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Experimental search for high-temperature
ferroelectric perovskites guided by two-step
machine learning
Prasanna V. Balachandran 1,3, Benjamin Kowalski2, Alp Sehirlioglu2 & Turab Lookman1

Experimental search for high-temperature ferroelectric perovskites is a challenging task due

to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step

machine learning approach to guide experiments in search of xBi½Me0yMe00ð1�yÞ�O3–(1− x)

PbTiO3-based perovskites with high ferroelectric Curie temperature. These involve classifi-

cation learning to screen for compositions in the perovskite structures, and regression

coupled to active learning to identify promising perovskites for synthesis and feedback. The

problem is challenging because the search space is vast, spanning ~61,500 compositions and

only 167 are experimentally studied. Furthermore, not every composition can be synthesized

in the perovskite phase. In this work, we predict x, y, Me′, and Me″ such that the resulting

compositions have both high Curie temperature and form in the perovskite structure. Out-

comes from both successful and failed experiments then iteratively refine the machine

learning models via an active learning loop. Our approach finds six perovskites out of ten

compositions synthesized, including three previously unexplored {Me′Me″} pairs, with 0.2Bi

(Fe0.12Co0.88)O3–0.8PbTiO3 showing the highest measured Curie temperature of 898 K

among them.
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O
ne of the important challenges in the computer-guided
accelerated search for new materials is the simultaneous
optimization of stability and one or more properties of

interest1,2. Although the rationale for property optimization can
be readily justified (e.g. need for room temperature super-
conductors, fast ion-conductors, sub-nm size skyrmions etc.),
predicting stability is critical because it can inform whether a
candidate material can be potentially synthesized in a laboratory
setting or not. Furthermore, a quantitative understanding of the
stability can put a constraint on the feasible solution space and
our ability to predict them can significantly impact the acceler-
ated search for new materials. Traditionally, density functional
theory calculations are utilized, where the formation enthalpy and
distance from the convex hull are used to determine the stability
or metastability of a compound or an alloy3–8. While powerful,
this approach has limitations in the accelerated search, especially
if complex solid-solutions with fractional site occupancies, large
supercells, and transition metal oxides with strong electron cor-
relation are involved. The state-of-the-art computational tools9–11

are most suited to handle stoichiometric compounds.
In contrast, machine learning (ML) approaches that use

experimental data are also increasingly utilized for accelerating
the search for new materials12–16. In these studies, data from both
successful and failed experiments are used to train ML models,
which in turn can be used to predict whether a new data sample
(not present in the training set) can be potentially experimentally
synthesized or not. Thus, these methods do not use or strictly
require thermodynamic stability data but take advantage of the
past experiments to make inference about future experiments.
One of the emerging areas in the nascent field of materials
informatics is the active learning or adaptive design approach,
where the ML models are combined with algorithms that
recommend informative experiments (from a vast pool of pos-
sible experiments) such that the new data are expected to improve
the performance of the ML models in the next iteration17–19.
Recent demonstrations of these methods to experimentally dis-
cover complex organic−inorganic molecules, alloys, and func-
tional oxides are worth mentioning12–16.

In this paper, we focus on the complex xBi½Me0yMe00ð1�yÞ�O3–

(1− x)PbTiO3 (PT) perovskite solid solutions, where Me′ and Me″

are di-, tri-, tetra- or pentavalent cations that occupy the octa-
hedral site of the perovskite lattice (shown in Fig. 1) and the
resulting solid solution is charge neutral. These are candidate
materials for high-temperature ferroelectric applications because
of their large piezoelectric and electromechanical coupling coef-
ficients20. Our survey of the periodic table identified a total of 23
cations that can occupy the Me′ and Me″ octahedral sites in the
perovskite lattice. Further, these 23 cations can be distinctly
combined to yield a total of 75 {Me′Me″} possible cation pairs
and only 13 such pairs are experimentally explored. We also allow
x to vary from 0.05 to 0.85 in steps of 0.05 and y to vary from 0.1
to 0.9 in steps of 0.01 for constraining our composition space.
Overall, we identify 61,506 unique chemical compositions out of
which only 167 are experimentally studied, representing only
0.28% of the search space. In the remaining unexplored chemical
and composition space, it is unclear how many candidate high-
temperature ferroelectric perovskites can and do exist. This is a
challenging question because rules governing formation of high-
temperature ferroelectric perovskite phases in a complex mul-
tinary phase space are not known a priori. Traditionally, time-
consuming and expensive trial-and-error or intuition-driven
experimental approaches are used to uncover the composition
−structure−property relationships, which is a non-trivial task.
The overarching research problem is schematically shown in
Fig. 1.

Here, we demonstrate a materials design approach driven by
ML and active learning methods to simultaneously predict x, y,
Me′, and Me″ such that the new candidate solid solutions are
expected to (i) form in a perovskite structure (with at least 95%
phase purity) and (ii) also have high ferroelectric Curie tem-
perature (TC). The novelty of our ML approach lies in the inte-
gration of classification learning with regression methods to
constrain the search space of possible perovskites so that only
promising compositions are recommended for experimental
synthesis, characterization, and feedback. As a result, we build
two independent ML models, one for classification learning and
the other for regression. The data for training the ML models are
taken from the published experimental literature21–45. While the
classification learning models allow us to screen for candidate
chemical compositions that can have perovskite structure, the
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Fig. 1 Materials design challenges in the search for high-temperature ferroelectric perovskites. The phase space of xBi½Me0yMe00ð1�yÞ�O3–(1− x)PT solid

solutions contains a total of 61,500 compositions and only about 0.28% of them are experimentally investigated. A priori, the stability field of the desired

high-temperature ferroelectric perovskite phase is not known. Traditionally, trial-and-error or intuition-driven experimental approaches are used to

discover new high-TC compositions, which is non-trivial and can be time-consuming and costly. We demonstrate a two-step ML approach that can

simultaneously optimize x, y, Me′, and Me″ such that the resulting solid solution will not only have a high-TC, but form in the perovskite crystal structure.

Classification learning methods identify and isolate desired regions in the phase diagram, where the candidate perovskite phases are expected to exist.

Regression methods, on the other hand, predict the ferroelectric TC for the candidate perovskites. Active learning methods recommend promising high-TC

perovskite compositions for synthesis. Experiments validate the ML predictions and provide feedback for further model improvement

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03821-9

2 NATURE COMMUNICATIONS |  (2018) 9:1668 |DOI: 10.1038/s41467-018-03821-9 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


regression models then predict the TC for the candidate per-
ovskite solid solutions. We also use our recently developed active
learning (or adaptive design) approach based on efficient global
optimization (EGO)13,17 to recommend promising compositions
for experimental synthesis and characterization (details of EGO
algorithm are discussed in the Regression and Active Learning
section). We employ the conventional powder processing tech-
nique for synthesis, which allows us to validate one of the
important questions of perovskite stability under the driving force
of temperature. One can also, in principle, experimentally stabi-
lize the perovskite phase by means of pressure, but we focus only
on the temperature. We run our iterative loop for a total of five
times, which resulted in investigating ten new compositions and
we discovered six new perovskites, with 0.2Bi(Fe0.12Co0.88)
O3–0.8PT having the highest measured TC of 898 K among them.
We also identify three novel {Me′Me″} pairs, namely {FeCo},
{CoAl}, and {NiSn}, that are not explored in the literature. Since
the ceramic processing route that we have employed is akin to
what industry uses in scaled-up production, the novel composi-
tion spaces identified in this work can potentially impact the
development of functional materials for high-temperature appli-
cations such as piezoelectric actuators46,47. The current work is
also a departure from those reported in the literature12,13,15,44 in
the following ways. First, in terms of the ML approach, we setup
our materials design problem as two-step learning to sequentially
guide experiments, where a classification learning model down-
selects promising candidates in the desired crystal structure and a
regression method coupled to active learning recommends pro-
mising compositions for experimental synthesis. The new pre-
dictions are expected to simultaneously satisfy two criteria that
are crucial for practical applications: first, they are expected to
form in the desired perovskite crystal structure and second, they
must also have a promising property, i.e., high ferroelectric Curie
temperature (TC). The potential of ML to constrain the search
space has major implications in rationally guiding experiments
towards promising materials with targeted properties. Previous
studies considered only either the classification learning or

regression methods for design12,13,15. Second, in terms of the
materials class, the focus is on complex functional oxides that are
synthesized via conventional powder processing routes. However,
previous demonstrations of classification learning with feedback
from experiments have been on complex organic−inorganic
molecules12,15. Third, we use our strategy to sequentially guide 1
−3 experiments at each iteration step, in contrast to the batch
experiments of Duros et al.15, who performed ten new experi-
ments at each iteration step for validation and feedback.

Results
The need for a two-step learning strategy, especially the classifi-
cation learning for constraining the perovskite composition space,
was motivated by our first prediction on the 0.5Bi(In0.36Sc0.64)O3-
0.5PT composition. We predicted this composition solely on the
basis of regression and active learning under the assumption that
all compositions in the constrained xBi½Me0yMe00ð1�yÞ�O3–(1− x)
PT search space can be potentially synthesized in the perovskite
phase. We did not use classification learning to evaluate whether
this composition will form in the perovskite structure or not. This
naive strategy proved to be insufficient, because the X-ray dif-
fraction (XRD) measurements revealed the presence of secondary
phases. This indicated that the composition did not form in a
single-phase perovskite structure and furthermore, these sec-
ondary phases are deleterious for high-temperature applications.
This failed attempt led us to reformulate our approach and we
constructed a new dataset for classification learning, whose pri-
mary objective is to identify promising regions in the xBi
½Me0yMe00ð1�yÞ�O3–(1− x)PT search space that are expected to
form in the pure perovskite phase. The reformulation resulted in
the development of a two-step ML strategy, which we show in
Fig. 2. The synergistic effect of employing classification learning,
regression, active learning, experimental validation, and feedback
in the discovery of high-TC ferroelectric perovskites are discussed
below.
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Fig. 2 Two-step machine learning strategy for sequentially guiding experiments. We construct two independent datasets (D1 and D2) from surveying the

experimental data in the literature, one for building classification learning and the other for regression models. The role of classification learning is to screen

for compositions that can be synthesized in the perovskite phase. Compositions that pass the classification learning screen are referred to as the

“candidate perovskites”. The regression models then predict the TC with associated uncertainties (σ) for the candidate perovskites. We then use efficient

global optimization (EGO)61 to identify promising high-TC candidates for experiments. Outcome from both successful and failed experiments provides

feedback for classification learning. On the other hand, we only use the outcome from successful experiment to update the regression ML models. We

iterate our design loop for a total of five times
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Classification learning. We constructed an initial dataset of 167
polycrystalline ceramic samples taken from the published litera-
ture. The compositions in the dataset were synthesized using
either the conventional powder processing, solid state reaction
methods, or mixed oxide processing routes, with some differences
in the calcination and sintering protocols. Thus, we have a het-
erogeneous dataset as it is constructed from diverse sources. The
phase purity of the polycrystalline ceramics in our training set
was determined using the XRD measurements. Compositions that
were revealed to be at least 95% phase pure in the perovskite
structure were labeled as “+1” (or desired) in our dataset and we
do not explicitly distinguish between tetragonal, rhombohedral,
or monoclinic perovskite crystal structures. Similarly, those that
had secondary phases were labeled as “−1” (or undesired). Our
training set contained 107 and 60 compositions with +1 and −1
labels, respectively.

We represent each composition in our dataset using five
features, namely tolerance factor, valence electron number,
Martynov−Batsanov electronegativity, ideal bond lengths, and
Mendeleev number48–51. Recently, Pilania et al.52 showed the
relative importance of these features in classifying the formability
of ABO3 compounds in perovskite crystal structure, and there-
fore, we use them in this work. Since every composition is a solid
solution, we used the weighted-fractions of the relative propor-
tions of Bi, Pb, Me′, Me″, and Ti in the solid solution to calculate
the feature values. For instance, the tolerance factor (tf) for (say) a
xBi(Me′Me″)O3 – (1− x)PT solid solution is calculated using the
formula,

tf ;solid solution ¼ x ´ tf ;BiðMe0Me00ÞO3

� �
þ ð1� xÞ ´ tf ;PT
� �

; ð1Þ

where tf is calculated as ðrA þ rOÞ=ð
ffiffiffi
2

p
rB þ rOð ÞÞ and rA, rB, and

rO are the weighted-average Shannon’s ionic radii53 of the A-site,
B-site, and O atom, respectively, in the perovskite lattice. A
similar procedure was used to determine the values for other
features for each composition.

The objective of classification learning is to build ML models
that map the features to the labels (+1 or −1). We use the
support vector classifier with a radial basis function kernel
(SVCrbf) for building the classification learning models (see
Methods section for details). We first evaluated the suitability of
the features and the SVCrbf ML method on our initial dataset by
splitting the dataset into training and independent test sets,

because very little work has been reported in the literature on
predicting the perovskite phase stability of these solid solutions.
We generated 100 training and test set pairs via random
sampling, such that each training and test set pair contained
127 and 40 data points, respectively. We built 100 SVCrbf

classifiers from the training sets and used them to predict the
labels for the compositions in the corresponding test sets. We
calculated the accuracy of each SVCrbf classifier by evaluating its
performance on each of the test sets. The overall accuracy was
then estimated by calculating the mean value from the outcome
of the 100 SVCrbf classifiers. We find that our SVCrbf classifiers
performed with an average accuracy of 77.5 ± 6.4%, which is
reasonable and not uncommon in the literature12,15,54, if dealing
with heterogeneous experimental datasets such as the one
constructed in this work. This exercise provides an estimate of
the predictive power of the features and the SVCrbf method in
classifying +1 and −1 labels of the compositions assembled in
our dataset.

For the prediction of new perovskites in the unexplored 61,506
composition space, however, we utilized all 167 data points for
training the SVCrbf classifiers. We constructed a total of 100
bootstrapped samples55,56 from the original dataset and built 100
SVCrbf classifiers. Thus, any given composition will have
predictions of either +1 or −1 label from 100 SVCrbf classifiers.
Since the objective is to down-select promising perovskites from
the 61,506 unexplored composition space, we “exploit” our
SVCrbf classifiers, i.e., we only choose those compositions that are
classified in the +1 (or desired) label at least 95 or more times.
The hyperparameters for the SVCrbf classifiers were optimized by
the tenfold cross-validation (CV) method (see Methods section
for details).

Regression and active learning. We built another dataset of 117
compositions for which the TC data are known from published
experiments. This dataset contains compositions that are both at
and away from the Morphotropic Phase Boundary (MPB) com-
position, but we do not distinguish between them. In the ferro-
electrics literature, the term MPB refers to structural phase
transitions arising due to changes in chemical composition at a
given temperature and especially in PbTiO3-based materials, MPB
encompasses a region in the phase diagram where two ferro-
electric phases (typically in tetragonal and rhombohedral sym-
metries) coexist. The TC data were determined using the dielectric
measurements in an impedance analyzer. For this dataset, we
represent each composition using two features, namely tf and ionic
displacement. Unlike the classification learning problem, the
rationale for the choice of these features in predicting the TC for
Bi(Me′Me″)O3– PT solid solutions is well-established in the
literature20,42–44,57–59. For instance, Abrahams et al.59 showed that
in displacive ferroelectrics, TC∝ δ2, where δ is the relative atomic
displacement of the homopolar metal atom from the center of the
octahedron cage. Later, Grinberg et al.42,57,58 extended the argu-
ment to also include displacements from the A-site atoms. Simi-
larly, Eitel et al.20 showed the existence of a correlation between tf
and TC at the MPB compositions in BiMeO3-PT solid solutions,
where Me is a trivalent octahedral cation. However, the uncer-
tainties associated with tf and δ in describing the TC at compo-
sitions away from the MPB are not known. The goal of regression
is to build ML models that can predict TC as a function of tf, δ, and
compositions (at and away from the MPB). While the tf for each
composition is calculated as shown in Eq. (1), the δ for the solid
solution is calculated as follows:

δsolid solution ¼ x ´ δBi ´ δMe0Me00f g þ ð1� xÞ ´ δPb ´ δTif g; ð2Þ

where the values for δ for each octahedral site cation (Ti, Me′, and
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Me″) were taken from the work of Balachandran et al.60 and that
for Bi and Pb comes from Grinberg and Rappe58. All δ values
used in this work are given in Supplementary Table 1. In the case
of δMe′Me″, we used the weighted-average values for the individual
δMe′ and δMe″ cation data.

We used the support vector regression with the radial basis
function kernel (SVRrbf) for building the regression models.
Similar to classification learning, we construct a total of 100
bootstrapped samples from the original dataset and build 100
SVRrbf models. The mean value and standard deviation from
these 100 SVRrbf models was taken as the mean TC prediction
cTC

� �
and the associated uncertainty (σ), respectively. Once the

SVRrbf models are built, we apply them to predict cTC ± σ for the
candidate perovskites that were down-selected from the classifi-
cation learning. The hyperparameters for the SVRrbf models were
optimized by the tenfold CV method (see Methods section for
details). The performance of the SVRrbf on the training set is
shown in Fig. 3. The mean absolute error on the initial dataset
was estimated to be 30.2 K.

We explored two methods to rank the candidate perovskites
for experimental recommendations. One is based on the EGO61,
where we calculate the “expected improvement, E(I)” for each
unmeasured composition using the expression, σ[ϕ(z)+ zΦ(z)],
where z ¼ cTC � μ�

� �
=σ and μ* is the maximum TC observed so

far in the current training set, ϕ(z) and Φ(z) are the standard
normal density and cumulative distribution functions, respec-
tively61. Here, E(I) balances the tradeoff between “exploitation”
and “exploration” of the SVRrbf model. At the end of each
iteration, EGO returns a score for E(I) for each unmeasured
composition, whose relative magnitude depends on the SVRrbf

predicted cTC; σ
� �

pair for those compositions and the value of μ*

in the training set. It is common to pick the composition with the
maximum E(I) for validation and feedback. It is anticipated that
the validation of compositions recommended by E(I) would lead
to model improvement in the subsequent iterations. The second
method, in contrast to the EGO method, exploits the SVRrbf

models, i.e., we recommend candidate perovskite compositions
from the unexplored space that were predicted to have the largest
cTC. Unlike E(I), these recommendations are not expected to
improve the SVRrbf models in the subsequent iterations. We refer
to this as “Exploitation” in this paper.

Experiments. All specimens were prepared by the conventional
powder processing technique. The general procedure for the
processing used in this work is outlined in a previous publication
by Kowalski et al.62–64. However, the sintering temperature was
varied between 1173 and 1373 K due to the dependence of
melting temperature on compositions. During sintering the
weight loss was less than 3% for all compositions. A sintered
pellet from each composition was then crushed for XRD. All
compositions studied were, to some degree, perovskite. In general,
there is a solubility limit depending on the cations in Bi(Me′Me″)
O3 and this limit tends to be less than 50% except for Bi
(Zn0.5Ti0.5)O3 and BiFeO3 in PT. If XRD revealed the composi-
tion to be mostly perovskite (≥95%), then a sintered pellet was
prepared for dielectric measurements (see Methods for additional
details).

Iterative loop. The iterative loop consists of the following steps:
(a) Screen 61,506 compositions using an ensemble of 100 SVCrbf

classifiers and down-select compositions as candidate perovskites,
(b) Predict the cTC along with the uncertainties (σ) for the down-
selected candidates using SVRrbf regression models, (c) Calculate
the E(I) for each candidate perovskite using the EGO algorithm

Table 1 List of ten new compositions predicted and validated by ML and experimental measurements

Perovskites (+1 or −1) Curie temperature TC (K)

Iteration # Compositions Prediction from

SVCrbf

XRD

measurements

Prediction from

SVRrbf (cTC ± σ)
Dielectric

measurements

EGO or

Exploitation

c/a

1 0.6Bi(Sc0.17Ga0.83)O3–0.4PT +1 −1 747 ± 223 – EGO –

2a 0.35Bi(In0.31Sc0.69)O3–0.65PT +1 +1 923 ± 343 733 EGO 1.029

2b 0.5Bi(Sc0.56Ga0.44)O3–0.5PT +1 −1 846 ± 229 – EGO –

3a 0.25Bi(Sc0.47Ga0.53)O3–0.75PT +1 +1 778 ± 135 798 EGO 1.058

3b 0.7Bi(Fe0.73Co0.27)O3–0.3PT +1 −1 929 ± 94 – Exploitation –

4a 0.4Bi(Fe0.19Sc0.81)O3–0.6PT +1 +1 749 ± 161 728 EGO 1.026

4b 0.2Bi(Fe0.12Co0.88)O3–0.8PT +1 +1 815 ± 24 898 Exploitation 1.066

5a 0.3Bi(Yb0.44Al0.56)O3–0.7PT +1 −1 801 ± 125 – EGO –

5b 0.3Bi(Ni0.50Sn0.50)O3–0.7PT +1 +1 780 ± 123 658 EGO 1.027

5c 0.2Bi(Co0.90Al0.10)O3–0.8PT +1 +1 843 ± 33 883 Exploitation 1.063

EGO or Exploitation within the active learning strategy recommended the corresponding composition for synthesis. SVCrbf and SVRrbf are the classification learning and regression ML methods,

respectively. Labels +1 and −1 in the XRD measurements column refer to compositions in the desired perovskite phase and those that contained undesired secondary phases, respectively. The XRD and

dielectric measurements provide the ground truth for validating the SVCrbf and SVRrbf predictions. The tetragonality (c/a ratio) from XRD measurements are also given. In the column named “Iteration”,

we use a, b, or c as indicators to only uniquely identify compositions and they carry no scientific information
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from SVCrbf ML method. See Table 1 for details
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and rank them in the descending order, (d) Recommend the
promising compositions [i.e., the one with the largest E(I)] for
experimental synthesis and characterization, (e) Synthesize and
evaluate the phase stability using XRD and only those that are
revealed to be perovskite are prepared for measuring the TC, and
(f) Augment the training set with these compositions and repeat
the cycle until our budget of ten experiments is expended. The
results are summarized in Table 1, where we also provide the data
for tetragonality (c/a ratio) of the experimentally confirmed
perovskites. A detailed account describing how the search process
evolved from one iteration to another is given in Supplementary

Note 1 and we only discuss our main results here. In Figs. 4 and 5,
we show the XRD and dielectric measurements data for the
synthesized compositions, respectively. From XRD measure-
ments, we identify six new compositions that were synthesized in
iteration 2a, 3a, 4a, 4b, 5b, and 5c to be mostly perovskite (≥95%
phase pure). The temperature-dependent dielectric measurements
were then performed only on the six compositions that are
confirmed as perovskites by the XRD data.

Among the six experimentally confirmed perovskite composi-
tions, 0.2Bi(Fe0.12Co0.88)O3–0.8PT (predicted in the fourth
iteration using the exploitation method) had the highest
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measured TC of 898 K. Both Fe3+ and Co3+ cations have large
ionic displacements in the perovskite lattice60, which is
hypothesized as one of the main reasons for its large TC. Our
work has led to the prediction of four new promising {Me′Me″}
pairs in the chemical space, namely {FeCo}, {NiSn}, {CoAl}, and
{YbAl}, not explored in the literature. This is shown in Fig. 6 and
the exact compositions are given in Table 1. The XRD
measurements confirmed three of them, {FeCo}, {NiSn}, and
{CoAl}, in the perovskite structure. In the case of the {YbAl} pair,
XRD measurements revealed secondary phases and therefore, our
preliminary studies identify them as unsuccessful.

Discussion
One of the major hurdles in traditional materials design has been
the vast size of the unexplored space and our experimental bias
towards knowledge of the well-known materials systems such as
BaTiO3, Pb(Zr, Ti)O3 and Pb(Mg, Nb)O3-PbTiO3. We have
demonstrated here how synthesis can be guided by a two-step ML
strategy that learns from all available data, including both suc-
cessful and failed experiments, to accelerate the search for new
high-TC perovskite oxides. Our work has led to two promising
compositions, 0.2Bi(Fe0.12Co0.88)O3–0.8PT and 0.2Bi
(Co0.90Al0.10)O3–0.8PT. The Bi(FeCo)O3-PT and Bi(CoAl)O3-PT
chemical spaces rank third and fourth highest, respectively, in
terms of their measured TC values compared to the state-of-the-
art compositions [BiFeO3-PT and Bi(ZnTi)O3-PT] in our training
set. The merits of these compositions are their high TC and the
ease of processing in the perovskite phase, which are critical for
actuator performance. This is important because the operation
temperature is limited by AC conductivity, leakage, or de-poling
and TC sets the intrinsic limit to piezoelectricity. In future, one
needs to incorporate c/a ratio and domain mobility, which we
have ignored in this work.

From Table 1, we find two intriguing observations pertaining
to the BiGaO3-BiScO3-PT and BiFeO3-BiCoO3-PT predicted
compositions that are worth discussing. In BiGaO3-BiScO3-PT,
the first two predictions (in iterations 1 and 2, as given in Table 1)
did not result in a perovskite phase as revealed by the XRD data.
However, the third prediction (in iteration 3) resulted in per-
ovskite structure. Notice that the composition predicted in
iteration 3 had less BiGaO3 content (13.25%) relative to the first
two predictions (that contained 49.8 and 22% BiGaO3). The PT
content, on the other hand, also increased in the third prediction
compared to the first two predictions (Table 1). Similarly, in
BiFeO3-BiCoO3-PT the first prediction (in iteration 3, 0.7Bi
(Fe0.73Co0.27)O3–0.3PT) was rich in Bi(CoFe)O3 relative to that of
the PT content. Our XRD measurements revealed secondary
phases and therefore, unsuccessful. In the next iteration (# 4), ML
predicted 0.2Bi(Fe0.12Co0.88)O3–0.8PT, which is now rich in PT
compared to the Bi(CoFe)O3 content. The XRD measurements
revealed perovskite phase. We interpret these outcomes as the
SVCrbf classifier iteratively “learning” the solubility limit of
Bi(Me′Me″)O3 in PT perovskite from previous failed
experiments.

We also shed some light on the evolution of the ML models as
a result of ten experiments. For instance, the SVRrbf models (after
iteration 4) showed only marginal improvement relative to that of
the first set of models (before iteration 1). The mean absolute
error value decreased from 30 to 28 K. On the other hand, the
SVCrbf classification learning models showed no improvement in
its performance on the test set. We calculated an average accuracy
of 77 ± 6.5% for the final model (i.e., after iteration 4), which is
almost identical to that of the initial SVCrbf models (before
iteration 1), whose average accuracy was calculated as 77.5 ±
6.4%. We attribute this behavior to the exploitative

recommendation strategy of the SVCrbf models. We anticipate
that the average accuracies of these classifiers can, in principle, be
further improved when these models are coupled to active
learning methods, such as uncertainty sampling15, where a loss
function can be defined with an intention of improving the
average accuracies of the classification learning models. We
identify them as promising directions for future investigation.

Methods
Machine learning. We use the C-support vector classification (C-SVC) and ε-
support vector regression (ε-SVR) methods with non-linear Gaussian radial basis
function kernel for classification learning and regression, respectively, as imple-
mented in the e1071 package65 within the RSTUDIO environment66. The hyper-
parameters (cost and gamma) for both C-SVC and ε-SVR methods were optimized
using the tenfold CV method and the grid search method. In the tenfold CV
method, the original dataset was divided randomly (without replacement) into ten
subsamples of equal sizes. Then, a single subsample (containing 10% of the data)
was chosen as the test set and the remaining 90% was used for training the models.
The process was repeated ten times (one for each subsample) such that each
composition appear exactly once in the test set data. The set of hyperparameters
that resulted in the smallest tenfold CV error (i.e., classification error in the case of
C-SVC and mean squared error in the case of ε-SVR) was chosen for training our
final models. Bootstrap resampling is one of the well-known methods, where a
dataset is sampled repeatedly with replacement55,56.

Experimental. The starting oxide powders used and compositions studied are
listed here, PbO, TiO2, Bi2O3, Fe2O3, CoO2, Ga2O3, In2O3, Al2O3, Sc2O3, SnO2,
NiO, and Yb2O3. The purity of the powders used exceeds 99%.

The disc pellets were first parallel polished to maintain a 10:1 diameter to
thickness ratio. Then the polished pellets were electroded with silver paint and
cured at 350 °C. To then investigate the prediction of the TC, dielectric constant
measurements were carried out as a function of temperature at 0.5 V with an
Agilent 4294A impedance analyzer (Agilent Technologies, Santa Clara, CA) in
tandem with a customized CM furnace. Data was captured through a computer
interface by LABVIEW (National Instruments Corp., Austin, TX) software.

Data availability. The datasets generated and analyzed for classification learning
and regression are deposited at figshare67 with identifier https://doi.org/10.6084/
m9.figshare.5687551.v1.
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