of (R) correspond to variances of the GPS
measurements

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ2
ϕ 0 0 0

0 σ2
λ 0 0

0 0 σ2
Ve

0

0 0 0 σ2
Vn

⎞
⎟⎟⎟⎟⎟⎟⎠
. (32)

The values of R must be adjusted until optimal performance
is reached by examining the diagonal elements of the
covariance matrix P. Each KF is designed for a specific model
and a specific GPS where the values are determined for
optimal performance. If the diagonal elements of R were set
to very small values (extremely low levels of uncertainty on
the GPS outputs), the KF would rely on the GPS update
more than the MSS error model. On the other hand, if the
diagonal elements were given large values (corresponding to
high levels of GPS uncertainty), the KF would rely more on
the MSS error model. Therefore, the values of the R matrix
should be chosen to provide balance in the system accuracy
when the GPS signal is available. Other methods to tune
R involve receiving the dynamic GPS standard deviations
directly from the GPS receiver and then scaling them for
proper operation. This option is not always available since
the GPS standard deviations cannot always be obtained and
estimating them can introduce unwanted errors.

In case of GPS outage, theoretically, gain K is reduced
to zero as R amounts to infinity; meaning thereby, there is no
update and KF relies only on its prediction, based on the MSS
error model and stochastic models of gyro and odometer
residual random errors. On the availability of GPS signal, KF
will resume its update stage.

6. Experimental Work

6.1. Equipment Set-Up. The experimental data collection
was carried out using a full size General Motors pas-
senger van carrying a suite of measurement equipment
that included inertial sensors, GPS receivers, antennae, and

Figure 5: Equipment mounted inside the road test vehicle.

computers to control the instruments and acquire the data.
To ease quick set-up and removal, the rear seat of the van
was removed and replaced with a table that securely mounts
to the seat rails and houses all the measurement equipment
and accessories. A photograph of the experimental set-up is
provided in Figure 5.

The inertial sensors used for this research were the
MEMS grade Crossbow IMU300CC and the Honeywell
HG1700 AG11 tactical grade IMU. Table 2 summarizes
the physical and operating characteristics of each of the
sensors. The Crossbow IMU is a six degree of freedom
inertial system that uses solid state devices to measure
angular rate and linear acceleration. The three angular rate
sensors are bulk micromachined vibratory MEMS sensors
that make use of Coriolis force to measure angular rate
independent of acceleration [40]. The three accelerometers
are surface micromachined silicon devices that employ
differential capacitance to sense acceleration. The Honeywell
HG1700 is a high end tactical grade IMU that measures
angular rate and linear acceleration using three ring-laser
gyroscopes and three accelerometers mounted orthogonally.
The odometer data was collected using CarChip E/X (8225)
data logger [41] which connects with car’s ODBII interface.

Apart from providing the tactical grade raw data for
the experiments, the Honeywell IMU was integrated with
Novatel GPS receiver using an off the shelf assembly, the G2
Pro-Pack Span unit, also developed by Novatel. The Novatel
units provide a tightly coupled INS/GPS navigation solution,
which is used as a reference to compare the performance and
the effectiveness of the proposed methods when applied to
MEMS-based sensors.

6.2. Trajectory Data Acquisition. Data collection was accom-
plished using a laptop computer (Dell Notebook, 2.2 GHz,
Core Duo Processor, 2 GB RAM) for storing data and
running the software interfaces for the instruments. The
Crossbow’s GYRO-VIEW software was used for the Cross-
bow IMU data acquisition through RS-232 connection. For
the collection of tactical grade data, NovAtel CDU software
was used which uses USB connection for data transfer.
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Figure 7: Maximum horizontal position error during nine 60-
second GPS outages for MEMS MSS and tactical MSS (trajectory
no. 1).
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Figure 8: Performance during GPS outage no. 3 of trajectory no. 1.

A total of three trajectories were used in the analysis
of the algorithm and the results of these trajectories are
presented in the ensuing sections. These trajectories include
all the real-life scenarios encountered by a typical land vehicle
which include high speed highway sections, suburban roads
with hills, trees and winding turns, and urban streets with
frequent stops, and sudden accelerations and decelerations.

Table 2: Characteristics of Crossbow and Honeywell IMUs [42].

Crossbow IMU300CC HG1700

Size 7.62× 9.53× 3.2 (cm) 15× 15× 10 (cm)

Weight 0.59 kg 0.725 kg

Max data rate 200 Hz 100 Hz

Start-up time <1 s <0.8 s

Accelerometer

Range ±2 g ±50 g

Bias ±30 mg 1.0 mg

Scale factor <1% 300 ppm

Random walk <0.15 m/s/hr1/2 0.0198 m/s/hr1/2

Angular rate

Range ±100 g ±50 g

Bias < ±2.0◦/s 1◦/hr

Scale factor <1% 150 ppm

Random walk <2.25◦/hr1/2 0.125◦/hr1/2

Electrical

Input voltage 9–30 V dc ±5 V dc

Power <3 W <8 W

Connector RS-232 RS-422

The start and end points of the trajectories almost coincide
and are shown by a solid triangle. The direction of the
trajectory is indicated by solid arrows. Blue circles depict the
place of simulated GPS outage and their radii indicate the
relative length of the distance covered by the vehicle during
the outage.

7. Test Results and Discussion

7.1. Results for Trajectory No. 1. The first trajectory was
completed on the 6th of February, 2007 in the city of
Kingston. The experiment was completed within the city
speed limits; therefore, the speed of the vehicle was limited to
60 km/h. Duration of the trip was around 60 minutes and it
started and ended at Royal Military College of Canada. The
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Figure 9: Details of vehicle dynamics during GPS outage no. 9 of trajectory no. 1.
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Figure 10: Performance during GPS outage no. 9 of trajectory no.
1.

trajectory encountered numerous complete stops, resulting
in many points of accelerations and decelerations. Figure 6
shows the reference solution of the trajectory with the
location of the nine intentionally introduced GPS outages
encircled in blue. The intentionally introduced GPS outages
are such that they encompass all conditions of a typical trip
including straight portions, turns, slopes, high speed, slow
speeds, and stops.

Figure 7 compares MEMS MSS and tactical MSS model
for nine GPS outages of 60 seconds. It was observed
that, during periods of GPS outages, adequate positioning
accuracy was obtained when using the MSS module. The
worst accuracy took place during the GPS outage no. 9 where
the maximum error reached 60 m with RMS of 38 m for
MEMS MSS and maximum error for tactical MSS was only
21 m with an RMS of 15 m.

The superior performance of MSS is due to odometer
that has more stable bias and scale factor performance that
do not drift significantly over time. In addition, MSS utilizes
only one inertial sensor (gyroscope) instead of six used in a
full IMU.

The best performance of the MEMS MSS was in GPS
outage no. 3 and Figure 8 shows the section of the trajectory
during this outage. During GPS outage no. 3, the vehicle
was on relatively straight portion of the trajectory. Maximum
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Figure 12: Maximum horizontal position error during nine 120-
second GPS outages for MEMS MSS and tactical MSS (trajectory
no. 2).

position error of 12 m was observed with RMS of less than
8 m for both tactical MSS and MEMS MSS. This validates
that the MSS error model was reliable and the KF operation
was stable and capable of predicting the MSS errors during
GPS outages. The green line showing the tactical MSS is
nearly overlapping the reference solution, whereas MEMS
MSS also follows the reference very closely as shown in blue.

The largest position errors for this trajectory were
observed for GPS outage no. 9. This GPS outage was
challenging as it consisted of a turn on a steep downward
slope and detailed statistics of the outage are shown in
Figure 9. It can be observed that the vehicle speed varied
between 7 and 37 km/h during this GPS outage. The accel-
eration and deceleration experienced during this GPS outage
influenced the performance of the MSS method. The roll
angle kept on varying throughout the GPS outage. Moreover,
the vehicle was driven on a steep climb towards relatively
horizontal plane moved downhill on a gradual slope. This
can be observed from the pitch angle pattern shown in
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Figure 13: 2D position errors for tactical grade MSS during the
outages (trajectory no. 2).
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Figure 14: 2D position errors for MEMS grade MSS during the
outages (trajectory no. 2).

Figure 9, which means that the vehicle was off the horizontal
plane that was the main assumption of the MSS method.
These dynamic conditions influenced the accuracy of east
velocity and north velocity, thus affecting the positioning
accuracy.

For outage no. 9, MEMS MSS-based KF module kept the
errors to 60 m and for tactical MSS, the errors were only 21
meter. This validates that the MSS error model was reliable
and the KF operation was stable and capable of predicting the
MSS errors during GPS outages. The performance of MSS is
shown in Figure 10 where tactical MSS is shown as green line
and MEMS MSS depicted by blue line.
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7.2. Results for Trajectory No. 2. The second road test
trajectory was around the Kingston area from Kingston to
Napanee and back as is shown in Figure 11. It is a mixture
of urban roadways inside Ontario starting from the city
of Kingston driving towards Picton, subsequently turning
towards Napanee, and then returning to Kingston. This
trajectory has urban roadways in Kingston and Napanee with
long highway sections. In addition, the terrain varies with
many hills and winding turns. This road test was performed
for 105 minutes of continuous vehicle navigation and a
distance of around 85 Km was travelled.

The ultimate check for the proposed system’s accuracy
is during GPS signal degradation and blockage, which was
simulated and intentionally introduced in postprocessing.
To assess the performance of MSS, 120 seconds simulated
GPS outages were interspersed throughout the length of
the trajectory during the postprocessing shown as blue
circles overlaid on the map in Figure 11. The intentionally
introduced GPS outages are such that they encompass all
conditions of a typical trip including straight portions, turns,
slopes, high speed, slow speeds, and stops.

Figure 12 compares the maximum values of the position
errors for MEMS MSS and tactical MSS modules for nine
GPS outages of 120 seconds. It was observed that during
periods of long GPS outages, adequate positioning accuracy
was obtained when using the MSS module. The worst
accuracy took place during the GPS outages no. 3, no. 5,
and no. 9 where the maximum error reached around 106 m
for MEMS MSS and error for tactical MSS was 30 m, 32 m,
and 21 m, respectively. The RMS errors for GPS outages no.
3, no. 5, and no. 9 were 65 m, 74 m, and 60 m, respectively,
for MEMS MSS and 16 m, 15 m and 11 m, respectively, for
tactical MSS. Figures 13 and 14 show the actual 2D positional
errors for both tactical and MEMS grade MSSs during the
outages, respectively.

The worst performance for MEMS MSS was for three
GPS outages no. 3, no. 5, and no. 9 where the maximum
error reached around 106 m. Figures 15 and 16 show the
sections of the trajectory during outage no. 9 and outage no.
5. Figure 15 shows that outage no. 9 encountered three sharp
turns despite which, the position error remained less than
21 m for the tactical MSS and the vehicle position (shown in
green) remained within the road boundaries.

But for MEMS MSS, shown in blue line, the error
increased and reached its peak of 108 m (RMS of 60 m) at
the end of the outage. Again, gyroscope scale factor error
is the main reason for this performance degradation. Such
error is relatively larger in case of MEMS gyroscopes, which
is understandable.

The highest position errors in terms of both maximum
and RMS values for this trajectory were observed for GPS
outage no. 5 as seen in Figure 16.

Deep analysis of this GPS outage was therefore per-
formed on the vehicle dynamics including the east and north
velocities, azimuth, and pitch and roll angles as shown in
Figure 17. It can be observed that the vehicle speed varied
between 0 and 53 km/h during this outage including a
complete stop. The acceleration and deceleration experi-
enced during this GPS outage influenced the performance

Tracks
Reference
Tactical MSS
MEMS MSS

Figure 15: Performance during GPS outage 9 of trajectory no. 2.
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Figure 16: Performance during GPS outage no. 5 of trajectory no.
2.

of the MSS method. Moreover, the vehicle was driven along
downhill and uphill during the same outage as can be
observed from the pitch angle pattern. The pitch angle
varied by 10 degrees during one section of the GPS outage.
This means that the vehicle was off the horizontal plane
contradicting the main assumption of the MSS method.
Finally the sharp turn of the vehicle during this GPS outage
may also influence the accuracy of east velocity and north
velocity thus affecting the positioning accuracy.
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Figure 17: Details of vehicle dynamics during GPS outage no. 5 of trajectory no. 2.

Table 3: Duration of natural GPS outages in seconds for trajectory no. 3.

Outage No 1 2 3 4 5 6 7 8 9

Duration (sec) 350 95 172 65 44 36 425 100 38

This trajectory evidently proves that long duration of
GPS outages, high speed, and presence of turns, changes
pitch angle, and roll angle seriously affect the performance
of MEMS MSS. The performance of tactical MSS shown by
green line remained very stable even with all these challenges
due to accurate gyroscope used.

7.3. Results for Trajectory No. 3. The last road test trajectory
considered for this research was conducted in downtown
Toronto as shown in Figure 18.

It was a very challenging trajectory as several natural GPS
signal outages were experienced due to the presence of high
rise buildings. These outages ranged from 35 seconds to as
large as 425 seconds and were depicted in Figure 18 with blue
circles. These outages are real nuisance to GPS-only users as
they are unable to navigate properly and cannot trust GPS.

The GPS outages are such that they encompass all
conditions of a typical trip including bridges, tunnels,
straight portions, turns, slopes, high speed, slow speeds, and
stops. This trajectory lasted for 91 minutes and a distance
of around 55 Km was traversed. The trajectory demonstrated

the most realistic scenario in terms of varying length natural
GPS outages. The duration of these outages is given in
Table 3. The largest duration of the outage is 425 seconds and
it was observed on Young street.

Figure 19 compares the maximum values of the position
errors for MEMS MSS and tactical MSS for the nine GPS
outages of varying lengths. It is observed that even during
the periods of longer GPS outages, adequate positioning
accuracy was obtained when using the MSS module. The
worst accuracy occurred during the 1st GPS outages where
the maximum error reached 82 m for MEMS MSS whereas
error for tactical MSS for the same outage was 42 m.

Both MEMS and tactical MSSs show accuracy improve-
ment during GPS outages in all the three trajectories for
various scenarios as compared to GPS alone. Performance of
MEMS grade was comparable to tactical MSS when vehicle
was moving on relatively straight road with slow speed
during the outages. This is evident in outages 3, 4, 5, and
6 where errors are around 18 meters showing that both
systems can perform satisfactorily with a difference of few
meters. This is due to the fact that, in these scenarios, the
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Figure 19: Maximum horizontal position error during nine natural
GPS outages for MEMS MSS and tactical MSS (trajectory no. 3).

odometer has the high influence on the overall accuracy.
However, during the high dynamic conditions, such as high
speed, turns, pronounced pitch and roll angles, gyroscope
plays a vital role and tactical grade MSS shows much better
accuracy. This is evident in the first and seventh outages of
3rd trajectory. This difference is also noticeable throughout
in 2nd trajectory.

The worst performance of the MEMS MSS was in outage
no. 1. The vehicle was travelling under Gardiner Express
Tunnel and its dynamics are depicted in Figure 20. In this
outage the vehicle was moving in highway regions at rela-
tively higher speeds that varied between 0 and 60 km/h and
included two complete stops. Velocity east and velocity north

show rapidly changing trends causing high acceleration and
deceleration which pose challenge to the performance of the
MSS method. Such high speed modulated azimuth errors
resulted in large position errors along the East and North
directions. Maximum error of 84 m with RMS of 38 m was
observed for MEMS MSS during the GPS outage of 350
seconds. With tactical MSS, maximum error grew only to
about 44 m with RMS of 18. The performance of MSS is
shown in Figure 21. The green line shows the tactical MSS,
blue line depicts MEMS MSS, and red line portrays reference
solution. The outage starts from the right corner of the
figure and ends at the left. It may be noticed that there
are two jumps in the blue line during the outage. These
jumps are caused by the sudden small turns at very low
speeds which are exaggerated by the MEMS MSS due to the
scale factor instability which modulates the reading of the
gyroscope.

The performance of the MSS during the GPS outage no.
8 for 100 seconds is shown in Figure 21. During GPS outage
no. 8, the vehicle was on relatively straight portion of the
trajectory and pitch and roll angles during the outage were
small. The maximum position error of 20 m was observed
with RMS of less than 12 m for both tactical MSS and MEMS
MSS. This validates that the MSS error model was reliable
and the KF operation was stable. Figure 22 shows the section
of the trajectory during this outage where blue green line
shows the tactical MSS, MEMS MSS is shown in blue, and
red line shows the GPS performance.

The longest GPS outage of this trajectory was outage
no. 7. Methodical analysis during this GPS outage was
performed on the vehicle dynamics including the east and
north velocities, azimuth, and pitch and roll angles as shown
in Figure 23.
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Figure 20: Details of vehicle dynamics during GPS outage no. 1 for 350 seconds of trajectory no. 3.
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Figure 21: Performance during GPS outage no. 1 of trajectory no. 3.

It can be observed that, during this outage, the vehicle
speed remained low and varied between 0 and 38 km/h with
several complete stops. However, with exception of one 90◦

turn, the vehicle travelled on the straight road. Velocity east
remained nearly zero after the turn for 340 seconds but veloc-
ity north showed considerable activity. However, despite
the sharp turn and sudden velocity changes, maximum

positional error did not exceed 30 m with RMS of about
21 m for MEMS MSS. For the tactical MSS, the maximum
position error was 24 m with RMS value of 12 m. The section
of the trajectory during this outage is shown in Figure 24
where green line of tactical MSS remained within the road
boundaries and similar performance was achieved for MEMS
MSS, shown as blue line.
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Figure 22: Performance during GPS outage no. 8 of trajectory no. 3.
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Figure 23: Details of vehicle dynamics during GPS outage no. 7 for 425 seconds of trajectory no. 3.
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Figure 24: Performance during GPS outage no. 7 of trajectory no.
3.

8. Conclusion

This study suggested a smaller, low-cost positioning system
for land applications involving reduced number of inertial
sensors augmented with the measurements of the vehi-
cle odometer and integrated with GPS. The multisensor
integration module relied on KF which provided optimal
estimation of errors through loosely coupled open-loop
integration. The MSS/GPS module assumed 2D positioning
in the horizontal plane and computed the vehicle heading
and position. During GPS outages, KF relied on the MSS
error model to predict and remove the errors and provide
reliable positioning solutions. The algorithm was tested on
three real-life trajectories encompassing various scenarios
typically encountered on a road trip. The proposed method
demonstrated promising results during short as well as
longer simulated GPS outages in all the trajectories for
both tactical grade and MEMS grade IMUs. The results
validated that MSS/GPS integration outperformed the GPS-
only system in terms of positioning solution accuracy,
availability, and reliability for variety situations in any
trajectory. At times, the performance of MEMS MSS/GPS
system is shown to be comparable to performance of tactical
MSS/GPS except when the vehicle is moving in highly
dynamic conditions with very long GPS outages. The results
presented in this work strongly corroborate the potential
of MEMS MSS for use in land vehicle applications such
as emergency applications, in-car positioning applications,
fleet management system, and other location-based services
applications.
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