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Experimental Results on Implicit and Explicit
Time-Discretization of Equivalent-Control-Based

Sliding-Mode Control

Olivier Huber, Bernard Brogliato, Vincent Acary, Ahcene Boubakir,

Franck Plestan, Bin Wang

This chapter presents a set of experimental results concerning the sliding mode control of an electro-

pneumatic system. The controller is implemented via a micro-processor as a discrete-time input.

Three discrete-time control strategies are considered for the implementation of the discontinuous part

of the sliding mode controller: explicit discretizations with and without saturation, and an implicit

discretization (that is very easy to implement as a projection on the interval [−1,1]). While the

explicit implementation is known to generate numerical chattering, the implicit one is expected to

significantly reduce chattering while keeping the accuracy. The experimental results reported in

this work remarkably confirm that the implicit discrete-time sliding mode supersedes the explicit

ones, with several important features: chattering in the control input is almost eliminated (while the

explicit and saturated controllers behave like high-frequency bang-bang inputs), the input magnitude

depends only on the perturbation size and is “independent” of the controller gain and sampling time.

On the contrary the explicit controller shows obvious chattering for all sampling times, its magnitude

increases as the controller gain increases, and it does not reduce when the sampling period augments.

The tracking errors are comparable for both methods, though the implicit method keeps the precision

when the control gain increases, which is not the case for the explicit one. Introducing a saturation

in the explicit controller does not allow to significantly improve the explicit controller behaviour if

one does not take care of the saturation width.

1.1 Introduction

Sliding-mode control has very attractive features like robustness and simplicity of implementation,

with few gains to tune. Its main drawback is the existence of the so-called chattering phenomenon,

which may be due to actuators limitations, unmodelled dynamics, or time-discretization. Several

works recently focussed on the time-discretization effects, showing that an explicit implementation
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of either Euler of ZOH discretizations yields limit cycles [9, 10, 30, 32], while the implicit form

suppresses, in theory, the numerical chattering [1, 2, 31] due to the time–discretization. The goal

of this chapter is to show that the superiority of the implicit discretization is verified in practice.

Note that even if in the following the sliding variable is always scalar (e.g. the sliding surface co-

dimension is one), the implicit method works with an arbitrary number of sliding surfaces. This is in

sharp contrast with the previous approaches. Before going further let us briefly recall what is meant

by explicit and implicit discrete-time sliding mode controllers.

Explicit vs implicit discrete sliding mode control:

To illustrate the difference between the explicit and the implicit discretizations, we consider the

scalar system ẋ(t) = u(t) + d(t), with u(t) ∈ −sgn(x(t)), where sgn(·) is the set-valued signum

function: sgn(0) = [−1,1], sgn(x) = {1} if x > 0, and sgn(x) = {−1} if x < 0. Let the disturbance

d(t) satisfy |d(t)| ≤ δ < 1 for some δ . Recall that using Filippov’s mathematical framework of

differential inclusions [8], one deduces that for any x(0), the state x(t) reaches the “sliding surface”

x = 0 in a finite time t∗, and then x(t) = 0 for all t ≥ t∗. Using terminology from the differential

inclusions literature, u(t) is defined from ξ (t), a selection of sgn(0) (the interval [−1,1]) for t ≥ t∗,

and it satisfies ξ (t) = u(t) =−d(t) after t∗. In a sense, the set-valued controller acts as a disturbance

observer once the sliding mode is attained. It is clear that if one multiplies the signum by a gain

a > 0, i.e. u(t) ∈−a sgn(x(t)), then one still has u(t) =−d(t) in the sliding phase after t∗. However

this time the value of the selection ξ (t) inside the set-valued part of sgn(x(t)) is divided by a, i.e.

ξ (t) =− d(t)
a

.

Let us now consider the Euler discretization of this system. It reads: xk+1 = xk + huk + hdk,

where fk = f (tk) for a function f (·), and tk = t0 + kh, k ∈ N, are the sampling times, h > 0 is the

sampling period. In such a simple case, the Euler and ZOH discretizations are the same, except for

the disturbance dk =
∫ tk+1

tk
d(t)dt for the ZOH method. Our focus is on how to choose uk. The explicit

method yields uk ∈ −sgn(xk), yielding the closed-loop xk+1 − xk −hdk ∈ −h sgn(xk). As alluded to

above, limit cycles exist and create oscillations around the sliding surface (here the origin), known as

the numerical chattering in the output. One of the consequences is that the explicit controller keeps

switching between the two values 1 and -1, and never attains any point in (−1,1). In particular the

explicit controller cannot approximate the continuous-time selection ξ (·) = u(·) when the system

evolves close to the sliding surface. If a gain a > 0 premultiplies u(·) then the explicit controller

switches between two discrete values a and −a, the switching frequency being inversely proportional

to the sampling period: this is the numerical chattering in the input. It is noteworthy that the mere

notion of a sliding surface does not exist in this case, since the discrete trajectories cannot attain the

origin, and the controller cannot take values in the set-valued part equal to (−1,1). One then has to

resort to so-called quasi-sliding surfaces [27].

The implicit method is implemented as follows. Since d(t) is unknown, one first constructs

a nominal unperturbed system with state x̃k, from which the input is computed: x̃k+1 = xk + huk,

uk ∈ −sgn(x̃k+1). This is a so-called generalized equation with unknown x̃k+1. Its solution yields

after few manipulations uk = proj
(

[−1,1];− xk
h

)

, that is the projection on the interval [−1,1] of − xk
h

,
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and is a causal input (not depending on any future values of the state). In such a simple case, the

closed-loop expression of uk is the same as the saturation function with a width h−1. However in

case of sliding surfaces of higher co-dimension, such an analogy with the well-known saturated sign

function, is not trivial. Notice that in the unperturbed case, x̃k and xk are the same. As proved in

[1, 2], the implicit controller guarantees convergence of x̃k to the origin in a finite number of steps

(the chattering is suppressed), and a disturbance attenuation by a factor h during the sliding mode

(defined here from the fact that uk ∈ (−1,1)). Most importantly, the control input takes values in

(−1,1) once x̃k has reached the origin, as may be seen from the generalized equation from which

it is calculated, and one has during that phase uk = −dk: uk is a selection τk+1 of the discrete-

time differential inclusion x̃k+1 = xk + huk, uk ∈ −sgn(x̃k+1), and the discrete-time input observes

the disturbance when the sliding mode is attained. Similarly to the continuous-time case, if the

controller is multiplied by a gain a > 0, then the selection τk =
−dk

a
. For the sake of completeness of

this chapter, let us reproduce here one of the results in [2]. Let us start by considering the following

scalar sliding mode system:
{

ẋ(t) =−aτ(t)+d(t)

τ(t) ∈ sgn(x(t)),
(1.1)

where d(·) is a Lebesgue measurable perturbation such that ‖d‖∞ < ρ < a. The control input is here

u(t) = τ(t). The discrete-time sliding mode system is implemented as follows:

⎧

⎪

⎨

⎪

⎩

x̃k+1 = xk −ahτk+1

τk+1 ∈ sgn(x̃k+1)

xk+1 = xk −ahτk+1 +hdk

(1.2)

The first two lines of (1.9) may be considered as the nominal unperturbed plant, from which one

computes the input at time tk. The input is said implicit since it involves x̃k+1 in the sign multifunc-

tion. It is however a causal input as shown next, and x̃k+1 is just an intermediate variable which

does not explicitly enter into the controller. The third line is the Euler approximation of the plant,

on which the disturbance is acting. One has u(t) = τk+1 on the time-interval [tk, tk+1).

Proposition 1.1.1. Let x0 be the given initial state. Then after a finite number of steps k0 one

obtains that x̃k = 0 and xk = hdk−1 for all k > k0 > 0. In other words, the disturbance is attenuated

by a factor h. Moreover the approximated derivative of the state satisfies
xk+1−xk

h
= dk − dk−1 for

all k > k0 + 1 whereas
x̃k+1−x̃k

h
= 0 for all k > k0. The control input takes values inside the sign

multifunction multivalued part on the sliding surface for all k > k0.

Proof: Let us start with the case |x0|> ah > 0. The generalized equation x̃k+1 = xk −ahτk+1 and

τk+1 ∈ sgn(x̃k+1) is equivalent, using the material in the Appendix .1, to the inclusion τk+1 −
xk
ah

∈
−N[−1,1](τk+1), and to τk+1 = proj([−1,1]; xk

ah
). Thus one obtains:

• If xk > ah then x̃k+1 = xk −ah and sgn(x̃k+1) = 1,
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• If xk <−ah then x̃k+1 = xk +ah and sgn(x̃k+1) =−1,

• If xk ∈ [−ah,ah] then x̃k+1 = 0 and sgn(x̃k+1) ∈ [−1,1]1.

From the above we infer that

• If xk > ah then xk+1 = xk + hdk − ah = xk + h(dk − a) < xk + h(ρ − a). Since ρ − a < 0 the

state is strictly decreased from step k to step k+1.

• If xk <−ah then xk+1 = xk +hdk +ah = xk +h(dk +a)> xk +h(a−ρ). Since a−ρ > 0 the

state is strictly increased from step k to step k+1.

One deduces that if the initial data satisfies |x0|> ah then after k0 = ⌈ x0
h|a−ρ|⌉ steps one gets x̃k0

= 0,

where ⌈·⌉ is the ceiling function. Indeed at k0 the state xk reaches the interval [−ah,ah] and then the

unique solution for x̃k is zero. From x̃k0
= 0 one deduces that |xk0

| < ah. In the case that |x0| ≤ ah,

it is easy to check that k0 = 1. Indeed one has to solve the generalized equation
{

x̃k0+1 = xk0
−ahτk0+1

τk0+1 ∈ sgn(x̃k0+1),
(1.3)

whose unique solution is found by inspection to be x̃k0+1 = 0 2. The reasoning can be repeated to

conclude that x̃k = 0 for all k ≥ k0. Therefore
x̃k+1−x̃k

h
= 0 for all k > k0. Now let us assume that for

k ≥ k0 we have

x̃k+1 = xk −ahτk+1 = 0, k ≥ k0, (1.4)

that is τk+1 =
xk
ha

. In this case, the state xk+1 is given by xk+1 = hdk, and therefore xk = hdk,τk+1 =
dk
a

for all k ≥ k0 +1, so that
xk+1−xk

h
= dk −dk−1 for all k > k0 +1.

Remark 1.1.1. The implicit discretization of set-valued sign controllers has been independently

introduced in [18] with the so-called proxy-based sliding mode control. The authors noted that the

implicit Euler discretization allows one to obtain a perfect (at the machine precision) vanishing of

the sliding variable. Related work is also in [12], which however only applies to a simple scalar

case. These methods have their roots in the numerical analysis and simulation of mechanical systems

with unilateral constraints, impacts and Coulomb friction [21, 22] and of linear complementarity

systems for switched circuits with ideal diodes [5, 20, 4].

Therefore the implicit controller has the same features as its continuous-time counterpart. We

may summarize them as follows:

1. When there is no perturbation, the sliding surface is reached after a finite number of steps and

there is no chattering.

1This replaces the third and fourth items in the proof of Proposition 1 in [2], which contains an unfortunate error.
2The underlying crucial property that makes this hold is the maximal monotonicity of the sign multifunction.
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2. When a perturbation acts on the system, the state of the nominal system reaches the sliding

surface after a finite number of steps, while the perturbation effect is attenuated by a factor h

on the state of the system.

3. Despite the system’s state xk never attains its sliding surface due to the disturbance, the no-

tion of discrete-time sliding mode does exist, and corresponds to the nominal system’s state

x̃k vanishing, or equivalently to the set-valued controller evolving strictly inside the interval

[−1,1]. In this mode the controller compensates for the disturbance, with a delay due to the

discretization. Therefore, its magnitude is independent, in the sliding phase, of the controller

gain, and there is no need to adapt the gain (denoted as a above, and as G in the sequel) online.

4. Theoretically there is no numerical chattering during the sliding mode, neither in the sliding

variable, nor in the input.

5. The discrete-time controller keeps the simplicity of its continuous-time counterpart, with no

added gain to tune.

6. Computing the input at each step boils down to solving a simple generalized equation, equiv-

alently a projection on [−1,1] in the codimension one sliding surface case. With more sliding

surfaces, we can either compute the control input by enumeration (for a co-dimension up to

3), or solve an optimisation problem like a quadratic program. This is quite easy to implement

in a code.

7. The implicit discretization allows to prove Lyapunov stability of the sliding variable dynamics,

mimicking the continuous-time Lyapunov functions [15, 16].

The main objective of this work is to confirm these features experimentally, while they have been

analysed and numerically illustrated in [1, 2, 13, 15, 14, 16, 17]. Preliminary experimental results

were presented in [31].

The chapter is organized as follows: in Section 1.2 the dynamics and the various controllers

of the electropneumatic actuators are detailed. Section 1.3 is dedicated to the experimental results:

the explicit and the implicit discrete-time algorithms are applied to the system and compared in

terms of their overall performance, comprising the tracking accuracy, the input chattering, the input

magnitude, the disturbance rejection, when the controller gain and the sampling period are varied.

In addition the saturated explicit controller is also tested. Conclusions end the chapter in Section

1.5.

1.2 Dynamics of the plant and controllers

1.2.1 Implicit controller design

To start let us explain in details how the so-called implicit controller (which might be also named

the projected sliding-mode controller) is calculated in case of tracking of a reference output yd(t)

5



(only the regulation case has been described above). We consider the same scalar system as in the

introduction, i.e. ẋ(t) = u, y = x, and first we disregard the disturbance for the sake of simplicity. In

this case, the Euler and ZOH discretizations are the same. Let the sliding variable be σ = x−xd . The

controller is set to u(x, t) ∈ −sgn(σ)+ ẋd(t), so that the closed-loop system is σ̇(t) ∈ −sgn(σ(t)).
The plant discretization is

xk+1 − xk

h
= uk (1.5)

and the implicit input is set equal to

uk ∈ −sgn(xk+1 − xd,k+1)+
xd,k+1 − xd,k

h
(1.6)

where the last term accounts for the Euler approximation of ẋd(t). The discrete-time sliding variable

is given by σk = xk − xd,k. We therefore obtain

xk+1 − xk ∈ −h sgn(σk+1)+ xd,k+1 − xd,k ⇔ σk+1 −σk ∈ −h sgn(σk+1). (1.7)

Let wk+1
∆
= σk+1 − σk. Using convex analysis we may write wk+1 ∈ −h sgn(σk+1) ⇔ σk+1 ∈

−N[−h,h](wk+1), where N[−h,h](wk+1) is the normal cone to [−h,h] calculated at wk+1 ∈ [−h,h],
given in this case by

N[−h,h](wk+1) =

⎧

⎨

⎩

0 if |wk+1|< h

[0,+∞) if wk+1 = h

(−∞,0] if wk+1 =−h.

(1.8)

Inserting this in (1.7) yields

wk+1 +σk ∈ −N[−h,h](wk+1)⇔−N[−h,h](wk+1)−σk ∋ wk+1. (1.9)

By using basic convex analysis one finds equivalently

wk+1 = proj([−h,h];−σk) = h proj([−1,1];−
σk

h
) (1.10)

where proj denotes the orthogonal projection (details on the above manipulations can be found in [3,

Appendix A], and in Appendix .1). From (1.5), we have

uk =
1

h
wk+1 +

xd,k+1 − xd,k

h
.

Thus we obtain

uk = 1
h
proj([−h,h];−σk)+

xd,k+1−xd,k

h
= proj([−1,1];−σk

h
)+

xd,k+1−xd,k

h

=

⎧

⎪

⎨

⎪

⎩

−σk
h
+

xd,k+1−xd,k

h
if |σk| ≤ h

−1+
xd,k+1−xd,k

h
if σk > h

1+
xd,k+1−xd,k

h
if σk <−h.

(1.11)
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The implicit controller is thus bounded whatever the value of the sampling period h > 0. It is

obviously quite easy to implement in a code. When a disturbance acts on the system ẋ(t) = u+d(t),
d(t)≤ δ < 1 for some known δ , then a similar procedure applied on a nominal, unperturbed system

yields the generalized equation:
⎧

⎨

⎩

σ̃k+1 = σk +huk − xd,k+1 + xd,k

uk ∈ −sgn(σ̃k+1)+
xd,k+1−xd,k

h

(1.12)

from which the controller is calculated again to be uk = proj([−1,1];−σk
h
)+

xd,k+1−xd,k

h
. Following

the developments in [2] breifly recalled in the introduction, such a controller guarantees interesting

properties of the closed-loop system like disturbance attenuation by a factor h, and convergence to

the nominal state sliding surface σ̃k = 0 in a finite number of steps. Moreover it also has the features

listed in 1 to 7 above, and this will be confirmed by the experimental results given in Section 1.3. It

is noteworthy that an explicit implementation of the input yields

uk =−sgn(σk)+
xd,k+1 − xd,k

h
. (1.13)

It is not necessary to write an inclusion uk ∈−sgn(σk)+
xd,k+1−xd,k

h
in (1.13), because the multivalued

part of the sign function cannot be realized with an explicit controller. Indeed the fact is not only

that the zero value does not exist numerically, but even if it did, one would not be able to choose

in a unique way the controller value inside [−1,1] (in numerical analysis of differential inclusions,

this is known as the selection procedure [3, §9.2, 9.4]). On the contrary the implicit implementation

does realize the set-valuedness of the input. Moreover the computed controller value is the unique

selection of the discrete-time inclusion, as a result of solving the above generalized equation.

Remark 1.2.1 (Chattering). The oscillations around the sliding surface which are solely due to the

time discretization, are known as the output numerical chattering. They have been analysed with

explicit discretizations in [9, 10, 32, 30]. The input numerical chattering is focussed on in this work.

Remark 1.2.2 (Controller commutations). It is widely accepted in the Control literature that slid-

ing mode controllers have to be implemented through infinite-frequency commutations of some ac-

tuator, and that the infinitely fast switching strategy is necessary to approximate the continuous-time

solution obtained from Filippov’s mathematical framework. This is false when one considers the

implicit implementation which is briefly summarized above. The implicit implementation takes the

form of a projection onto a finite interval (a hypercube if there is more than one switching surface)

as shown in (1.11), hence it is a Lipschitz continuous function of the state. As it will be shown in

Section 1.3, the input numerical chattering is drastically reduced when the implicit controller is used.

It is quite possible that the input shape may be in practice as important as the output shape, because

input chattering is known to demand a lot of the actuators.

Remark 1.2.3 (Sliding surface with codimension m≥ 2). The above implicit discretization method

extends to the case when more than one attractive sliding surface is designed: then one computes
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the controller by solving a generalized equation that extends (1.12) [2, Equation (15)]. Its well-

posedness relies on CB (or a discretized version of it, if the zero-order-hold method is used [2, 15,

17]) being a P-matrix. However CB needs not be diagonal: couplings between the sliding surfaces

are allowed. It also extends to the twisting controller [14, 17, 15], and a preliminary analysis for

the super-twisting algorithm can be found in [2, Lemmas 5 and 6]. As shown above, in case m = 1,

the implicit discretization gives a saturated discrete-time input, with a specific saturation width. In

higher codimensions, such an interpretation is not trivial, however one may say that the implicit

discretization provides a suitable regularization of the controller which allows to almost suppress

chattering, to guarantee some Lyapunov stability as well as finite-time convergence properties [16]:

this proves that it is a correct approximation of the set-valued continuous-time controller.

1.2.2 Plant dynamics and controllers

The electropneumatic system used for the controllers evaluation consists in two actuators which are

controlled by two servodistributors (see Figure 1.1). Each actuator is composed by two chambers

denoted by P (positive) and N (negative). The controllers proposed in the sequel are designed in

order to control the position of one of these two actuators, named “Main actuator”, whereas the

second actuator, named “Perturbation actuator” and mechanically connected to the Main one, is

used in order to produce an external perturbation force. With a nominal 7-bar source pressure, the

maximum produced force is 2720 N; furthermore, both actuators have the same physical features:

piston diameter is 80 mm and rod diameter 25 mm. The external perturbation force controller is

not under interest in this chapter and has been designed and tuned by Sitia Co. (http://www.

sitia.fr/) which has built the experimental set-up. The air mass flow rates qm entering in the

chambers are modulated by two three-way servodistributors. The pneumatic jack horizontally moves

a load carriage of mass M.

Figure 1.1: [26] Photography and scheme of the electropneumatic system.
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Under some assumptions detailed in [26], the dynamic model of the pneumatic actuator can be

written as a nonlinear system which is affine in the control input [uP uN]
T , uP (resp. uN) being the

control input of the servodistributor connected to the P (resp. N) chamber. The model is divided in

two parts: two first equations concern the pressure dynamics in each chamber whereas the motion

of the actuator is described by the two last equations. Then the model of the electropneumatic

experimental set-up reads as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ṗP =
krT

VP(y)
[ϕP +ψP ·uP −

S

rT
pPv]

ṗN =
krT

VN(y)
[ϕN +ψN ·uN +

S

rT
pNv]

v̇ =
1

M
[S (pP − pN)−bvv−F ]

ẏ = v,

(1.14)

with pP (reps. pN) the pressure in the P (resp. N) chamber, y and v being the position and velocity of

the actuator. The force F is a disturbance that takes into account dry friction and unknown external

forces. Note that the previous system appears to have two control inputs given that there is one servo

distributor connected to each chamber. In the sequel, only the main actuator position is controlled:

given that there is a single control objective, one states3:

u = uP =−uN.

The constant k is the polytropic constant, r is the ideal gas constant, T is the temperature which is

supposed the same inside or outside the chambers and bv is the viscous friction constant. VP and VN

are the volumes in both chambers. These volumes depend on the actuator position y. S is the piston

section and is constant. Finally, ϕX and ψX (X being P or N) are both 5th order polynomial functions

versus pX [25] and allow to model the mass flow rate qX in the chamber X such that

qX = ϕX(pX)+ψX(pX)uX . (1.15)

This kind of system is uncertain: in fact, the uncertainties on the polytropic constant, on the mass

flow, on the temperature, on the mass, on the viscous friction coefficient and on the disturbance force

can be modeled by additive bounded functions added to the nominal part of each parameter [11]. As

an example, the mass M can be viewed as the sum of a nominal part and an uncertain one

M = Mn +∆M,

3Multivariable control can be designed [11], in case of position and pressure (in a chamber) control; an advantage of

control pressure is that the rigidity of the actuator is improved.
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with ∆M a bounded uncertainty and Mn the nominal value. By considering that the system (1.14)

with a single input reads as ẋ = f (x)+g(x)u with f (·) and g(·) uncertain vector fields defined as

f (x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

krT

VP(y)
[ϕP −

S

rT
pPv]

krT

VN(y)
[ϕN +

S

rT
pNv]

1

M
[S (pP − pN)−bvv−F ]

v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, g(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

krT

VP(y)
ψP

−
krT

VN(y)
ψN

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1.16)

it may be rewritten as

ẋ = ( fn +∆ f )(x)+(gn +∆g)(x) u (1.17)

with fn(·), gn(·) the nominal dynamics parts of f (·) and g(·), and ∆ f , ∆g the uncertainties and

perturbations. Due to the presence of uncertainties and perturbations, a robust controller is required

in order to get high performances (in terms of accuracy, for example). The choice of sliding mode

controller [28, 29] has been made because of its intrinsic features of robustness. Let us define the

so-called sliding variable as

σ(x, t) = ë+λ1ė+λ0e (1.18)

with e
∆
= y − yd(t), yd(t) being the desired trajectory, supposed to be sufficiently differentiable.

The coefficients λ1, λ0 are defined such that, given z a complex variable, the polynomial Q(z) =
z2 +λ1z+λ0 is Hurwitz. The first and second derivatives of e are computed by direct numerical dif-

ferentiation with appropriate first-order filters (see remark 1.3.2 on the influence of those filters on

the closed-loop behaviour). The idea of the continuous-time sliding mode controller is the following:

the control ensures, in spite of uncertainties and perturbations and thanks to a discontinuous term,

the finite time convergence to the so-called sliding surface σ = 0 (if the controller is well-tuned).

Once the system trajectories have reached this domain, they are evolving on it and the closed-loop

system dynamics is governed by the definition of σ , i.e. when σ = 0, one has ë =−λ1ė−λ0e which

ensures exponential convergence to (e, ė) = (0,0). Note that once σ = 0, this convergence is not

influenced by the uncertainties or perturbations. One gets

σ̇ = e(3)+λ1ë+λ0ė

=
1

M

[

S( ṗP − ṗN)−bvv̇− Ḟ
]

− y
(3)
d (t)+

λ1

M
[S(pP − pN)−bvv−F ]−λ1ÿd(t)

+λ0 (ẏ− ẏd(t)) ,

(1.19)

where we assumed that the disturbance F(·) is differentiable, for simplicity (rigorously, dry friction

may introduce some non differentiability at zero relative tangential velocity, depending on the used

10



model). As shown in [19, 11] and given the system (1.17), the first time derivative of σ in (1.19) can

be written as

σ̇ = Ψ(x, t)+Φ(x)u
= Ψn(x, t)+∆Ψ(t)+ [Φn(x)+∆Φ(t)] u

(1.20)

such that Ψn,Φn are the nominal functions and ∆Ψ,∆Φ are the uncertain terms. From [19, 11],

the functions Ψ and Φ are bounded in the physical working domain (which gives that the uncertain

terms are also bounded). Furthermore, one supposes that ∆Φ is sufficiently small with respect to Φn

to ensure that 1+ ∆Φ
Φn

> 0. From a practical point of view, this assumption is not too strong: it simply

means that the uncertainties are small compared to the nominal values. Let us consider the control

law4:

u =
1

Φn

[−Ψn + v] . (1.21)

By applying (1.21) in (1.20), one gets

σ̇ =
∆Φ

Φn

Ψn +∆Ψ+

[

1+
∆Φ

Φn

]

v. (1.22)

The controller v is a set-valued input defined as

v ∈ −Gsgn(σ) (1.23)

with G tuned sufficiently large5 to ensure the sliding condition [28, 29] σσ̇ ≤−η |σ | (η > 0). Each

controller has been implemented under its discrete forms as follows (with k ≥ 0, σk = σ(kh), h being

the sampling period)

• Explicit sliding mode control (with sgn(·) function)

vk =−Gsgn(σk), (1.24)

• Explicit saturated sliding mode control (with sat(·) function)

vk =−Gsat(σk,ε), (1.25)

4As shown in [6], such a control law allows to reduce the magnitude of the sliding mode controller by using the nominal

informations in the controller.

5Following the sliding condition, the gain has to be tuned as G >

Max

∣

∣

∣

∣

∆Φ

Φn
Ψn +∆Ψ

∣

∣

∣

∣

+η

min

[

1+
∆Φ

Φn

] . By a similar way than [23], it

can be shown that, over the trajectories and in the working domain, the term
∆Φ

Φn
Ψn +∆Ψ is bounded whenever 1+

∆Φ

Φn
> 0.
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with

sat(σk,ε) =

{

sgn(σk) if |σk| ≥ ε

σk if |σk|< ε.
(1.26)

• Implicit sliding mode control (with sgn(·) multifunction)

vk ∈ −Gsgn(σk+1) (1.27)

(implemented with a projection as indicated in Section 1.2.1).

1.3 Experimental results

This section is devoted to analyze the experimental data. The controllers have been implemented

with three feedback gains G = 104, G = 105, G = 106 and five sampling times 1 ms, 2 ms, 5 ms, 10

ms and 15 ms. The length of the interval of study is 20 seconds. The saturation input has been tested

for six different values of the saturation width, with the sampling time h = 1 ms. In the data reported

below, the unitless width of the saturation is ε = 0.1 (the other widths which have been tested yielded

similar results and the results obtained with them are therefore omitted). The comparisons are mainly

made with respect to: the magnitude and chattering of the inputs u and v, and the tracking error e.

1.3.1 Comparison of the tracking errors e

Data in Tables 1.1–1.3 characterise the position tracking error e obtained by the three different im-

plementation methods, from the aspects of average, range, standard deviation and variation with

four different sampling periods. The symbol Avg denotes the average of the tracking error over the

duration of the test, abs is the absolute value of tracking error. The total variation of a real-valued

function f (·) defined on an interval [a,b]⊂ R is approximated by the quantity

Var[a,b]( f ) =
N−1

∑
i=0

| f (ti+1)− f (ti)|, (1.28)

where the set of time instants {t0, t1, · · · , tN} is a partition of [a,b]. In the following, the variations of

the position error e for the three different implementation methods with the different gains G, have

been calculated by choosing the partition times ti in (1.28), as the sampling times.

Remark 1.3.1. The variation in (1.28) as a quantity to characterise the analyzed signals, is not

common in Control Engineering. It is thought here in the context of sliding mode control, that such

a quantity is useful to measure the chattering level of a signal, since it does represent how much the

signal varies. However due to the partition that has been chosen (the sampling times) the results are

12



not comparable from one sampling period to the next, but only between the three controllers for a

fixed h. In other words, in Table 1.3 data have to be compared inside a single column, but not from

one column to another one.

We first compare the controllers performance in terms of the tracking error, for two gains G= 104

and G= 105. All the data concerning e are reported in Tables 1.1, 1.2, 1.3 and on Figures 1.2 and 1.3.

Table 1.1 data and Figures 1.2(a), (b), (c) show that when G = 104 and h = 2 or 5 ms, the implicit

method does not bring any improvement over the explicit ones, but has lower precision capabilities

for small time steps. It is only for the larger time step h = 15 ms that the results for the implicit

controller (Table 1.1 last column) become the same as those of the other two controllers. However it

is confirmed in Table 1.3 (a), that the variation of the implicit input starts to be significantly smaller

than that of the other two, for h ≥ 5 ms, the improvement being huge for h = 15 ms. These first data

tend to indicate that, in the case of the implicit input, its variation is drastically smaller for larger

sampling periods (for h = 15 ms: 1.4462× 103 for the explicit method, 196 for the implicit one

with G = 104), confirming that chattering on e is reduced when the implicit controller (1.27) is used.

The fact that the output signal is smooth for the implicit method, while it chatters for the other two

controllers for large sampling time, is obvious in Figures 1.2(d), (e) and (f).

Table 1.2 concerns G = 105, that is the gain is now multiplied by 10. All three methods show

similar results in terms of average, range and standard deviation of e, the implicit one providing

slightly better results. One infers that augmenting the gain G from 104 to 105 allows to significantly

improve the tracking performance of the implicit control (1.21) (1.27) compared to that of the explicit

inputs, especially in terms of the variation which is a good quantification of the chattering. In fact,

comparing Table 1.1 (c) and Table 1.2 (c), one sees that the performance of the implicit input is

almost unchanged when the gain is multiplied by 10, which is not the case of the other two methods:

for these both latter, e is clearly increased. We shall observe this insensitivity property of the implicit

method, again in Section 1.3.2. In addition the output produced by the implicit method is smoothed,

even for small h = 1 ms, see Figure 1.3(a) (b) and (c), or (d) (e) and (f).

The variation values are given in Table 1.3 (b) with G= 105, and is quite visible in Figures 1.3(d) (e)

and (f): the variation of e with the implicit input is much smaller than with the other two controllers,

except for h = 1 ms where the obtained values are of same order. This indicates that the chattering

on e is drastically reduced with the implicit input (1.21) (1.27).

� A first conclusion, that will be strengthened in the next paragraph, is that the implicit control

method allows to take larger gains without decreasing the performance. This means that it is pos-

sible to reject/counteract larger perturbations/uncertainties without more chattering, and makes the

process of gain G tuning much easier. The performance of implicit control is better when G is larger,

while it is less good with the explicit and saturation controllers.
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h 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.32601 0.4791 0.97802 3.8759

Range of e (-2.0701, 2.0189) (-3.0067, 2.1572) (-3.2599, 4.4023) (-10.3767, 12.1426)

Standard Devia-

tion of e

0.4274 0.6327 1.0366 4.2553

(a) Explicit control

h 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.28053 0.51399 0.99017 3.6119

Range of e (-1.7255, 1.1288) (-1.7006, 2.4793) (-4.5846, 2.6004) (-14.4069, 12.1394)

Standard Devia-

tion of e

0.3319 0.6132 1.1394 4.4131

(b) Saturation control

h 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.71254 1.7138 3.3861 5.1387

Range of e (-1.6760, 1.2200) (-3.4182, 3.2213) (-7.9230, 6.4083) (-9.4997, 6.5194)

Standard Devia-

tion of e

0.7731 1.8780 3.7182 5.4749

(c) Implicit Control

Table 1.1: Comparisons of position error e when G = 104.

1.3.2 Comparison of control inputs u (1.21) and v (1.24) (1.25) (1.27)

The features of the control inputs is a key-point in this work, given that one of the objectives is to

show the influence of implicit control to the chattering effect. Let us now pass to the control inputs

comparisons, with data reported in Tables 1.4–1.7 and on Figures 1.4 and 1.5. Data given in Tables

1.4 and 1.5 characterise the “switching functions” for these three methods by considering the range

and variation for each of them. Remark 1.3.1 applies also for the variation of the control, so that in

Tables 1.4 (b), 1.5 (b), 1.6 (b) and 1.7 (b), data have to be compared inside a single column, but not

from one column to another one.

� What we call the switching functions are sgn(σk) in (1.24), sat(σk,ε) in (1.25), and the

selection (remember ξ in the introduction) of sgn(σk+1) in (1.27). For the implicit controller, this

14



h 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.98336 1.1363 2.4372 5.5254

Range of e (-4.3911, 3.9936) (-4.7722, 3.9665) (-11.3641, 6.6129) (-17.7670, 19.0185)

Standard Devia-

tion of e

1.2430 1.3412 2.8063 6.4330

(a) Explicit control

h 2ms 5ms 10ms 15ms

Avg(abs(e)) 1.2502 1.7987 4.4362 5.4374

Range of e (-4.2085, 4.9032) (-2.3505, 7.6094) (-4.7248, 14.8659) (-11.9105, 19.3981)

Standard Devia-

tion of e

1.5220 1.4996 2.8328 6.6223

(b) Saturation control

h 2ms 5ms 10ms 15ms

Avg(abs(e)) 0.72598 1.7017 3.2844 5.0835

Range of e (-1.8663, 2.3094) (-5.8677, 4.6001) (-8.1843, 6.3261) (-9.2313, 8.1833)

Standard Devia-

tion of e

0.7941 1.9237 3.5816 5.4152

(c) Implicit control

Table 1.2: Comparisons of position error e when G = 105.

is what we called the selection ξk in Introduction. This is not to be confused with the discontinuous

control v in (1.23).

Comparisons of the inputs u in three methods are given in Tables 1.6 and 1.7 from three aspects,

that is: range, variation, and standard deviation. In addition, the three controllers are depicted on

Figures 1.4 and 1.5, for various time steps and gains.

Globally, the experimental results show that the implicit method drastically reduces the input

chattering and magnitude compared with the other two methods. The explicit and saturation switch-

ing inputs keep oscillating between the maximum and minimum values like a bang-bang controller

(see data in Tables 1.4(a) and 1.5(a), and Figures 1.4(a) (b)). This results in a large amplitude of

inputs u as well (see Tables 1.6(a) and 1.7(a), as well as Figures 1.5(a) 1.5(b) 1.5(c) 1.5(f) 1.5(g)

1.5(h). Notice that the explicit and saturation inputs behave slightly better when the time step in-

creases. This is visible by comparing Figures 1.5(a) and (f), (b) and (g), (c) and (h) which all concern

h = 2 ms and h = 15 ms, respectively, for both gains G. However the magnitude of the implicit input

is far much better in all cases (see Figures 1.5(d) 1.5(e) 1.5(i) 1.5(j).

The magnitude of the ranges of the switching function and control u in the implicit method is

much less than the other two methods, see Tables 1.6(a) and 1.7(a). These facts are well supported

by Figures 1.4 and 1.5. Consider Figure 1.5: when h = 15ms, while the ranges of the control law u

in explicit method and explicit saturation method are both between −10 and 10 (see Figures 1.5(h)

and 1.5(g)), the range of u for the implicit case is strictly between −2 and 2 (see Figures 1.5(i) and
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h 2ms 5ms 10ms 15ms

Explicit 1.7838e+03 904.1336 844.2871 1.4462e+03

Saturation 1.6527e+03 914.4627 838.3387 1.6821e+03

Implicit 1.6452e+03 657.6504 428.0244 196.0669

(a) G = 104

h 2ms 5ms 10ms 15ms

Explicit 2.5724e+03 1.7742e+03 1.6081e+03 2.5070e+03

Saturation 2.5691e+03 2.0749e+03 2.1638e+03 2.5756e+03

Implicit 1.6360e+03 650.2710 480.1660 228.8022

(b) G = 105

Table 1.3: Variation of position error e.

h 2ms 5ms 10ms 15ms

Explicit (1.24) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Saturation (1.25) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Implicit (1.27) (-0.4635, 0.5385) (-0.3247, 0.3338) (-0.2969, 0.3117) (-0.1935, 0.2194)

(a) Range of the switching function.

h 2ms 5ms 10ms 15ms

Explicit (1.24) 6926 2822 2258 1936

Saturation (1.25) 6.6197e+03 2.7224e+03 2.2199e+03 2008

Implicit (1.27) 1.8416e+03 357.9547 211.4038 79.1096

(b) Variation of the switching function.

Table 1.4: Switching function, gain G = 104 .

1.5(j)). The comparison between Figures 1.4(c) through 1.4(j), 1.5(d) and 1.5(e), 1.5(i) 1.5(j), which

concern the implicit controller switching function for various gains and sampling times, show that

for h≥ 2 ms, the implicit input v in (1.27) is largely independent of the gain and sampling time. From

Tables 1.4 (a) and 1.5 (a), the data in the rows corresponding to the implicit controller allow to obtain

a confirmation of this fact. Furthermore the switching function range for the implicit controller, is

divided by ten when the gain G passes from 104 to 105, which implies that the sliding mode input

vk in (1.27) has a magnitude that does not vary with the gain (recall that what we call the switching

function, has to be multiplied by the gain G to obtain the input v). This is in very good agreement

with theoretical predictions (item 3) in the introduction). One can also have a look at Tables 1.6 (a)

(b) (c), and 1.7 (a) (b) (c), to obtain the same conclusions, that the range (magnitude), the variation

and the standard deviation (chattering) of u for (1.27) are drastically smaller than for (1.24) and

(1.25). The magnitudes of the switching function for the implicit controller, for 6 different gains G

and two different sampling periods h, are reported in Table 1.8. It confirms that the magnitude of the
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h 2ms 5ms 10ms 15ms

Explicit (1.24) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Saturation (1.25) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000) (-1.000, 1.000)

Implicit (1.27) (-0.0606, 0.0545) (-0.0360, 0.0417) (-0.0289, 0.0349) (-0.0173, 0.0247)

(a) Range of the switching function.

h 2ms 5ms 10ms 15ms

Explicit (1.24) 2980 2050 1932 1836

Saturation (1.25) 2.3486e+03 1.9858e+03 1902 1860

Implicit (1.27) 183.1965 34.7510 25.2005 8.1039

(b) Variation of the switching function.

Table 1.5: Switching function, gain G = 105.

input v in (1.23), which is the switching function times the gain G, does not depend neither on G nor

on h in this range of sampling times (see a comment in remark 1.3.2).

� This insensitivity property is believed to be a fundamental property of the implicit method

introduced in [1, 2], compared to explicit implementations which drastically differ when h and/or G

are varied.

The results depicted on Figures 1.4 and 1.5 clearly demonstrate that while the explicit and sat-

uration controllers tend to approximate a signal that switches infinitely fast between two extreme

values like bang-bang inputs, this is not at all the case for the implicit controller that behaves in a

totally different way. This is a nice confirmation of both theoretical and numerical predictions [1, 2],

that the implicit controller does represent the discrete-time approximation of the selection of the

differential inclusion according to Filippov’s mathematical framework.

Input chattering is also visible in Tables 1.4 (b), 1.5 (b), 1.6 (b) and (c), 1.7 (b) and (c). Variation

of the implicit switching function is much smaller than the other two, and standard deviation of u

as well. These results demonstrate that the switching function chattering and magnitude, strongly

influences the input u in (1.21).

Remark 1.3.2. All the results tend to show that when the sampling period is too small (typically

in our experiments h = 2 or h = 2 ms), then the implicit controller performance (output precision

and chattering, input magnitude and chattering) is decreasing. This is visible on Figure 1.4 with the

evolution of the implicit signum function from subfigure (c) to subfigure (g) for gain G = 104, and

from subfigure (h) to subfigure (l) when the gain is G = 105. In theory the implicit switching function

should not vary by changing the sampling period. This phenomenon is due to bandwidth limitations

in the first-order filters used to estimate velocities and accelerations from position measurement, in

order to calculate the sliding variable in (1.18). It results in a deterioration of the closed-loop per-

formance and controller chattering. Further work on proper tuning of these filters to accommodate

for smaller sampling periods h, proves that the performance of the implicit discretization can be

further improved for small sampling times.
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h 2ms 5ms 10ms 15ms

Explicit (-7.8876 8.4594) (-8.1550 8.6118) (-8.7349 8.3970) (-10 10)

Saturation (-8.0737 8.1963) (-7.9095 8.0899) (-8.5541 8.7543) (-10 10)

Implicit (-3.2500 3.5871) (-1.9990 2.6204) (-1.9399 2.1267) (-1.8990 1.9484)

(a) range of u.

h 2ms 5ms 10ms 15ms

Explicit 4.1102e+04 1.7731e+04 1.3816e+04 1.2759e+04

Saturation 4.0209e+04 1.6864e+04 1.3838e+04 1.3671e+04

Implicit 9.5190e+03 1.5731e+03 963.2736 609.5058

(b) variation of u.

h 2ms 5ms 10ms 15ms

Explicit 5.7570 5.8144 5.8437 6.3526

Saturation 5.7270 5.6808 5.8811 6.5001

Implicit 1.1183 0.8915 0.8519 0.8650

(c) standard deviation of u.

Table 1.6: Comparisons of u when G = 104.

1.3.3 Summary

These extensive experimental tests prove that items 3) 4) 5) 6) 7) in the Introduction, are not only

theoretical and numerical predictions obtained in [1, 2], but significantly influence the discrete-

time implemented sliding-mode controller. The implicit method (1.27) allows to drastically reduce

the input chattering and magnitude, while enhancing the tracking capabilities (output chattering is

almost entirely eliminated), and simplifying the tuning of the gain G. It also allows the designer

to choose larger sampling periods, which may be of strong interest in practice, where one wants to

make less calculations to save time and energy. Perhaps counter-intuitively for control engineers, the

performance and robustness increase when the gain G increases, which is thought to considerably

simplify the controller gain tuning process. A video of the experimental tests is available at http:

//nullptr.fr/pages/videos.html.

1.4 Numerical analysis of the saturation controller

Saturating the set-valued signum function is often presented in the literature as the absolute remedy

to the chattering effects. However no analysis seems to be available to confirm this assertion. In

order to corroborate our above conclusions on the saturation input (which is shown in general not to

decrease the input and output numerical chattering compared to the explicit discretization without
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(a) h = 2ms. Explicit method.
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(b) h = 2ms. Saturation method.
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(c) h = 2ms. Implicit method.
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(d) h = 15ms. Explicit method.
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(e) h = 15ms. Saturation method.
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(f) h = 15ms. Implicit method.

Figure 1.2: Real position y (mm) in blue and yd (mm) in red, under h = 2ms and h = 15ms for

G = 104. Real position y in blue and yd in red.
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(a) h = 2ms. Explicit method.
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(b) h = 2ms. Saturation method.
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(c) h = 2ms. Implicit method.
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(e) h = 15ms. Saturation method.
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(f) h = 15ms. Implicit method.

Figure 1.3: Real position y (mm) in blue and yd (mm) in red, under h = 2ms and h = 15ms for

G = 105.
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(a) Explicit. sgn(σk). G = 104, h = 2ms.
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(b) Saturation. sat(σk). G = 104, h = 2ms
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(c) Implicit. sgn(σk+1). G = 104, h = 2ms.
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(d) Implicit. sgn(σk+1). G = 105, h = 2ms.
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(e) Implicit. sgn(σk+1). G = 104, h = 5ms.
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(f) Implicit. sgn(σk+1). G = 105, h = 5ms.
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(g) Implicit. sgn(sk+1). G = 104, h = 10ms.
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(h) Implicit. sgn(σk+1). G = 105, h = 10ms.
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(i) Implicit. sgn(σk+1). G = 104, h = 15ms.
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Figure 1.4: Switching function: Comparison between explicit (sgn(sk)), saturation (sat(sk)) and

implicit (sgn(sk+1)) algorithms.
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(a) Explicit. G = 104, h = 2ms.
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(b) Explicit and Saturation. G = 105, h = 2ms.
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(c) Saturation. G = 104, h = 2ms
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(d) Implicit. G = 104, h = 2ms.
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(e) Implicit. G = 105, h = 2ms.

0 2 4 6 8 10 12 14 16 18 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

(f) Explicit. G = 104, h = 15ms.
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(g) Explicit and Saturation. G = 105, h = 15ms.
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(h) Saturation. G = 104, h = 15ms
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(i) Implicit. G = 104, h = 15ms.
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(j) Implicit. G = 105, h = 15ms.

Figure 1.5: Comparison of control u between explicit, saturation and implicit methods.
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h 2ms 5ms 10ms 15ms

Explicit (-10 10) (-10 10) (-10 10) (-10 10)

Saturation (-10 10) (-10 10) (-10 10) (-10 10)

Implicit ( -3.2541 3.8092) (-2.0772 2.6066) (-2.0325 2.3656) (-1.9642 1.9461)

(a) range of u.

h 2ms 5ms 10ms 15ms

Explicit 29800 20500 19320 18360

Saturation 2.3516e+04 1.9846e+04 19020 18600

Implicit 9.3245e+03 1.5389e+03 1.1560e+03 629.0904

(b) variation of u.

h 2ms 5ms 10ms 15ms

Explicit 10.0004 9.9729 9.9903 9.9547

Saturation 9.9746 9.9080 9.9262 9.9561

Implicit 1.0974 0.9113 0.9037 0.8630

(c) standard deviation of u.

Table 1.7: Comparisons of u when G = 105.

G 104 105 106 5.106

h = 5 ms (−0.3,0.35) (−0.03,0.035) (−0.003,0.003) (−0.0006,0.00065)
h = 10 ms (−0.25,0.3) (−0.025,0.03) (−0.0025,0.0025) (−0.0005,0.0005)

Table 1.8: Magnitude of implicit switching function sgn(xk+1) for varying gains G and sampling

period h.

saturation), we have led a preliminary simulation study on a perturbed system to analyse the effect

of adding a saturation, on both the tracking error and the input chattering. The dynamics is given by:

⎧

⎪

⎨

⎪

⎩

ẋ(t) = A(t)+Bu(t)+ sin(4πt)

σ =Cx

u(t) = ueq(t)+us(t)

A =

(

0 1

19 −2

)

,

B =

(

0

1

)

, CT =

(

1

1

)

.

(1.29)

where ueq(x) = −(CB)−1CAx, us(x) ∈ −sgn(Cx). On Figures 1.6 and 1.7 the performance index is

the sum of the |σk| for the last 20 seconds. On Figures 1.8 and 1.9 the performance index is the sum of

the |us
k+1 −us

k| for the last 20 seconds. The conclusions should not be considered as generic because

the study has been made for only one disturbance: results might change if another disturbance is

considered. Nevertheless Figures 1.6, 1.7, 1.8 and 1.9 allow us to draw some conclusions. With

both indexes, we can divide the space into 3 cones, numbered 1, 2 and 3 on Figures 1.6, 1.7, 1.8 and

1.9. This separation helps us to compare both controllers. In Figure 1.6 the performance in terms

of chattering is presented. For large values of ε , the chattering does not change when the sampling
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period varies: the control action does not attenuate the effect of the perturbation. With a small ε ,

the behavior is more complex, as depicted in Figure 1.7: the overall best performance is obtained

with small values for both ε and h. But for small values of ε , the performance can rapidly degrade

if the sampling period h is not small enough, as seen in Region 1. The dark points indicate for

each value of h the pair (ε,h) of parameters yielding the best performance. It seems that there is a

linear relationship between those values. However, it is unclear if this observation on one particular

system remains valid with a different perturbation. The level sets in Figure 1.7 are used to compare

the performance of the implicit and the saturated explicit controllers. On Figures 1.8 and 1.9, the

performance in terms of control cost is presented. The best performance is achieved for large ε since

the slope of the saturated function is gentle. On the other hand in Figure 1.9, with a small ε , the

cost increases and explodes with ε close to 0, as in Region 1. The level sets indicate the difference

between the costs of the two different controllers. It is worth noting that in Region 2 where the

saturated controller is better in Figure 1.7, it has a higher cost in term of control (Figure 1.9). In

Region 3, where the saturated controller performs less in terms of chattering (Figure 1.6), it has

a smaller cost in terms of control (Figure 1.8). Indeed with a large ε , the control input is small

when the closed-loop system is close to the sliding manifold. The cost is then very small, but the

disturbance is not attenuated at all. The implicit controller appeals to us as the best compromise

between the input and output chattering. It is also very easy to use, since it requires no particular

tuning with respect to the sampling period or the perturbation.

1.5 Conclusion

Experiments have been conducted on an electropneumatic system, with three different implemen-

tations of the sliding mode controller: explicit, saturated explicit, and implicit discretizations. The

results demonstrate that the theoretical and numerical predictions of [1, 2] are true: the implicit im-

plementation, which is very easy to implement in a code, drastically supersedes the other two. The

output and input chattering are reduced in a significant way, without changing the controller basic

structure (i.e., no additional filter, observer, or dynamic controller is added compared to the origi-

nal, basic sliding mode controller) and keeping its simplicity (in particular the gain tuning is easy,

which is a strong feature of the ECB-SMC method). The main feature of the implicit discretization,

is that it keeps, in discrete-time, the multivalued feature of the theoretical continuous-time sliding-

mode controller, as it is mathematically imposed in Filippov’s framework. The proposed implicit

discretization method is generic in the sense that it could apply to any kind of sliding mode, set

valued control. These conclusions have been confirmed elsewhere on another experimental setup for

both the ECB-SMC and the twisting controllers [14, 17, 15].
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Figure 1.6: Simulation results with 100 regularly spaced values for the sampling period h and 100

logarithmically spaced values for the saturation parameter ε .

.1 Some basic convex analysis tools

In this section we provide few results which are useful to calculate the controller in Section 1.2.1.

From [24, p.115] it follows that the conjugate function of the indicator function of the set [−1,1],
denoted as ψ[−1,1](·), is the support function ψ⋆

[−1,1](·) of the set [−1,1], given by the absolute

value function x �→ |x|. From [24, Theorem 23.5], one has that the subdifferentials (in the sense

of convex analysis) of these two conjugate functions satisfy: x ∈ ∂ψ[−1,1](z) ⇔ z ∈ ∂ψ⋆

[−1,1](x).

From the definition of the subgradient, one has ∂ψ⋆

[−1,1](x) = sgn(x) where sgn is the multivalued

signum function as defined in the introduction. By definition of the subdifferential of a convex set,

∂ψ[−1,1](z) is the normal cone to the set [−1,1] at z. These results allow one to derive (1.9) from

(1.7).

Consider now the inclusion x−y ∈−NC(x) for some convex, non empty closed set C of IRn, and

two vectors x and y of IRn. Using [7, Theorem 1.5.5] one finds that x is the Euclidean projection of y

onto C. This allows us to deduce (1.10) from (1.9).
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Figure 1.7: Detail of Figure 1.6, 300 values for h and 1000 values for ε , forming a regular grid.

Level sets were also added to show the difference in performance between the implicit discretization

and the explicit one with saturation. If the difference is positive, the explicit saturated control is

performing better than the implicit one.
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Figure 1.8: Simulation results with 100 regularly spaced values for the sampling period h and 100

logarithmically spaced values for the saturation parameter ε .
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Level sets were also added to show the difference in performance between the implicit discretization

and the explicit one with saturation. If the difference is positive, the explicit saturated control is

performing better than the implicit one.
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