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Abstract—Modern automobiles are no longer mere mechan-
ical devices; they are pervasively monitored and controlled by
dozens of digital computers coordinated via internal vehicular
networks. While this transformation has driven major advance-
ments in efficiency and safety, it has also introduced a range of
new potential risks. In this paper we experimentally evaluate
these issues on a modern automobile and demonstrate the
fragility of the underlying system structure. We demonstrate
that an attacker who is able to infiltrate virtually any Electronic
Control Unit (ECU) can leverage this ability to completely
circumvent a broad array of safety-critical systems. Over a
range of experiments, both in the lab and in road tests, we
demonstrate the ability to adversarially control a wide range
of automotive functions and completely ignore driver input —
including disabling the brakes, selectively braking individual
wheels on demand, stopping the engine, and so on. We find
that it is possible to bypass rudimentary network security
protections within the car, such as maliciously bridging between
our car’s two internal subnets. We also present composite
attacks that leverage individual weaknesses, including an attack
that embeds malicious code in a car’s telematics unit and
that will completely erase any evidence of its presence after a
crash. Looking forward, we discuss the complex challenges in
addressing these vulnerabilities while considering the existing
automotive ecosystem.

Keywords—Automobiles, communication standards, commu-

nication system security, computer security, data buses.

I. INTRODUCTION

Through 80 years of mass-production, the passenger au-

tomobile has remained superficially static: a single gasoline-

powered internal combustion engine; four wheels; and the

familiar user interface of steering wheel, throttle, gearshift,

and brake. However, in the past two decades the underlying

control systems have changed dramatically. Today’s automo-

bile is no mere mechanical device, but contains a myriad of

computers. These computers coordinate and monitor sensors,

components, the driver, and the passengers. Indeed, one

recent estimate suggests that the typical luxury sedan now

contains over 100 MB of binary code spread across 50–70

independent computers — Electronic Control Units (ECUs)

in automotive vernacular — in turn communicating over one

or more shared internal network buses [8], [13].

While the automotive industry has always considered

safety a critical engineering concern (indeed, much of this

new software has been introduced specifically to increase

safety, e.g., Anti-lock Brake Systems) it is not clear whether

vehicle manufacturers have anticipated in their designs the

possibility of an adversary. Indeed, it seems likely that this

increasing degree of computerized control also brings with

it a corresponding array of potential threats.

Compounding this issue, the attack surface for modern

automobiles is growing swiftly as more sophisticated ser-

vices and communications features are incorporated into

vehicles. In the United States, the federally-mandated On-

Board Diagnostics (OBD-II) port, under the dash in vir-

tually all modern vehicles, provides direct and standard

access to internal automotive networks. User-upgradable

subsystems such as audio players are routinely attached to

these same internal networks, as are a variety of short-

range wireless devices (Bluetooth, wireless tire pressure

sensors, etc.). Telematics systems, exemplified by General

Motors’ (GM’s) OnStar, provide value-added features such

as automatic crash response, remote diagnostics, and stolen

vehicle recovery over a long-range wireless link. To do

so, these telematics systems integrate internal automotive

subsystems with a remote command center via a wide-

area cellular connection. Some have taken this concept

even further — proposing a “car as a platform” model for

third-party development. Hughes Telematics has described

plans for developing an “App Store” for automotive ap-

plications [22] while Ford recently announced that it will

open its Sync telematics system as a platform for third-party

applications [14]. Finally, proposed future vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2X) communications

systems [5], [6], [7], [25] will only broaden the attack

surface further.
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Overall, these trends suggest that a wide range of vectors

will be available by which an attacker might compromise a

component and gain access to internal vehicular networks —

with unknown consequences. Unfortunately, while previous

research efforts have largely considered vehicular security

risks in the abstract, very little is publicly known about the

practical security issues in automobiles on the road today.

Our research aims to fill this gap.

This paper investigates these issues through an empiri-

cal lens — with active experiments against two late-model

passenger cars (same make and model). We test these

cars’ components in isolation in the lab, as a complete

system in a controlled setting (with the car elevated on

jacks), and in live road tests on a closed course. We have

endeavored to comprehensively assess how much resilience a

conventional automobile has against a digital attack mounted

against its internal components. Our findings suggest that,

unfortunately, the answer is “little.”

Indeed, we have demonstrated the ability to systemati-

cally control a wide array of components including engine,

brakes, heating and cooling, lights, instrument panel, radio,

locks, and so on. Combining these we have been able to

mount attacks that represent potentially significant threats

to personal safety. For example, we are able to forcibly and

completely disengage the brakes while driving, making it

difficult for the driver to stop. Conversely, we are able to

forcibly activate the brakes, lurching the driver forward and

causing the car to stop suddenly.

Rather than focus just on individual attacks, we conduct a

comprehensive analysis of our cars’ digital components and

internal networks. We experimentally evaluate the security

properties of each of the key components within our cars,

and we analyze the security properties of the underlying

network substrate. Beyond measuring the real threats against

the computerized components within modern cars, as well

as the fundamental reasons those threats are possible, we

explore considerations and directions for reconciling the

tension between strategies for better security and the broader

context surrounding automobiles.

II. BACKGROUND

There are over 250 million registered passenger automo-

biles in the United States [4]. The vast majority of these

are computer controlled to a significant degree and virtually

all new cars are now pervasively computerized. However,

in spite of their prevalence, the structure of these systems,

the functionality they provide and the networks they use

internally are largely unfamiliar to the computer security

community. In this section, we provide basic background

context concerning automotive embedded systems archi-

tecture in general and an overview of prior related work

concerning automotive security.

A. Automotive Embedded Systems

Digital control, in the form of self-contained embedded

systems called Engine Control Units (ECUs), entered US

production vehicles in the late 1970s, largely due to re-

quirements of the California Clean Air Act (and subsequent

federal legislation) and pressure from increasing gasoline

prices [21]. By dynamically measuring the oxygen present

in exhaust fumes, the ECU could then adjust the fuel/oxygen

mixture before combustion, thereby improving efficiency

and reducing pollutants. Since then, such systems have been

integrated into virtually every aspect of a car’s functioning

and diagnostics, including the throttle, transmission, brakes,

passenger climate and lighting controls, external lights,

entertainment, and so on, causing the term ECU to be

generalized to Electronic Control Units. Thus, over the last

few decades the amount of software in luxury sedans has

grown from virtually nothing to tens of millions of lines of

code, spread across 50–70 independent ECUs [8].

ECU Coupling. Many features require complex in-

teractions across ECUs. For example, modern Electronic

Stability Control (ESC) systems monitor individual wheel

speed, steering angle, throttle position, and various ac-

celerometers. The ESC automatically modulates engine

torque and wheel speed to increase traction when the car’s

line stops following the steering angle (i.e., a skid). If

brakes are applied they must also interact with the Anti-

lock Braking System (ABS). More advanced versions also

offer Roll Stability Control (RSC), which may also apply

brakes, reduce the throttle, and modulate the steering angle

to prevent the car from rolling over. Active Cruise Control

(ACC) systems scan the road ahead and automatically in-

crease or decrease the throttle (about some pre-programmed

cruising speed) depending on the presence of slower vehicles

in the path (e.g., the Audi Q7 will automatically apply

brakes, completely stopping the vehicle if necessary, with no

user input). Versions of this technology also provide “pre-

crash” features in some cars including pre-charging brakes

and pre-tensioning seat belts. Some new luxury sedans (e.g.,

the Lexus LS460) even offer automated parallel parking

features in which steering is completely subsumed. These

trends are further accelerated by electric-driven vehicles that

require precise software control over power management

and regenerative braking to achieve high efficiency, by a

slew of emerging safety features, such as VW’s Lane Assist

system, and by a wide range of proposed entertainment and

communications features (e.g., it was recently announced

that GM’s OnStar will offer integration with Twitter [10]).

Even full “steer-by-wire” functionality has been seen in a

range of concept cars including GM’s widely publicized Hy-

wire fuel cell vehicle [12].

While some early systems used one-off designs and

bilateral physical wire connections for such interactions

(e.g., between different sensors and an ECU), this approach
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does not scale. A combination of time-to-market pressures,

wiring overhead, interaction complexity, and economy of

scale pressures have driven manufacturers and suppliers to

standardize on a few key digital buses, such as Controller

Area Network (CAN) and FlexRay, and software technology

platforms (cf. Autosar [1]) shared across component manu-

facturers and vendors. Indeed, the distributed nature of the

automotive manufacturing sector has effectively mandated

such an approach — few manufacturers can afford the over-

head of full soup-to-nuts designs anymore.

Thus, the typical car contains multiple buses (generally

based on the CAN standard) covering different component

groups (e.g., a high-speed bus may interconnect power-

train components that generate real-time telemetry while

a separate low-speed bus might control binary actuators

like lights and doors). While it seems that such buses

could be physically isolated (e.g., safety critical systems

on one, entertainment on the other), in practice they are

“bridged” to support subtle interaction requirements. For

example, consider a car’s Central Locking Systems (CLS),

which controls the power door locking mechanism. Clearly

this system must monitor the physical door lock switches,

wireless input from any remote key fob (for keyless en-

try), and remote telematics commands to open the doors.

However, unintuitively, the CLS must also be interconnected

with safety critical systems such as crash detection to ensure

that car locks are disengaged after airbags are deployed to

facilitate exit or rescue.

Telematics. Starting in the mid-1990’s automotive

manufacturers started marrying more powerful ECUs —

providing full Unix-like environments — with peripherals

such as Global Positioning Systems (GPS), and adding a

“reach-back” component using cellular back-haul links. By

far the best known and most innovative of such systems

is GM’s OnStar, which — now in its 8th generation —

provides a myriad of services. An OnStar-equipped car

can, for example, analyze the car’s On Board Diagnos-

tics (OBD) as it is being driven, proactively detect likely

vehicle problems, and notify the driver that a trip to the

repair shop is warranted. OnStar ECUs monitor crash sen-

sors and will automatically place emergency calls, provide

audio-links between passengers and emergency personnel,

and relay GPS-based locations. These systems even enable

properly authorized OnStar personnel to remotely unlock

cars, track the cars’ locations and, starting with some

2009 model years, remotely stop them (for the purposes

of recovery in case of theft) purportedly by stopping the

flow of fuel to the engines. To perform these functions,

OnStar units routinely bridge all important buses in the

automobile, thereby maximizing flexibility, and implement

an on-demand link to the Internet via Verizon’s digital

cellular service. However, GM is by no means unique and

virtually every manufacturer now has a significant telemat-

ics package in their lineup (e.g., Ford’s Sync, Chrysler’s

UConnect, BMW’s Connected Drive, and Lexus’s En-

form), frequently provided in collaboration with third-party

specialist vendors such as Hughes Telematics and ATX

Group.

Taken together, ubiquitous computer control, distributed

internal connectivity, and telematics interfaces increasingly

combine to provide an application software platform with

external network access. There are thus ample reasons to

reconsider the state of vehicular computer security.

B. Related Work

Indeed, we are not the first to observe the potential

fragility of the automotive environment. In the academic

context, several groups have described potential vulnera-

bilities in automotive systems, e.g., [19], [24], [26], [27],

[28]. They provide valuable contributions toward framing

the vehicle security and privacy problem space — notably

in outlining the security limitations of the popular CAN bus

protocol — as well as possible directions for securing vehicle

components. With some exceptions, e.g., [15], most of these

efforts consider threats abstractly; considering “what-if”

questions about a hypothetical attacker. Part of our paper’s

contribution is to make this framing concrete by providing

comprehensive experimental results assessing the behavior

of real automobiles and automotive components in response

to specific attacks.

Further afield, a broad array of researchers have con-

sidered the security problems of vehicle-to-vehicle (V2V)

systems (sometimes also called vehicular ad-hoc networks,

or VANETs); see [18] for a survey. Indeed, this work is

critical, as such future networks will otherwise present yet

another entry point by which attackers might infiltrate a

vehicle. However, our work is focused squarely on the

possibilities after any such infiltration. That is, what are the

security issues within a car, rather than external to it.

Still others have focused on theft-related access control

mechanisms, including successful attacks against vehicle

keyless entry systems [11], [16] and vehicle immobiliz-

ers [3].

Outside the academic realm, there is a small but vibrant

“tuner” subculture of automobile enthusiasts who employ

specialized software to improve performance (e.g., by re-

moving electronic RPM limitations or changing spark tim-

ings, fuel ignition parameters, or valve timings) frequently

at the expense of regulatory compliance [20], [23]. These

groups are not adversaries; their modifications are done to

improve and personalize their own cars, not to cause harm.

In our work, we consider how an adversary with malicious

motives might disrupt or modify automotive systems.

Finally, we point out that while there is an emerg-

ing effort focused on designing fully autonomous vehicles

(e.g., DARPA Grand Challenge [9]), these are specifically
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designed to be robotically controlled. While such vehi-

cles would undoubtedly introduce yet new security con-

cerns, in this paper we concern ourselves solely with the

vulnerabilities in today’s commercially-available automo-

biles.

C. Threat Model

In this paper we intentionally and explicitly skirt the

question of a “threat model.” Instead, we focus primarily

on what an attacker could do to a car if she was able to

maliciously communicate on the car’s internal network. That

said, this does beg the question of how she might be able

to gain such access.

While we leave a full analysis of the modern automobile’s

attack surface to future research, we briefly describe here the

two “kinds” of vectors by which one might gain access to

a car’s internal networks.

The first is physical access. Someone — such as a me-

chanic, a valet, a person who rents a car, an ex-friend, a

disgruntled family member, or the car owner — can, with

even momentary access to the vehicle, insert a malicious

component into a car’s internal network via the ubiquitous

OBD-II port (typically under the dash). The attacker may

leave the malicious component permanently attached to the

car’s internal network or, as we show in this paper, they

may use a brief period of connectivity to embed the malware

within the car’s existing components and then disconnect. A

similar entry point is presented by counterfeit or malicious

components entering the vehicle parts supply chain — either

before the vehicle is sent to the dealer, or with a car owner’s

purchase of an aftermarket third-party component (such as

a counterfeit FM radio).

The other vector is via the numerous wireless interfaces

implemented in the modern automobile. In our car we

identified no fewer than five kinds of digital radio interfaces

accepting outside input, some over only a short range and

others over indefinite distance. While outside the scope of

this paper, we wish to be clear that vulnerabilities in such

services are not purely theoretical. We have developed the

ability to remotely compromise key ECUs in our car via

externally-facing vulnerabilities, amplify the impact of these

remote compromises using the results in this paper, and

ultimately monitor and control our car remotely over the

Internet.

III. EXPERIMENTAL ENVIRONMENT

Our experimental analyses focus on two 2009 automobiles

of the same make and model.1 We selected our particu-

lar vehicle because it contained both a large number of

1We believe the risks identified in this paper arise from the architecture

of the modern automobile and not simply from design decisions made by
any single manufacturer. For this reason, we have chosen not to identify
the particular make and model used in our tests. We believe that other
automobile manufacturers and models with similar features may have
similar security properties.

electronically-controlled components (necessitated by com-

plex safety features such as anti-lock brakes and stability

control) and a sophisticated telematics system. We purchased

two vehicles to allow differential testing and to validate that

our results were not tied to one individual vehicle. At times

we also purchased individual replacement ECUs via third-

party dealers to allow additional testing. Table I lists some

of the most important ECUs in our car.

We experimented with these cars — and their internal

components — in three principal settings:

• Bench. We physically extracted hardware from the

car for analysis in our lab. As with most automo-

bile manufacturers, our vehicles use a variant of the

Controller Area Network (CAN) protocol for com-

municating among vehicle components (in our case

both a high-speed and low-speed variant as well as

a variety of proprietary higher-layer network manage-

ment services). Through this protocol, any compo-

nent can be accessed and interrogated in isolation in

the lab. Figure 1 shows an example setup, with the

Electronic Brake Control Module (EBCM) hooked up

to a power supply, a CAN-to-USB converter, and an

oscilloscope.

• Stationary car. We conducted most of our in-car ex-

periments with the car stationary. For both safety and

convenience, we elevated the car on jack stands for

experiments that required the car to be “at speed”; see

Figure 3.

Figure 2 shows the experimental setup inside the car.

For these experiments, we connected a laptop to the

car’s standard On-Board Diagnostics II (OBD-II) port.

We used an off-the-shelf CAN-to-USB interface (the

CANCapture ECOM cable) to interact with the car’s

high-speed CAN network, and an Atmel AT90CAN128

development board (the Olimex AVR-CAN) with cus-

tom firmware to interact with the car’s low-speed

CAN network. The laptop ran our custom CARSHARK

program (see below).

• On the road. To obtain full experimental fidelity, for

some of our results we experimented at speed while on

a closed course.

We exercised numerous precautions to protect the

safety of both our car’s driver and any third parties. For

example, we used the runway of a de-commissioned

airport because the runway is long and straight, giving

us additional time to respond should an emergency

situation arise (see Figure 7).

For these experiments, one of us drove the car while

three others drove a chase car on a parallel service road;

one person drove the chase car, one documented much

of the process on video, and one wirelessly controlled

the test car via an 802.11 ad hoc connection to a laptop

in the test car that in turn accessed its CAN bus.
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Low-Speed High-Speed
Component Functionality Comm. Bus Comm. Bus

ECM Engine Control Module
Controls the engine using information from sensors to determine the amount
of fuel, ignition timing, and other engine parameters.

X

EBCM Electronic Brake Control Module
Controls the Antilock Brake System (ABS) pump motor and valves, prevent-
ing brakes from locking up and skidding by regulating hydraulic pressure.

X

TCM Transmission Control Module
Controls electronic transmission using data from sensors and from the ECM
to determine when and how to change gears.

X

BCM Body Control Module
Controls various vehicle functions, provides information to occupants, and
acts as a firewall between the two subnets.

X X

Telematics Telematics Module
Enables remote data communication with the vehicle via cellular link.

X X

RCDLR Remote Control Door Lock Receiver
Receives the signal from the car’s key fob to lock/unlock the doors and
the trunk. It also receives data wirelessly from the Tire Pressure Monitoring
System sensors.

X

HVAC Heating, Ventilation, Air Conditioning
Controls cabin environment.

X

SDM Inflatable Restraint Sensing and Diagnostic Module
Controls airbags and seat belt pretensioners.

X

IPC/DIC Instrument Panel Cluster/Driver Information Center
Displays information to the driver about speed, fuel level, and various alerts
about the car’s status.

X

Radio Radio
In addition to regular radio functions, funnels and generates most of the in-
cabin sounds (beeps, buzzes, chimes).

X

TDM Theft Deterrent Module
Prevents vehicle from starting without a legitimate key.

X

Table I. Key Electronic Control Units (ECUs) within our cars, their roles, and which CAN buses they are on.

The CARSHARK Tool. To facilitate our experimental

analysis, we wrote CARSHARK — a custom CAN bus ana-

lyzer and packet injection tool (see Figure 4). While there

exist commercially available CAN sniffers, none were ap-

propriate for our use. First, we needed the ability to process

and manipulate our vendor’s proprietary extensions to the

CAN protocol. Second, while we could have performed

limited testing using a commercial CAN sniffer coupled

with a manufacturer-specific diagnostic service tool, this

combination still doesn’t offer the flexibility to support our

full range of attack explorations, including reading out ECU

memory, loading custom code into ECUs, or generating

fuzz-testing packets over the CAN interface.

IV. INTRA-VEHICLE NETWORK SECURITY

Before experimentally evaluating the security of indi-

vidual car components, we assess the security properties

of the CAN bus in general, which we describe below.

We do so by first considering weaknesses inherent to the

protocol stack and then evaluating the degree to which

our car’s components comply with the standard’s specifi-

cations.

A. CAN Bus

There are a variety of protocols that can be implemented

on the vehicle bus, but starting in 2008 all cars sold in the

U.S. are required to implement the Controller Area Network

(CAN) bus (ISO 11898 [17]) for diagnostics. As a result,

CAN — roughly speaking, a link-layer data protocol — has

become the dominant communication network for in-car

networks (e.g., used by BMW, Ford, GM, Honda, and

Volkswagen).

A CAN packet (shown in Figure 5) does not include

addresses in the traditional sense and instead supports a

publish-and-subscribe communications model. The CAN ID

header is used to indicate the packet type, and each packet

is both physically and logically broadcast to all nodes,

which then decide for themselves whether to process the

packets.

The CAN variant for our car includes slight extensions

to framing (e.g., on the interpretation of certain CAN ID’s)

and two separate physical layers — a high-speed bus which

is differentially-signaled and primarily used by powertrain

systems and a low-speed bus (SAE J2411) using a single

wire and supporting less-demanding components. When

necessary, a gateway bridge can route selected data between
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Figure 1. Example bench setup within our
lab. The Electronic Brake Control Module
(ECBM) is hooked up to a power supply, a
CAN-to-USB converter, and an oscilloscope.

Figure 2. Example experimental setup. The
laptop is running our custom CARSHARK

CAN network analyzer and attack tool. The
laptop is connected to the car’s OBD-II port.

Figure 3. To test ECU behavior in a
controlled environment, we immobilized the
car on jack stands while mounting attacks.

Figure 4. Screenshot of the CARSHARK interface. CARSHARK is being
used to sniff the CAN bus. Values that have been recently updated are in
yellow. The left panel lists all recognized nodes on high and low speed
subnets of the CAN bus and has some action buttons. The demo panel on
the right provides some proof-of-concept demos.

the two buses. Finally, the protocol standards define a range

of services to be implemented by ECUs.

B. CAN Security Challenges

The underlying CAN protocol has a number of inherent

weaknesses that are common to any implementation. Key

among these:

Broadcast Nature. Since CAN packets are both phys-

ically and logically broadcast to all nodes, a malicious

component on the network can easily snoop on all com-

munications or send packets to any other node on the

network. CARSHARK leverages this property, allowing us

to observe and reverse-engineer packets, as well as to inject

new packets to induce various actions.

Fragility to DoS. The CAN protocol is extremely

vulnerable to denial-of-service attacks. In addition to simple

packet flooding attacks, CAN’s priority-based arbitration

scheme allows a node to assert a “dominant” state on the

bus indefinitely and cause all other CAN nodes to back

off. While most controllers have logic to avoid accidentally

11 bits 18 bits 4 bits 0–8 bytes 15 bits 7 bits

Start-of-
frame

Substitute remote
request

Extended identifier

Reserved
2 bits

Data CRC

ACK

End-of-
frame

Identifier

Identifier
extension

Remote transmission
request

Data length
code

CRC delimiter

ACK
delimiter

Figure 5. CAN packet structure. Extended frame format is shown. Base
frame format is similar.

breaking the network this way, adversarially-controlled hard-

ware would not need to exercise such precautions.

No Authenticator Fields. CAN packets contain no

authenticator fields — or even any source identifier fields —

meaning that any component can indistinguishably send a

packet to any other component. This means that any single

compromised component can be used to control all of the

other components on that bus, provided those components

themselves do not implement defenses; we consider the

security of individual components in Section V.

Weak Access Control. The protocol standards for our

car specify a challenge-response sequence to protect ECUs

against certain actions without authorization. A given ECU

may participate in zero, one, or two challenge-response

pairs:

• Reflashing and memory protection. One challenge-

response pair restricts access to reflashing the ECU and

reading out sensitive memory. By design, a service shop

might authenticate with this challenge-response pair in

order to upgrade the firmware on an ECU.

• Tester capabilities. Modern automobiles are complex

and thus diagnosing their problems requires significant

support. Thus, a major use of the CAN bus is in

providing diagnostic access to service technicians. In

particular, external test equipment (the “tester”) must

be able to interrogate the internal state of the car’s

components and, at times, manipulate this state as well.
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Our car implements this capability via the DeviceCon-

trol service which is accessed in an RPC-like fashion

directly via CAN messages. In our car, the second

challenge-response pair described above is designed to

restrict access to the DeviceControl services.

Under the hood, ECUs are supposed to use a fixed challenge

(seed) for each of these challenge-response pairs; the corre-

sponding responses (keys) are also fixed and stored in these

ECUs. The motivation for using fixed seeds and keys is to

avoid storing the challenge-response algorithm in the ECU

firmware itself (since that firmware could be read out if an

external flash chip is used). Indeed, the associated reference

standard states “under no circumstances shall the encryption

algorithm ever reside in the node.” (The tester, however, does

have the algorithm and uses it to compute the key.) Different

ECUs should have different seeds and keys.

Despite these apparent security precautions, to the best of

our knowledge many of the seed-to-key algorithms in use

today are known by the car tuning community.

Furthermore, as described in the protocol standards, the

challenges (seeds) and responses (keys) are both just 16 bits.

Because the ECUs are required to allow a key attempt every

10 seconds, an attacker could crack one ECU key in a little

over seven and a half days. If an attacker has access to

the car’s network for this amount of time (such as through

another compromised component), any reflashable ECU can

be compromised. Multiple ECUs can be cracked in parallel,

so this is an upper bound on the amount of time it could take

to crack a key in every ECU in the vehicle. Furthermore,

if an attacker can physically remove a component from

the car, she can further reduce the time needed to crack

a component’s key to roughly three and a half days by

powercycling the component every two key attempts (we

used this approach to perform an exhaustive search for the

Electronic Brake Control Module (EBCM) key on one of

our cars, recovering the key in about a day and a half; see

Figure 1 for our experimental setup).

In effect, there are numerous realistic scenarios in which

the challenge-response sequences defined in the protocol

specification can be circumvented by a determined attacker.

ECU Firmware Updates and Open Diagnostic Control.

Given the generic weaknesses with the aforementioned

access control mechanisms, it is worth stepping back and

reconsidering the benefits and risks associated with exposing

ECUs to reflashing and diagnostic testing.

First, the ability to do software-only upgrades to ECUs

can be extremely valuable to vehicle manufacturers, who

might otherwise have to bear the cost of physically replacing

ECUs for trivial defects in the software. For example, one

of us recently received a letter from a car dealer, inviting us

to visit an auto shop in order to upgrade the firmware on

our personal car’s ECM to correctly meet certain emission

requirements. However, it is also well known that attackers

can use software updates to inject malicious code into

systems [2]. The challenge-response sequences alone are

not sufficient to protect against malicious firmware updates;

in subsequent sections we investigate whether additional

protection mechanisms are deployed at a higher level (such

as the cryptographically signed firmware updates).

Similarly, the DeviceControl service is a tremendously

powerful tool for assisting in the diagnosis of a car’s

components. But, given the generic weaknesses of the CAN

access control mechanisms, the DeviceControl capabilities

present enumerable opportunities to an attacker (indeed, a

great number of our attacks are built on DeviceControl).

In many ways this challenge parallels the security vs.

functionality tension presented by debuggers in conventional

operating systems; to be effective debuggers need to be able

to examine and manipulate all state, but if they can do that

they can do anything. However, while traditional operating

systems generally finesse this problem via access-control

rights on a per-user basis, there is no equivalent concept in

CAN. Given the weaknesses with the CAN access control

sequence, the role of “tester” is effectively open to any node

on the bus and thus to any attacker.

Worse, in Section IV-C below we find that many ECUs in

our car deviate from their own protocol standards, making

it even easier for an attacker to initiate firmware updates or

DeviceControl sequences — without even needing to bypass

the challenge-response protocols.

C. Deviations from Standards

In several cases, our car’s protocol standards do prescribe

risk-mitigation strategies with which components should

comply. However, our experimental findings revealed that

not all components in the car always follow these specifica-

tions.

Disabling Communications. For example, the stan-

dard states that ECUs should reject the “disable CAN

communications” command when it is unsafe to accept and

act on it, such as when a car is moving. However, we

experimentally verified that this is not actually the case in

our car: we were able to disable communications to and from

all the ECUs in Table I even with the car’s wheels moving

at speed on jack stands and while driving on the closed road

course.

Reflashing ECUs While Driving. The standard also

states that ECUs should reject reflashing events if they deem

them unsafe. In fact, it states: “The engine control module

should reject a request to initiate a programming event if the

engine were running.” However, we experimentally verified

that we could place the Engine Control Module (ECM) and

Transmission Control Module (TCM) into reflashing mode

when our car was at speed on jack stands. When the ECM

enters this mode, the engine stops running. We also verified

that we could place the ECM into reflashing mode while

driving on the closed course.
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Noncompliant Access Control: Firmware and Memory.

The standard states that ECUs with emissions, anti-theft,

or safety functionality must be protected by a challenge-

response access control protocol (as per Section IV-B).

Even disregarding the weakness of this protocol, we

found it was implemented less broadly than we would

have expected. For example, the telematics unit in our

car, which are connected to the car’s CAN buses, use a

hardcoded challenge and a hardcoded response common

to all similar units, seemingly in violation of the standard

(specifically, the standard states that “all nodes with the

same part number shall NOT have the same security seed”).

Even worse, the result of the challenge-response protocol

is never used anywhere; one can reflash the unit at any

time without completing the challenge-response protocol.

We verified experimentally that we can load our own code

onto our car’s telematics unit without authenticating.

Some access-controlled operations, such as reading sen-

sitive memory areas (such as the ECU’s program or keys)

may be outright denied if deemed too risky. For example,

the standard states that an ECU can define memory ad-

dresses that “[it] will not allow a tester to read under any

circumstances (e.g., the addresses that contain the security

seed and key values).” However, in another instance of non-

compliance, we experimentally verified that we could read

the reflashing keys out of the BCM without authenticating,

and the DeviceControl keys for the ECM and TCM just by

authenticating with the reflashing key. We were also able to

extract the telematics units’ entire memory, including their

keys, without authentication.

Noncompliant Access Control: Device Overrides. Re-

call that the DeviceControl service is used to override the

state of components. However, ECUs are expected to reject

unsafe DeviceControl override requests, such as releasing

the brakes when the car is in motion (an example mentioned

in the standard). Some of these unsafe overrides are needed

for testing during the manufacturing process, so those can be

enabled by authenticating with the DeviceControl key. How-

ever, we found during our experiments that certain unsafe

device control operations succeeded without authenticating;

we summarize these in Tables II, V-A, and IV.

Imperfect Network Segregation. The standard implic-

itly defines the high-speed network as more trusted than the

low-speed network. This difference is likely due to the fact

that the high-speed network includes the real-time safety-

critical components (e.g., engine, brakes), while the low-

speed network commonly includes components less critical

to safety, like the radio and the HVAC system.

The standard states that gateways between the two net-

works must only be re-programmable from the high-speed

network, presumably to prevent a low-speed device from

compromising a gateway to attack the high-speed network.

In our car, there are two ECUs which are on both buses and

can potentially bridge signals: the Body Controller Module

(BCM) and the telematics unit. While the telematics unit

is not technically a gateway, it connects to both networks

and can only be reprogrammed (against the spirit of the

standard) from the low-speed network, allowing a low-

speed device to attack the high-speed network through the

telematics unit. We verified that we could bridge these

networks by uploading code to the telematics unit from the

low-speed network that, in turn, sent packets on the high-

speed network.

V. COMPONENT SECURITY

We now examine individual components on our car’s

CAN network, and what an attacker could do by commu-

nicating with each one individually. We discuss compound

attacks involving multiple components in Section VI. We

omit certain details (such as complete packet payloads) to

prevent would-be attackers from using our results directly.

A. Attack Methodology

Recall that Table I gives an overview of our car’s critical

components, their functionality, and whether they are on

the car’s high-speed or low-speed CAN subnet. For each of

these components, our methodology for formulating attacks

consisted of some or all of the following three major

approaches, summarized below.

Packet Sniffing and Targeted Probing. To begin, we

used CARSHARK to observe traffic on the CAN buses

in order to determine how ECUs communicate with each

other. This also revealed to us which packets were sent as

we activated various components (such as turning on the

headlights). Through a combination of replay and informed

probing, we were able to discover how to control the radio,

the Instrument Panel Cluster (IPC), and a number of the

Body Control Module (BCM) functions, as we discuss

below. This approach worked well for packets that come

up during normal operation, but was less useful in mapping

the interface to safety-critical powertrain components.

Fuzzing. Much to our surprise, significant attacks do

not require a complete understanding or reverse-engineering

of even a single component of the car. In fact, because

the range of valid CAN packets is rather small, significant

damage can be done by simple fuzzing of packets (i.e.,

iterative testing of random or partially random packets). In-

deed, for attackers seeking indiscriminate disruption, fuzzing

is an effective attack by itself. (Unlike traditional uses of

fuzzing, we use fuzzing to aid in the reverse engineering of

functionality.)

As mentioned previously, the protocol standards for our

car define a CAN-based service called DeviceControl, which

allows testing devices (used during manufacturing quality

control or by mechanics) to override the normal output

functionality of an ECU or reset some learned internal
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state. The DeviceControl service takes an argument called

a Control Packet Identifier (CPID), which specifies a group

of controls to override. Each CPID can take up to five bytes

as parameters, specifying which controls in the group are

being overridden, and how to override them. For example,

the Body Control Module (BCM) exports controls for the

various external lights (headlights, brakelights, etc.) and their

associated brightness can be set via the parameter data.

We discovered many of the DeviceControl functions

for select ECUs (specifically, those controlling the engine

(ECM), body components (BCM), brakes (EBCM), and

heating and air conditioning (HVAC) systems) largely by

fuzz testing. After enumerating all supported CPIDs for each

ECU, we sent random data as an argument to valid CPIDs

and correlated input bits with behaviors.

Reverse-Engineering. For a small subset of ECUs

(notably the telematics unit, for which we obtained multiple

instances via Internet-based used parts resellers) we dumped

their code via the CAN ReadMemory service and used a

third-party debugger (IDA Pro) to explicitly understand how

certain hardware features were controlled. This approach

is essential for attacks that require new functionality to be

added (e.g., bridging low and high-speed buses) rather than

simply manipulating existing software capabilities.

B. Stationary Testing

We now describe the results of our experiments with

controlling critical components of the car. All initial ex-

periments were done with the car stationary, in many cases

immobilized on jack stands for safety, as shown in Figure 3.

Some of our results are summarized in Tables II, V-A,

and IV for fuzzing, and in Table V for other results.

Tables II, V-A, and IV indicate the packet that was sent

to the corresponding module, the resulting action, and four

additional pieces of information: (1) Can the result of this

packet be overridden manually, such as by pulling the

physical door unlock knob, pushing on the brakes, or some

other action? A No in this column means that we have found

no way to manually override the result. (2) Does this packet

have the same effect when the car is at speed? For this

column, “at speed” means when the car was up on jack

stands but the throttle was applied to bring the wheel speed

to 40 MPH. (3) Does the module in question need to be

unlocked with its DeviceControl key before these packets

can elicit results? The fourth (4) additional column reflects

our experiments during a live road test, which we will turn

to in subsection V-C. Table V is similar, except that only

the Kill Engine result is caused by a DeviceControl packet;

we did not need to unlock the ECU before initiating this

DeviceControl packet.

All of the controlled experiments were initially conducted

on one car, and then all were repeated on our second car

(road tests were only performed with the first car).

Figure 6. Displaying an arbitrary message and a false speedometer reading
on the Driver Information Center. Note that the car is in Park.

Radio. One of the first attacks we discovered was how

to control the radio and its display. We were able to com-

pletely control — and disable user control of — the radio,

and to display arbitrary messages. For example, we were

able to consistently increase the volume and prevent the user

from resetting it. As the radio is also the component which

controls various car sounds (e.g., turn signal clicks and seat

belt warning chimes), we were also able to produce clicks

and chimes at arbitrary frequencies, for various durations,

and at different intervals. Table V presents some of these

results.

Instrument Panel Cluster. We were able to fully con-

trol the Instrument Panel Cluster (IPC). We were able to

display arbitrary messages, falsify the fuel level and the

speedometer reading, adjust the illumination of instruments,

and so on (also shown in Table V). For example, Figure 6

shows the instrument panel display with a message that

we set by sending the appropriate packets over the CAN

network. We discuss a more sophisticated attack using our

control over the speedometer in Section VI.

Body Controller. Control of the BCM’s function is

split across the low-speed and high-speed buses. By reverse-

engineering packets sent on the low-speed bus (Table V) and

by fuzzing packets on the high-speed bus (as summarized

in Table II), we were able to control essentially all of the

BCM’s functions. This means that we were able to discover

packets to: lock and unlock the doors; jam the door locks

by continually activating the lock relay; pop the trunk;

adjust interior and exterior lighting levels; honk the horn

(indefinitely and at varying frequencies); disable and enable

the window relays; disable and enable the windshield wipers;

continuously shoot windshield fluid; and disable the key lock

relay to lock the key in the ignition.

Engine. Most of the attacks against the engine were

found by fuzzing DeviceControl requests to the ECM. These

findings are summarized in Table V-A. We were able to

boost the engine RPM temporarily, disturb engine timing by

resetting the learned crankshaft angle sensor error, disable
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Manual At Need to Tested on

Packet Result Override Speed Unlock Runway

07 AE ... 1F 87 Continuously Activates Lock Relay Yes Yes No X

07 AE ... C1 A8 Windshield Wipers On Continuously No Yes No X

07 AE ... 77 09 Pops Trunk No Yes No X

07 AE ... 80 1B Releases Shift Lock Solenoid No Yes No
07 AE ... D8 7D Unlocks All Doors Yes Yes No
07 AE ... 9A F2 Permanently Activates Horn No Yes No X

07 AE ... CE 26 Disables Headlights in Auto Light Control Yes Yes No X

07 AE ... 34 5F All Auxiliary Lights Off No Yes No
07 AE ... F9 46 Disables Window and Key Lock Relays No Yes No
07 AE ... F8 2C Windshield Fluid Shoots Continuously No Yes No X

07 AE ... 15 A2 Controls Horn Frequency No Yes No
07 AE ... 15 A2 Controls Dome Light Brightness No Yes No
07 AE ... 22 7A Controls Instrument Brightness No Yes No
07 AE ... 00 00 All Brake/Auxiliary Lights Off No Yes No X

07 AE ... 1D 1D Forces Wipers Off and Shoots Windshield Fluid Continuously Yes† Yes No X

Table II. Body Control Module (BCM) DeviceControl Packet Analysis. This table shows BCM DeviceControl packets and their effects that we discovered
during fuzz testing with one of our cars on jack stands. A Xin the last column indicates that we also tested the corresponding packet with the driving on a
runway. A “Yes” or “No” in the columns “Manual Override,” “At Speed,” and “Need to Unlock” indicate whether or not (1) the results could be manually
overridden by a car occupant, (2) the same effect was observed with the car at speed (the wheels spinning at about 40 MPH and/or on the runway), and
(3) the BCM needed to be unlocked with its DeviceControl key.
†The highest setting for the windshield wipers cannot be disabled and serves as a manual override.

Manual At Need to Tested on

Packet Result Override Speed Unlock Runway

07 AE ... E5 EA Initiate Crankshaft Re-learn; Disturb Timing Yes Yes Yes
07 AE ... CE 32 Temporary RPM Increase No Yes Yes X

07 AE ... 5E BD Disable Cylinders, Power Steering/Brakes Yes Yes Yes
07 AE ... 95 DC Kill Engine, Cause Knocking on Restart Yes Yes Yes X

07 AE ... 8D C8 Grind Starter No Yes Yes
07 AE ... 00 00 Increase Idle RPM No Yes Yes X

Table III. Engine Control Module (ECM) DeviceControl Packet Analysis. This table is similar to Table II.

Manual At Need to Tested on

Packet Result Override Speed Unlock† Runway

07 AE ... 25 2B Engages Front Left Brake No Yes Yes X

07 AE ... 20 88 Engages Front Right Brake/Unlocks Front Left No Yes Yes X

07 AE ... 86 07 Unevenly Engages Right Brakes No Yes Yes X

07 AE ... FF FF Releases Brakes, Prevents Braking No Yes Yes X

Table IV. Electronic Brake Control Module (EBCM) DeviceControl Packet Analysis. This table is similar to Table II.
†The EBCM did not need to be unlocked with its DeviceControl key when the car was on jack stands. Later, when we tested these packets on the runway,
we discovered that the EBCM rejected these commands when the speed of the car exceeded 5 MPH without being unlocked.

Destination Manual At Tested on

ECU Packet Result Override Speed Runway

IPC 00 00 ... 00 00 Falsify Speedometer Reading No Yes X

Radio 04 00 ... 00 00 Increase Radio Volume No Yes
Radio 63 01 ... 39 00 Change Radio Display No Yes
IPC 00 02 ... 00 00 Change DIC Display No Yes

27 01 ... 65 00

BCM 04 03 Unlock Car† Yes Yes

BCM 04 01 Lock Car† Yes Yes

BCM 04 0B Remote Start Car† No No

BCM 04 0E Car Alarm Honk† No No
Radio 83 32 ... 00 00 Ticking Sound No Yes
ECM AE 0E ... 00 7E Kill Engine No Yes

Table V. Other Example Packets. This table shows packets, their recipients, and their effects that we discovered via observation and reverse-engineering.
In contrast to the DeviceControl packets in Tables II, V-A and IV, these packets may be sent during normal operation of the car; we simply exploited the
broadcast nature of the CAN bus to send them from CARSHARK instead of their normal sources. For this reason, we did not test most of them at the
runway, since they are naturally “tested” during normal operation.
†As ordinarily done by the key fob.
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all cylinders simultaneously (even with the car’s wheels

spinning at 40 MPH when on jack stands), and disable the

engine such that it knocks excessively when restarted, or

cannot be restarted at all. Additionally, we can forge a packet

with the “airbag deployed" bit set to disable the engine.

Finally, we also discovered a packet that will adjust the

engine’s idle RPM.

Brakes. Our fuzzing of the Electronic Brake Control

Module (see Table IV) allowed us to discover how to lock

individual brakes and sets of brakes, notably without needing

to unlock the EBCM with its DeviceControl key. In one case,

we sent a random packet which not only engaged the front

left brake, but locked it resistant to manual override even

through a power cycle and battery removal. To remedy this,

we had to resort to continued fuzzing to find a packet that

would reverse this effect. Surprisingly, also without needing

to unlock the EBCM, we were also able to release the brakes

and prevent them from being enabled, even with car’s wheels

spinning at 40 MPH while on jack stands.

HVAC. We were able to control the cabin environment

via the HVAC system: we discovered packets to turn on and

off the fans, the A/C, and the heat, in some cases with no

manual override possible.

Generic Denial of Service. In another set of experi-

ments, we disabled the communication of individual compo-

nents on the CAN bus. This was possible at arbitrary times,

even with the car’s wheels spinning at speeds of 40 MPH

when up on jack stands. Disabling communication to/from

the ECM when the wheels are spinning at 40 MPH reduces

the car’s reported speed immediately to 0 MPH. Disabling

communication to/from the BCM freezes the instrument

panel cluster in its current state (e.g., if communication is

disabled when the car is going 40 MPH, the speedometer

will continue to report 40 MPH). The car can be turned off

in this state, but without re-enabling communication to/from

the BCM, the engine cannot be turned on again.

Thus, we were able to easily prevent a car from turning

on. We were also able to prevent the car from being turned

off: while the car was on, we caused the BCM to activate

its ignition output. This output is connected in a wired-OR

configuration with the ignition switch, so even if the switch

is turned to off and the key removed, the car will still run.

We can override the key lock solenoid, allowing the key to

be removed while the car is in drive, or preventing the key

from being removed at all.

C. Road Testing

Comprehensive and safe testing of these and other attacks

requires an open area where individuals and property are at

minimal risk. Fortunately, we were able to obtain access

to the runway of a de-commissioned airport to re-evaluate

many of the attacks we had identified with the car up on

jack stands. To maximize safety, we used a second, chase

Figure 7. Road testing on a closed course (a de-commissioned airport
runway). The experimented-on car, with our driver wearing a helmet, is in
the background; the chase car is in the foreground. Photo courtesy of Mike
Haslip.

car in addition to the experimental vehicle; see Figure 7.

This allowed us to have all but one person outside of the

experimented-on car. The experimented-on car was con-

trolled via a laptop running CARSHARK and connected to

the CAN bus via the OBD-II port. We in turn controlled this

laptop remotely via a wireless link to another laptop in the

chase car. To maintain the wireless connection between the

laptops, we drove the chase car parallel to the experimented-

on car, which also allowed us to capture these experiments

on video.

Our experimental protocol was as follows: we started

the cars down the runway at the same time, transmitted

one or more packets on the experimented-on car’s CAN

network (indirectly through a command sent from the lap-

top in the chase car), waited for our driver’s verbal con-

firmation/description (using walkie-talkies to communicate

between the cars), and then sent one or more cancellation

packets. Had something gone wrong, our driver would

have yanked on a cord attached to the CAN cable and

pulled the laptop out of the OBD-II. As we verified in

preparatory safety tests, this disconnect would have caused

the car to revert back to normal within a few seconds;

fortunately, our driver never needed to make use of this

precaution.

Our allotted time at the airport prevented us from re-

verifying all of our attacks while driving, and hence we

experimentally re-tested a selected subset of those attacks;

the final column of Tables II, V-A, IV, and V contain a

check mark for the experiments that we re-evaluated while

driving. Most our results while driving were identical to our

results on jack stands, except that the EBCM needed to be

unlocked to issue DeviceControl packets when the car was

traveling over 5 MPH. This a minor caveat from an actual

attack perspective; as noted earlier, attack hardware attached

to the car’s CAN bus can recover the credentials necessary

to unlock the EBCM.
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Even at speeds of up to 40 MPH on the runway, the attack

packets had their intended effect, whether it was honking the

horn, killing the engine, preventing the car from restarting,

or blasting the heat. Most dramatic were the effects of De-

viceControl packets to the Electronic Brake Control Module

(EBCM) — the full effect of which we had previously not

been able to observe. In particular, we were able to release

the brakes and actually prevent our driver from braking; no

amount of pressure on the brake pedal was able to activate

the brakes. Even though we expected this effect, reversed it

quickly, and had a safety mechanism in place, it was still a

frightening experience for our driver. With another packet,

we were able to instantaneously lock the brakes unevenly;

this could have been dangerous at higher speeds. We sent

the same packet when the car was stationary (but still on

the closed road course), which prevented us from moving it

at all even by flooring the accelerator while in first gear.

These live road tests are effectively the “gold standard” for

our attacks as they represent realistic conditions (unlike our

controlled stationary environment). For example, we were

never able to completely characterize the brake behavior

until the car was on the road; the fact that the back wheels

were stationary when the car was on jack stands provided

additional input to the EBCM which resulted in illogical

behavior. The fact that many of these safety-critical attacks

are still effective in the road setting suggests that few

DeviceControl functions are actually disabled when the car

is at speed while driving, despite the clear capability and

intention in the standard to do so.

VI. MULTI-COMPONENT INTERACTIONS

The previous section focused on assessing what an at-

tacker might be able to do by controlling individual devices.

We now take a step back to discuss possible scenarios in

which multiple components are exploited in a composite

attack. The results in this section emphasize that the issue

of vehicle security is not simply a matter of securing

individual components; the car’s network is a heterogeneous

environment of interacting components, and must be viewed

and secured as such.

A. Composite Attacks

Numerous composite attacks exist. Below we describe a

few that we implemented and experimentally verified.

Speedometer. In one attack, we manipulate the speed-

ometer to display an arbitrary speed or an arbitrary offset

of the current speed — such as 10 MPH less than the actual

speed (halving the displayed speed up to a real speed of

20 MPH in order to minimize obvious anomalies to the

driver). This is a composite attack because it requires both

intercepting actual speed update packets on the low speed

CAN bus (sent by the BCM) and transmitting maliciously-

crafted speed update packets with the falsified speed. Such

an attack could, for example, trick a driver into driving

too fast. We implemented this attack both as a CARSHARK

module and as custom firmware for the AVR-CAN board.

The custom firmware consisted of 105 lines of C code.

We tested this attack by comparing the displayed speed of

one of our cars with the car’s actual speed while driving

on a closed course and measuring the speed with a radar

gun.

Lights Out. Our analysis in Section V uncovered

packets that can disable certain interior and exterior lights

on the car. We combined these packets to disable all of the

car’s lights when the car is traveling at speeds of 40 MPH

or more, which is particularly dangerous when driving in

the dark. This includes the headlights, the brake lights, the

auxiliary lights, the interior dome light, and the illumination

of the instrument panel cluster and other display lights inside

the car. This attack requires the lighting control system to

be in the “automatic” setting, which is the default setting for

most drivers. One can imagine this attack to be extremely

dangerous in a situation where a victim is driving at high

speeds at night in a dark environment; the driver would not

be able to see the the road ahead, nor the speedometer, and

people in other cars would not be able to see the victim

car’s brake lights. We conducted this experiment on both

cars while they were on jack stands and while driving on a

closed course.

Self-Destruct. Combining our control over various

BCM components, we created a “Self-Destruct” demo in

which a 60-second count-down is displayed on the Driver

Information Center (the dash), accompanied by clicks at an

increasing rate and horn honks in the last few seconds. In our

demo, this sequence culminated with killing the engine and

activating the door lock relay (preventing the occupant from

using the electronic door unlock button). This demo, which

we tested on both cars, required fewer than 200 lines of code

added to CARSHARK, most of them for timing the clicking

and the count-down. One could also extend this sequence to

include any of the other actions we learned how to control:

releasing or slamming the brakes, extinguishing the lights,

locking the doors, and so on.

B. Bridging Internal CAN Networks

Multiple components — including a wealth of aftermarket

devices like radios — are attached to or could be attached to

a car’s low-speed CAN bus. Critical components, like the

EBCM brake controller, are connected to the separate high-

speed bus, with the Body Control Module (BCM) regulating

access between the two buses. One might therefore assume

that the devices attached to the low-speed bus, including

aftermarket devices, will not be able to adversely impact

critical components on the high-speed bus.

Our experiments and analyses found this assumption

to be false. Our car’s telematics unit is also connected

to both buses. We were able to successfully reprogram
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our car’s telematics unit from a device connected to the

car’s low-speed bus (in our experiments, a laptop run-

ning CARSHARK). Once reprogrammed, our telematics

unit acts as a bridge, relaying packets from the low-

speed bus onto the high-speed bus. This demonstrates that

any device attached to the low-speed bus can bypass the

BCM gateway and influence the operation of the safety-

critical components. Such a situation is particularly con-

cerning given the abundance of potential aftermarket add-

ons available for the low-speed bus. Our complete attack

consisted of only the following two steps: initiate a re-

programming request to the telematics unit via the low-

speed bus; and then upload 1184 bytes of binary code (291

instructions) to the telematics unit’s RAM via the low-speed

bus.

C. Hosting Code; Wiping Code

This method for injecting code into our car’s telem-

atics unit, while sufficient for demonstrating that a low-

speed CAN device could compromise a high-speed CAN

device via the telematics unit, is also limiting. Specifically,

while that attack code is running, the telematics service is

not. A more sophisticated attack could implant malicious

code within the telematics environment itself (either in

RAM or by re-flashing the unit). Doing so would allow

the malicious code to co-exist with the existing telemat-

ics software (we have built such code in the lab). The

result provides the attack software with a rich Unix-like

environment (our car’s telematics unit uses the QNX Neu-

trino Real-Time Operating System) and provides standard

interfaces to additional hardware capabilities (e.g., GPS,

audio capture, cellular link) and software libraries (e.g.,

OpenSSL).

Hosting our own code within a car’s ECU enables yet

another extension to our attacks: complicating detection

and forensic evaluations following any malicious action.

For example, the attack code on the telematics unit could

perform some action (such as locking the brakes after

detecting a speed of over 80 MPH). The attack code could

then erase any evidence of its existence on the device. If

the attack code was installed per the method described in

Section VI-B, then it would be sufficient to simply reboot

the telematics unit, with the only evidence of something

potentially amiss being the lack of telematics records during

the time of the attack. If the attack code was implanted

within the telematics environment itself, then more sophis-

ticated techniques may be necessary to erase evidence of

the attack code’s existence. In either case, such an attack

could complicate (or even prevent) a forensic investigation

of a crash scene. We have experimentally verified the

efficacy of a safe version of this attack while driving on

a runway: after the car reaches 20 MPH, the attack code on

the telematics unit forces the car’s windshield fluid pump

and wipers on. After the car stops, the attack code forces

the telematics unit to reboot, erasing any evidence of its

existence.

VII. DISCUSSION AND CONCLUSIONS

Although we are not the first to observe that computerized

automotive systems may present new risks, our empirical

approach has given us a unique perspective to reflect on the

actual vulnerabilities of modern cars as they are built and

deployed today. We summarize these findings here and then

discuss the complex challenges in addressing them within

the existing automotive ecosystem.

• Extent of Damage. Past work, e.g., [19], [24], [26],

[27], [28], discuss potential risks to cyber-physical

vehicles and thus we knew that adversaries might be

able to do damage by attacking the components within

cars. We did not, however, anticipate that we would be

able to directly manipulate safety critical ECUs (indeed,

all ECUs that we tested) or that we would be allowed

to create unsafe conditions of such magnitude.

• Ease of Attack. In starting this project we expected

to spend significant effort reverse-engineering, with

non-trivial effort to identify and exploit each subtle

vulnerability. However, we found existing automotive

systems — at least those we tested — to be tremen-

dously fragile. Indeed, our simple fuzzing infrastructure

was very effective and to our surprise, a large fraction

of the random packets we sent resulted in changes

to the state of our car. Based on this experience, we

believe that a fuzzer itself is likely be a universal

attack for disrupting arbitrary automobiles (similar to

how the “crashme” program that fuzzed system calls

was effective in crashing operating systems before the

syscall interface was hardened).

• Unenforced Access Controls. While we believe that

standard access controls are weak, we were surprised

at the extent to which the controls that did exist were

frequently unused. For example, the firmware on an

ECU controls all of its critical functionality and thus the

standard for our car’s CAN protocol variant describes

methods for ECUs to protect against unauthorized

firmware updates. We were therefore surprised that

we could load firmware onto some key ECUs, like

our telematics unit (a critical ECU) and our Remote

Control Door Lock Receiver (RCDLR), without any

such authentication. Similarly, the protocol standard

also makes an earnest attempt to restrict access to

DeviceControl diagnostic capabilities. We were there-

fore also surprised to find that critical ECUs in our

car would respond to DeviceControl packets without

authentication first.

• Attack Amplification. We found multiple opportunities

for attackers to amplify their capabilities — either in

reach or in stealth. For example, while the designated
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gateway node between the car’s low-speed and high-

speed networks (the BCM) should not expose any

interface that would let a low-speed node compro-

mise the high-speed network, we found that we could

maliciously bridge these networks through a compro-

mised telematics unit. Thus, the compromise of any

ECU becomes sufficient to manipulate safety-critical

components such as the EBCM. As more and more

components integrate into vehicles, it may become

increasingly difficult to properly secure all bridging

points.

Finally, we also found that, in addition to being able

to load custom code onto an ECU via the CAN network,

it is straightforward to design this code to completely

erase any evidence of itself after executing its attack.

Thus, absent any such forensic trail, it may be infeasible

to determine if a particular crash is caused by an attack

or not. While a seemingly minor point, we believe

that this is in fact a very dangerous capability as it

minimizes the possibility of any law enforcement action

that might deter individuals from using such attacks.2

In reflecting on our overall experiences, we observe that

while automotive components are clearly and explicitly de-

signed to safely tolerate failures — responding appropriately

when components are prevented from communicating — it

seems clear that tolerating attacks has not been part of the

same design criteria. Given our results and the observations

thus far, we consider below several potential defensive

directions and the tensions inherent in them.

To frame the following discussion, we once again stress

that the focus of this paper has been on analyzing the

security implications if an attacker is able to maliciously

compromise a car’s internal communication’s network, not

on how an attacker might be able to do so. While we

can demonstrably access our car’s internal networks via

several means (e.g., via devices physically attached to the

car’s internal network, such as a tiny “attack iPod” that

we implemented, or via a remote wireless vulnerability

that we uncovered), we defer a complete consideration of

entry points to future work. Although we consider some

specific entry points below (such as malicious aftermarket

components), our discussion below is framed broadly and

seeks to be as agnostic as possible to the potential entry

vector.

Diagnostic and Reflashing Services. Many of the vul-

nerabilities we discovered were made possible by weak

or unenforced protections of the diagnostic and reflashing

services. Because these services are never intended for

use during normal operation of the vehicle, it is tempting

to address these issues by completely locking down such

capabilities after the car leaves manufacturing. While it

2As an aside, the lack of a strong forensic trail also creates the possibility
for a driver to, after an accident, blame the car’s computers for driver error.

is clearly unsafe for arbitrary ECUs to issue diagnostic

and reflashing commands, locking down these capabilities

ignores the needs of various stakeholders.

For instance, individuals desire and should be able to

do certain things to tune their own car (but not others).

Similarly, how could mechanics service and replace compo-

nents in a “locked-down” automotive environment? Would

they receive special capabilities? If so, which mechanics and

why should they be trusted? Consider the recently proposed

“Motor Vehicle Owners’ Right to Repair Act” (H.R. 2057),

which would require manufacturers to provide diagnostic in-

formation and tools to vehicle owners and service providers,

and to provide information to aftermarket tool vendors that

enables them to make functionally-equivalent tools. The

motivation for this legislation is clear: encouraging healthy

competition within the broader automotive industry. Even

simple security mechanisms (including some we support,

such as signed firmware updates) can be at odds with the

vision of the proposed legislation. Indeed, providing smaller

and independent auto shops with the ability to service and

diagnose vehicles without letting adversaries co-opt those

same abilities appears to be a fundamental challenge.

The core problem is lack of access control for the use

of these services. Thus, we see desirable properties of a

solution to be threefold: arbitrary ECUs should not be able to

issue diagnostic and reflashing commands, such commands

can only be issued with some validation, and physical access

to the car should be required before issuing dangerous

commands.

Aftermarket Components. Even with diagnostic and

reflashing services secured, packets that appear on the ve-

hicle bus during normal operation can still be spoofed by

third-party ECUs connected to the bus. Today a modern

automobile leaves the factory containing multiple third-party

ECUs, and owners often add aftermarket components (like

radios or alarms) to their car’s buses. This creates a tension

that, in the extreme, manifests itself as the need to either trust

all third-party components, or to lock down a car’s network

so that no third-party components — whether adversarial or

benign — can influence the state of the car.

One potential intermediate (and backwards compatible)

solution we envision is to allow owners to connect an

external filtering device between an untrusted component

(such as a radio) and the vehicle bus to function as a trusted

mediator, ensuring that the component sends and receives

only approved packets.

Detection Versus Prevention. More broadly, certain

considerations unique to cyber-physical vehicles raise the

possibility of security via detection and correction of anoma-

lies, rather than prevention and locking down of capabilities.

For example, the operational and economic realities of

automotive design and manufacturing are stringent. Manu-

facturers must swiftly integrate parts from different suppliers
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(changing as needed to second and third source suppliers) in

order to quickly reach market and at low cost. Competitive

pressures drive vendors to reuse designs and thus engenders

significant heterogeneity. It is common that each ECU

may use a different processor and/or software architecture

and some cars may even use different communications

architectures — one grafted onto the other to integrate a

vendor assembly and bring the car to market in time. Today

the challenges of integration have become enormous and

manufacturers seek to reduce these overheads at all costs —

a natural obstacle for instituting strict security policies.

In addition, many of an automobile’s functions are safety

critical, and introducing additional delay into the processing

of, say, brake commands, may be unsafe.

These considerations raise the possibility of exploring the

tradeoff between preventing and correcting malicious ac-

tions: if rigorous prevention is too expensive, perhaps a quick

reversal is sufficient for certain classes of vulnerabilities.

Several questions come with this approach: Can anomalous

behavior be detected early enough, before any dangerous

packets are sent? Can a fail-safe mode or last safe state

be identified and safely reverted to? It is also unclear what

constitutes abnormal behavior on the bus in the first place, as

attacks can be staged entirely with packets that also appear

during normal vehicle operation.

Toward Security. These are just a few of many po-

tential defensive directions and associated tensions. There

are deep-rooted tussles surrounding the security of cyber-

physical vehicles, and it is not yet clear what the “right”

solution for security is or even if a single “right” solution

exists. More likely, there is a spectrum of solutions that each

trade off critical values (like security vs. support for inde-

pendent auto shops). Thus, we argue that the future research

agenda for securing cyber-physical vehicles is not merely to

consider the necessary technical mechanisms, but to also

inform these designs by what is feasible practically and

compatible with the interests of a broader set of stakeholders.

This work serves as a critical piece in the puzzle, providing

the first experimentally guided study into the real security

risks with a modern automobile.
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