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ABSTRACT In recent years, the internet of things (IoT) represents the main core of Industry 4.0 for cyber-

physic systems (CPS) in order to improve the industrial environment. Accordingly, the application of IoT 

and CPS has been expanded in applied electrical systems and machines. However, cybersecurity represents 

the main challenge of the implementation of IoT against cyber-attacks. In this regard, this paper proposes a 

new IoT architecture based on utilizing machine learning techniques to suppress cyber-attacks for providing 

reliable and secure online monitoring for the induction motor status. In particular, advanced machine learning 

techniques are utilized here to detect cyber-attacks and motor status with high accuracy. The proposed 

infrastructure validates the motor status via communication channels and the internet connection with 

economical cost and less effort on connecting various networks. For this purpose, the CONTACT Element 

platform for IoT is adopted to visualize the processed data based on machine learning techniques through a 

graphical dashboard. Once the cyber-attacks signal has been detected, the proposed IoT platform based on 

machine learning will be visualized automatically as fake data on the dashboard of the IoT platform. Different 

experimental scenarios with data acquisition are carried out to emphasize the performance of the suggested 

IoT topology. The results confirm that the proposed IoT architecture based on the machine learning technique 

can effectively visualize all faults of the motor status as well as the cyber-attacks on the networks. Moreover, 

all faults of the motor status and the fake data, due to the cyber-attacks, are successfully recognized and 

visualized on the dashboard of the proposed IoT platform with high accuracy and more clarified visualization, 

thereby contributing to enhancing the decision-making about the motor status. Furthermore, the introduced 

IoT architecture with Random Forest algorithm provides an effective detection for the faults on motor due to 

the vibration under industrial conditions with excellent accuracy of 99.03% that is significantly greater than 

the other machine learning algorithms. Besides, the proposed IoT has low latency to recognize the motor 

faults and cyber-attacks to present them in the main dashboard of the IoT platform. 

INDEX TERMS Fault diagnosis; induction motor; machine learning; internet of things; Industry 4.0.
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I. INTRODUCTION 

Worldwide, since the industrial revolution, rotary equipment 
has been widely used in many areas. Among them, induction 
motors play an essential role in the industry due to their low 
cost, easy maintenance, and unrestricted working environment 
[1]. However, if the production line is unpredictably shut 
down because of sudden failures of motors, it causes heavy 
damage over time. Therefore, fault detection and diagnosis for 
induction motors become much more important. The motor 
failures would generate heat and vibration and increase energy 
consumption [2]. As a result, the motor life would be reduced. 
There are many kinds of motor failures which are categorized 
into two major types of faults including electrical faults and 
mechanical faults. Mechanical faults include bearing faults, 
misalignment faults, and air-gap eccentricity faults. While 
electrical faults are related to faults like stator short-circuits, 
broken bar faults, and end ring faults [3, 4]. Bearings are 
among the most important components in induction machines. 
Their load capability, running accuracy, noise levels, frictional 
heat, and useful life will directly affect the induction machines 
[5]. It is about 40% - 90% of all motor failures that come from 
bearing faults depending on the size of the motors [6]. 
Therefore, the early detection and diagnosis of bearing faults 
could prevent sudden failure. This research subject still 
attracts great attention from the research community. 

The diagnosis method can be divided into vibration and 
current analysis. The approach based on the motor current 
signature analysis (MCSA) is considered because of its low-
cost, non-intrusive, and fast installation [7, 8]. However, the 
current signal diagnosis is difficult to detect abnormalities in 
the early stage of motor failures, this approach is still an 
immature technology compared to the vibration signal 
diagnosis [9]. According to the specification of ISO-10816 
[10], it proposed a method for evaluating the statuses of the 
motor based on the measured vibration signal. A threshold for 
vibration damage has been proposed for motor condition 
monitoring. The method based on the curve component 
analysis was proposed to analyze vibration characteristics and 
to establish nonlinear data for the training dataset [11].  The 
individual frequency bands for envelope spectrum analysis 
can be extracted by filtering the vibration signal with the 
appropriate bandwidth. Then, the characteristic frequencies of 
the vibration signals can be observed in the initial stage of the 
bearing fault [12]. Statistical calculations were used to 
calculate the measured vibration energy. The influence of 
bearing speed on statistical indicators has been introduced, it 
showed that the kurtosis and skewness factors can be effective 
parameters for bearing defect identification [13]. 

Signal analysis approaches have been widely used to study 
motor signal vibration for bearing fault diagnosis. An 
improved fast Fourier transform for vibration signal analysis 
was introduced for both simulation and practical applications 
[14]. Several time-frequency analysis approaches were 
utilized for fault diagnoses such as the short-time Fourier 
Transform (STFT), Wavelet Transform (WT), and the Hilbert-

Huang Transform (HHT). The WT could provide a good 
resolution for both time and frequency domain that overcome 
the limitation of the STFT, thus the method is widely used for 
fault diagnosis [15, 16].  In addition to Fourier transform and 
WT, the HHT is also an effective approach for motor vibration 
signal analysis, it can detect malfunctioning by revealing the 
instantaneous amplitude and nonlinear and nonstationary 
characteristics in the frequency content [17]. Furthermore, the 
vibration signal contaminated by signal noise could be filtered 
by using the wavelet packet decomposition (WPD), the energy 
of the WPD coefficients could be utilized to detect the rolling 
bearing failures effectively [18]. The WPD and statistical 
methods were developed to successfully extract the significant 
features of bearing faults using time-frequency analysis [19]. 

Recently, fault diagnosis and detection based on artificial 
machine learning techniques have been performed effectively 
[20]. These methods usually involve intelligent signal analysis 
and it requires data collection to do signal processing and 
feature extraction. Various classifiers including artificial 
neural networks, k-nearest neighbors (kNN), and support 
vector machines (SVM) have been applied to fuse the 
vibration and current signal for multi-faults classification of 
induction motor [9]. Yang et al. [21] proposed a method based 
on a random forest (RF) algorithm that can achieve 
satisfactory accuracy for machine fault diagnosis with fast 
execution speed. The performance of the proposed method is 
much better compared to the other classifiers such as kNN, 
SVM, and decision tree. The machine learning ensemble 
classifier including RF and extreme gradient boosting 
(XGBoost) could be a promising model in terms of accuracy 
for bearing fault diagnosis [22, 23]. However, it is still difficult 
to determine features that are the most sensitive to the fault of 
the induction machine, because the performance of machine 
learning techniques is reflected by choosing suitable fault 
features. Deep learning can extract and learn the representative 
patterns of the signals effectively compared to conventional 
feature extraction and selection methods. For example, the 
convolutional neural network method shows excellent 
performance for pattern recognition that was also applied for 
fault diagnosis [24, 25]. Janssens et al. developed an 
architecture of the CNN model for detecting rotary machinery 
faults with vibration spectrum features [26]. However, the 
computational time is one of the most challenging to apply 
deep learning for online condition monitoring. Thus, an 
appropriate machine learning approach still needs to 
investigate to enhance the performance of the model with high 
accuracy and short computational time. The authors of [27] 
have investigated the cloud-based malware detection game, 
where mobile devices divest their application traces to security 
servers through base stations or access points. 

Nowadays, the development of Industry 4.0 and the rise of 
the Internet of things (IoT) have become a solution for 
advanced predictive maintenance applications, in which the 
status of the motor is constantly monitored and recorded [28]. 
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The concept of industrial IoT has been considered in many 
industrial fields and is expected to drive industry growth. The 
industrial IoT concept involves smart machines that are 
equipped with different sensors, connectivity, data 
management, and application layer as shown in Fig. 1 [29]. 
The sensor data analytics and management of big data are both 
challenging tasks of IoT, particularly for online condition 
monitoring of the IoT system [30]. IoT system allows the user 
able to monitor the machine status in real-time and it can give 
quick feedback with proper adjustments [31]. Thus it can help 
to accelerate the operation of the factories that involve diverse 
electrical machines, mostly induction motors. 

As aforementioned in the literature, effective monitoring 
bearing faults are considered the main challenges of the rotary 
equipment to enhance the efficiency of the operation and 
lifetime of the induction machines. This study was inspired by 
the development of IoT and machine learning approaches that 
towards intelligence industrial machine. To the best of the 
authors' knowledge, this is the first study to experimentally 
apply IoT and CPS concepts to effectively diagnose induction 
motor faults with data acquisition. Specifically, an intelligence 
IoT platform integrating an improved machine learning 
algorithm is developed to detect the bearing fault of the 
induction motor. Besides, the powerful learning ability of the 

 

FIGURE 1. Industrial IoT architecture for condition monitoring of induction motors. 

 

 

FIGURE 2. Proposed IoT architecture for online monitoring of the induction motor. 
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machine learning model enables the proposed system to detect 
fake data considered as cyber-attack accurately.  

The contributions of this paper are summarized in the 
following points,  

• Developing a cheap and easy implementation IoT 
architecture with machine learning techniques for motor 
faults detection instead of the traditional faults detection 
schemes for induction machines. 

• The introduced IoT architecture with machine learning 
algorithms can also detect the cyber-attack and present 
it as fake data in the main dashboard of the IoT platform 
to provide secure online monitoring. 

• The proposed infrastructure can detect the normal, inner 
bearing defect, outer bearing defect in order to maintain 
a healthy state, and increase the lifetime of the induction 
machines. 

• The proposed IoT has low latency to recognize the motor 
faults and cyber-attacks to present them in the main 
dashboard of the IoT platform. 

• The experimental results indicate the superiority of the 
proposed IoT system integrating machine learning for 
condition monitoring of the induction machines.  

The remainder of the paper is organized as follows. The 
proposed industrial IoT architecture and machine learning 
algorithms are described in Sections II and III. Simulation 
results are presented in Section IV. The conclusions drawn 
from the result section are summarized in Section V.  
 
II. PROPOSED INDUSTRIAL IOT ARCHITECTURE  
 
A. ARCHITECTURE OVERVIEW 

The extension of the IoT in industrial applications is namely 
industrial internet of things (IIoT) which refers to the 
communication of machine-to-machine (M2M), data analysis, 
and machine learning. Recently, Industrial IoT has been 
considered in many applications towards smart factories to get 
high performance, more efficiency, and reliability in their 

operations [32]. An architecture of IIoT for condition 
monitoring of induction motors is proposed in Fig. 2. The 
induction machines are equipped with sensors to continuously 
collect the data. Then, the sensor data is transmitted on the 
cloud layer through the connectivity layer with the IoT 
gateway. To manage the sensor data, the software part is 
required, then the large volumes of sensor data can be stored 
and analyzed in real-time. Finally, the decision-making is 
carried out before any necessary actions feedback to the 
machine. Cloud computing to process the data can be 
accelerated by artificial intelligence and machine learning that 
allow to improve the performance and reduce the 
computational time of the system. In the application layer, a 
user interface is designed to visualize data analytics and 
remote data monitoring in real-time. In this paper, the 
CONTACT Elements for IoT using the standard MQTT 
protocol is proposed to visualize such information through a 
graphical dashboard [33]. The proposed IIoT is integrated with 
a machine learning approach for condition monitoring of 
induction motor. Furthermore, the fake data due to the cyber-
attack is usually the main challenge against the visualization 
of the real data. The cyber-attack needs to be detected in order 
to provide the user with real data that allows reliable decision-
making and keeps the operation of the motor in a healthy 
condition.  

 
B. EXPERIMENTAL SETUP AND DATA ACQUISITION 

In this section, the experimental setup and data acquisition 
for the induction motor is presented. Figure 3 shows the 
motor-driven rotary system that includes a TECO AEHF 3-
phase induction, a TECO A510 series variable frequency 
drive, and a Chain Tail ZKB010AA magnetic particle brake. 
The Torque values applied on the motor were controlled using 
a torque meter with the type of Lorenz Dr-2477-P. The 
vibration signal was measured by the Wilcoxon 786A 
accelerometers with a sampling rate of 25,600 samples/sec. 
Several bearing conditions including healthy condition, outer 

 

FIGURE 3.  Experimental motor-driven rotary system setup. 
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ring fault, and inner ring fault were conducted in the 
experiment. Additionally, fake data is also considered in this 
study as a cyber-attack. Figure 4 describes the outer ring and 
inner ring defects with 0.2 mm depth and 0.2 mm width were 
created by making a groove in each ring using wire electrical 
discharge machining.  

A series of six-type experiment was conducted with three 
different bearing conditions, in which two different rotational 
speed, three electricity modes, and three resistance conditions 
were applied to the induction motor operations. The details of 
each condition are listed in Table 1. A LabVIEW program was 
developed to capture the vibration signals under different 
bearing conditions including normal condition, inner ring 
fault, and outer ring fault. The vibration signal was measured 
once the motor speed reached a steady state. Each bearing 
condition was recorded for a span of 20 s and it was repeated 
three times for each experiment condition. 

The characteristic frequencies of the bearing faults can be 
described by Eqs. (1) and (2). 
 𝑓𝑂𝑅𝐹 = 𝑁𝐵2 𝑓𝑅 (1 − 𝐷𝐵cos⁡(𝜃)𝐷𝑃 )                                                       (1) 

𝑓𝐼𝑅𝐹 = 𝑁𝐵2 𝑓𝑅 (1 + 𝐷𝐵cos⁡(𝜃)𝐷𝑃 )                                                        (2) 

where 𝑓𝑂𝑅𝐹 and 𝑓𝑂𝑅𝐹 are the characteristic frequencies of the 
outer bearing fault and inner bearing fault. NB is the number of 
balls, 𝐷𝑃 is the pitch diameter, 𝐷𝐵 is the ball diameter, 𝜃 is the 
contact angle, and 𝑓𝑅 is the rotation speed. The 6204-T1 
bearing was used in this experiment, the parameters and 
dimensions of the roller bearing are described in [19]. The 
vibration signal of each experiment was collected and labeled 
for each bearing condition. The time-domain spectrum of 
measured vibration signals under different bearing conditions 
is presented in Fig. 5. It shows that when the bearing failures 
occur, the vibration amplitudes are significantly increased in 
the time response compared to the response of healthy bearing. 
Moreover, different periods of shockwave are also observed 
in the cases of the inner ring and outer ring defects owing to 
the collision of the balls and the defect on the rings, as shown 
in Figs. 5 (b) and (c).  
 
III. MACHINE LEARNING ALGORITHMS  

Recently, machine learning approaches have been applied to 
different engineering applications [34-37], which in turn have 
been widely used for bearing diagnosis of induction machines. 
These methods can reduce the memory computation while 
remaining high classification accuracy. It shows advantages 
comparing to linear models [38-41]. There are several 
different machine learning algorithms for classification 
problems. In this study, three effective ensemble methods 
machine learning techniques including decision tree (DT), 
random forest (RF), and extreme gradient boosting (XGBoost) 
algorithms are used to distinguish different bearing conditions. 
Those algorithms can perform very well on the respective 
data, particularly on the time series. They have shown 
effectiveness in terms of high accuracy at fast speed. 

 

                            (a)                                                     (b) 

FIGURE 4. Motor defects; (a) Outer ring defect, and (b) Inner ring 
defect. 

 
TABLE 1. Parameters of the experimental setup 

Experiment 

design 

Rotation 

speed 

(rpm) 

Eccentricity 

mode 

Resistance 

(N-m) 

Failure 

condition 

1 1350 Parallel 3.0 Normal 

2 1350 Angle 0.3 
Inner ring 

fault 

3 1350 Normal 1.5 
Outer 

ring fault 

4 1800 Angle 1.5 Normal 

5 1800 Normal 3.0 
Inner ring 

fault 

6 1800 Parallel 0.3 
Outer 

ring fault 

 

 
FIGURE 5. Measurement of vibration signal under different conditions 
(a) healthy bearing, (b) inner ring fault, and (c) outer ring fault. 

 
 

Time (sec)

Time (sec)

Time (sec)

a)

b)

c)
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Moreover, three approaches can reduce overfitting issues that 
make them more suitable when applying for fault detection 
problems compared to other machine learning algorithms such 
as the SVM algorithm [42].  
 
A. DECISION TREE 

The DT method is one of the supervised learning algorithms, 
in which a training model is created to estimate the target from 
unseen samples by learning simple decision rules [43, 44]. The 
DT algorithm has a fast training process with low memory 
requirements. In the training process, to estimate the class of 
the given dataset, first, the values of the root attribute are 
compared to the real dataset attribute. The algorithm continues 
to compare the attribute value with the other sub-nodes in the 
next node and moves further. Finally, the process reaches the 
leaf node of the tree. Figure 6 presents the structure of the 
decision tree algorithm. 
Suppose the training set is S and the attribute of target 
possesses n different values, the entropy of the training set S is 
described in Eq. (3). 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = ∑ 𝑝𝑖𝑙𝑜𝑔2𝑝𝑖𝑛𝑖=1 ,                                                        (3) 

where pi represents the proportion of the ith attribute value. 
The information gain of an attribute that describes the decrease 
of expected entropy is defined in Eq. (4). Gain(S, V) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑ |𝑆𝑎||𝑆| 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑎)𝑎∈𝐴(𝑉) ,                               

(4) 

where A(V) shows the range of the attribute A and Sa describes 
the sample set, in which the attribute V has the value of a. 
In this work, a time series data set is used as a attribute or 
feature vector, which represents the vibration data points of a 
period of time. The proposed decision tree model uses the 
information gain, as shown in Eq. (4) to define an attribute 
from the attribute vector that gives maximum information 
about a bearing condition. The attribute with the largest 
information gain is selected to be the decision attribute for the 
node. Therefore, the level of entropy can be decreased from 
the root node to the leaf node. 
 
B. RANDOM FOREST 

The random forest (RF) is also known as an effective method 
for fault diagnosis problems. The RF is an ensemble approach 
that uses tree-type classifiers. This method can enhance the 
performance of the model by using bagging to suppress over-
fitting [45]. The decisions of RF are based on the total votes 
of component predictors from each target. Figure 7 illustrates 
the structure of the random forest algorithm for ensemble 
decision-making.  
Random forest algorithm combines many decision trees. 
However, an individual decision tree is now built in the forest 
using a random subset of attributes, and each one is trained on 
a random set of the training data set. Then, the prediction of 
the random forest model is made by average voting from every 
individual decision tree. Thus, the RF algorithm can reduce 

 

 
 

FIGURE 6. Structure of decision tree. 

 

 

 
FIGURE 7. Structure of random forest for ensemble decision making. 

 
 

 
FIGURE 8. Scheme of extreme gradient boosting classifier. 
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overfitting in decision trees.  Figure 7 illustrates the structure 
of the random forest algorithm for ensemble decision-making. 
The procedure of RF starts with the selection of random 
samples from a training dataset of vibration signals, then the 
random attribute vector consists of the limited number of 
attributes, which is randomly generated within the subset of 
data to constitute the collection. The decision tree is 
constructed corresponding to the elements in the collection. 
Each decision tree has its own decision. Finally, a majority 
voting process is applied to determine the optimal 
classification result, the prediction target with the highest 
score is considered to be the output. 
 
C. EXTREME GRADIENT BOOSTING 

Extreme Gradient Boosting (XGBoost) is a scalable end-to-
end tree boosting system introduced by Chen et. al. [46]. It has 
been widely used for fault classification problems with great 
performance [42, 47]. In the Gradient boosting algorithm, new 
models are generated to estimate the errors of previous 
models. Both models are combined to make the final decision, 
in which the stochastic gradient descent (SGD) algorithm is 
utilized to minimize the loss. The SGD is a very popular 
algorithm for optimizing an objective function using an 
iterative process [48]. Because the XGBoost can push the limit 
of computations resources for boosted tree algorithms, the 
number of calculations can be reduced, and the classification 
speed can be improved. Especially, the XGBoost classifier can 
suppress the overfitting problem by simplifying the objective 
functions. The iteration of the XGBoost algorithm starts with 
the first learner which is fitted to the entire data. Then, the error 
of the first learner will be fitted by the second learner. This 
process will continue the learning process and complete if a 
stopping condition is met. The workflow of the XGBoost 
classifier for motor fault diagnosis is described in Fig. 8. 
 
 

IV. RESULTS AND DISCUSSIONS 

In this study, DT, RF, and XGBoost classifiers are proposed 
to identify four conditions of the bearing including normal, 
inner bearing fault, outer bearing fault, and cyber-attack 
case. The measured experimental data was used to generate 
the dataset for training and testing processes. The sample 
data was generated using a window size of 2000 data points 
for each time series, it was labeled corresponding to each 
bearing condition. In this study, the experimental dataset 
consists of 3079 samples with multiple attributes. It includes 
770 samples of normal condition, 768 samples of inner ring 
fault, 771 samples of outer ring fault, and 770 samples of 
fake data.  The entire dataset is split into 70% training dataset 
and 30% testing dataset. Note that the dataset of 770 samples 
is created by a randomly distributed function within the 
range of the motor vibration signal to represent the fake data 
then it is combined with the other dataset. All data were 
normalized using the Min-Max Scaler, which changes all 
features to be between 0 and 1. Then, the data was pushed 
into the different training models. The training and testing 
models were processed using a PC computer with an Intel  

 
FIGURE 9. Classification result from proposed DT; (a) Confusion 
matrix without normalization, and (b) Confusion matrix with 
normalization. 

 

 
FIGURE 10. Classification result from proposed XGBoost classifier; 
(a) Confusion matrix without normalization, and (b) with 
normalization. 

 

 
 

FIGURE 11. Classification result from proposed RF classifier; (a) 
Confusion matrix without normalization, and (b) with normalization. 

 

 
 

FIGURE 12. The total accuracy of each machine learning algorithm. 
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CoreTM i7-8700 @3.20 GHz central processing unit and 6G 
RAM. 
Generally, machine learning models have two types of 
parameters: model parameters and hyperparameters. While 
the model parameters are is generated automatically by the 
models based on the dataset. The hyperparameters can be 
adjusted to setup models to improve their performance such 
as the learning rate parameter. Thus, the hyperparameter 
tuning preprocess is required to define those parameters to 
obtain the highest accuracy and the minimum error when 
constructing machine learning models. There are several 
optimization algorithms are used for the tuning process such 
as grid search and random search. The grid search is known 
as a great approach for hyperparameter optimization that can 
overcome the limitation of the manual search [49]. 
Therefore, the grid search algorithm is utilized to find the set 
of optimal hyperparameters for the RF and XGBoost models 
in this study. As the result of the tuning process, the 
hyperparameter for each model is optimized and defined. For 
the XGBoost model, the maximum number of iterations was 
optimized with “n estimators” of 400, the learning rate value 
is 0.1 which allows the learning speed is fast while remaining 
good performance of the model. The maximum depth of the 
tree is 4 that can control overfitting. The value of “min child 
weight” is 5. The learning process can be optimized using 
the objective function “multi: softprob”. For the RF model, 
the maximum number of iterations was optimized with “n 
estimators” of 800, an entropy criterion was selected to 
minimize the probability of misclassification, and the 
number of features to consider as looking for the best split is 
log2. The performances of all machine learning techniques 
are evaluated by the following Eq. (5). 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁                                                         (5) 

(TP = true positive; TN = true negative; FP = false positive; 

FN = false negative) 

 
The classification results from different proposed machine 
learning approaches are shown in Figs. (9-11) and 
summarized in Table 2. The corresponding confusion matrices 
of the testing dataset demonstrate that the classifiers are very 
successfully identifying the bearing faults and even cyber-
attack presented by fake data. Moreover, Fig. 12 shows the 

total accuracy of each machine learning algorithm by bar chart 
as a clarified way for comparison. It shows that the proposed 
RF algorithm can provide an excellent classification accuracy 
of 99.03%, in which the false positive and the false negative 
numbers are very small. The DT approach has the worst 
performance with 83.33% classification accuracy. Whereas, 
the XGBoost algorithm can achieve higher classification 
accuracy, approximately 96.43%. 
The receiver operating characteristic (ROC) curve and the area 
under the curve (AUC) are also carried to evaluate the 
performance of the three models, as shown in Fig. 13. The 
ROC curves present the performance of classification models 
with respect to classification thresholds, in which the true 
positive rate (TPR) and the false positive rate (FPR) are 
defined in Eq. (6). Whereas the AUC measures the area under 
the entire ROC curve. Therefore, the better classification 
model has a higher AUC, which can successfully distinguish 
between motor statuses at the AUC value of 1.0. 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃+𝐹𝑁 ; ⁡⁡⁡𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝐹𝑃⁡                                                  (6) 

The ROC curves the AUC values of the DT, XGboost, and RF 
models for distinguishing four classes (0-normal, 1-inner ring 
fault, 2-outer ring fault, and 3-cyber-attack) are presented in 
Figs. 13 (a), (b), and (c) respectively. It confirms that the 
proposed RF model can successfully distinguish among the 
classes, in which the AUC values reach 1.0 for all classes, as 
shown in Fig. 13 (c). The DT model shows the worst 
performance, which has smallest AUC values of four classes 
are very small and ranging from 0.8 to 0.99, as shown in Fig. 
12(a). The performance of the XGBoost model in terms of 
AUC is between the DT and RF approaches, as illustrated in 
Fig. 13 (b). In addition, micro-average and macro-average 
ROC are used to evaluated the imbalance of data. For macro-
average, models are encouraged to focus on every class 
correctly. Whereas, the models are highly relying on the 
majority classes for micro-average. The ROC and AUC results 
of three models show that both macro-average and micro-
average AUC values are the same in each model that indicates 
the balance data for four classes. It is concluded that the 
proposed RF approach is robust and stable for the fault 
classification. 
After training and testing, the created model of the proposed 
RF classifier is encrypted with the IoT architecture to 

TABLE 2. Accuracy and corresponding class of each proposed method 
 

                   Motor status 
Method Normal Outer ring faults Inner ring faults Attacked Total accuracy 

Decision Tree (DT) 97.59% 90.48% 96.93% 100% 83.33% 

XGBoost  97.59% 90.48% 96.93% 100% 96.43% 

Proposed Random 

Forest (RF) 
99.6% 96.67% 99.56% 100% 99.03% 
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categories the online reading of the motor status and present it 
through an IoT dashboard as described in the following test 
scenarios. The flowchart in Fig. 14 describes the total 
operation of data acquisition, validation, and visualization. 
Moreover, the procedure of the cyber-attacks detection based 
on the proposed IoT architecture with the machine learning 
technique is clarified in the following pseudo-code in 
Algorithm 1. 
 
A. SCENARIO 1: NORMAL STATE 

This scenario demonstrates the online monitoring for the 
bearing of the motor in the case of a normal state and stable 
network. Figure 15 presents the current status of the bearing 
and the reliability of the internet network on the dashboard of 
the CONTACT Elements for IoT. This figure shows that the 
motor status is normal which means the motor work well and 
the bearing does not have any fault. Furthermore, the light of 
the traffic indicator is green which means the system in a 
healthy state. Besides, Figure 15 shows that the internet 
network is stable, and the transmitted data is real. This test 
validates the reliability of the proposed IoT architecture and 
enhances the decision-making about the motor status. 
 

 
 
 

 

 

 

 
 

 
 

FIGURE 13. Receiver operating characteristic (ROC) curves of (a) DT 

classifier, (b) XGBoost classifier, and (c) RF classifier: where (0-normal, 

1-inner ring fault, 2-outer ring fault, and 3-cyber-attack). 

 

 

 

 

FIGURE 14. Flowchart of the proposed IoT topology with the various 

proposed machine learning classifiers. 
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Algorithm 1. The procedure of cyber-attack and motor faults detection 

 

1: Read vibration signal from the motor microcontroller 

2: Send signals to the IoT broker 

3: Input signals to RF model 

4: Classify the motor status by RF model 

5: Connect to MQTT server 

6: if the output of RF model = 0 

7:     Publish that the motor status is ‘Normal’ and network 

  status is ‘Real data’. 
8: else if the output of RF model = 1 

9:     Publish that the motor status is ‘Inner ring fault’ and network  
status is ‘Real data’. 

10: else if the output of RF model = 2 

11:     Publish that the motor status is ‘Outer ring fault’ and network  
                        status is ‘Real data’. 
12: else if the output of RF model = 3 

13:     Publish that the motor status is ‘Fake data’ and network  
                        status is ‘Cyber-attacks’. 
14: End 

 

 

 

FIGURE 15. Motor status on the IoT dashboard in the case of the normal 

state. 

 
 

 

 

FIGURE 16. Motor status on the IoT dashboard in the case of inner ring 

fault. 

 
 
B. SCENARIO 2: INNER RING FAULT 

This scenario is created to confirm the capability of the 
proposed machine learning method and the IoT architecture to 
detect the inner ring fault in the bearing of the motor. Figure 
16 shows the bearing status in the case of inner ring fault and 
stable network. The IoT dashboard clears that the bearing has 
an inner ring fault and the transmitted data via IoT is real. 
Besides, the traffic light changed to a yellow color that means 
the motor has a fault.  This test affirms the ability of the 
proposed machine learning method and the IoT architecture to 

recognize the inner ring fault of the motor bearing without any 
error and clear visualization. Besides, the proposed techniques 
check the transmitted data against any cyber-attacks that 
increase the reliability of the IoT topology. 
 

 

 

FIGURE 17. Motor status on the IoT dashboard in the case of outer ring 

fault. 
 
 

 

 

 

FIGURE 18. Network status on the IoT dashboard in the case of cyber-

attacks detection. 

 
C. SCENARIO 3: OUTER RING FAULT 

The outer ring fault of the motor bearing is created in this 
scenario to demonstrates the performance of the proposed 
machine learning method with IoT architecture to detect all 
fault classes in the motor bearing. Figure 17 presents the motor 
bearing and the network states in the case of the outer ring fault 
and safe data transmission. It is clear in the IoT dashboard that 
the proposed machine learning technique can recognize the 
motor fault of the outer ring. Furthermore, the traffic light 
changed from the green light of the normal state to the yellow 
light to inform the user about the abnormal state due to the 
outer ring fault of the motor bearing.  Besides, the dashboard 
shows that the network is stable, and the transmitted data is 
real. 
 
D. SCENARIO 4: CYBER-ATTACKS DETECTION 

Cyber-attacks are the main challenge against the 
implementation of the IoT system. So, this scenario is carried 
out to ensure the effectiveness of the proposed machine to 
recognize the cyber-attacks on the internet network. Figure 18 
presents the transmitted data status in case of cyber-attacks on 
the internet network. It is clear from this figure that the 
proposed machine learning technique can detect cyber-attacks 
on internet networks and the proposed IoT architecture clears 
that the transmitted data about the motor status is fake data. 
Furthermore, the traffic light changed from the green light of 
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the normal state to the red light to inform the user about the 
cyber-attacks on the network that enhance the decision-
making to maintain and stabilize the internet network.  This 
test confirms that the proposed machine learning with the IoT 
architecture can provide reliable monitoring for the motor 
status. 
The results from the above scenarios can be concluded as 
follows; 

• The proposed IoT architecture can visualize the 
normal status of the motor and the internet network 
status clearly on the dashboard of the IoT platform as 
presented in scenario 1 effectively without any errors. 

• The inner ring fault of the motor can be detected 
effectively by the proposed IoT topology based on the 
machine learning technique as cleared in scenario 2. 
In addition, the suggested IoT platform performs an 
alarm and converted the color of the traffic light from 
the green color to the yellow color to remind the user 
about the inner ring fault of the motor. 

• The third test case shows the outer ring fault of the 
motor and emphases the superiority of the suggested 
IoT architecture based on the machine learning 
technique to recognize and visualize the outer ring 
fault of the motor effectively. 

• The final scenario clears the superiority of the 
introduced machine learning technique to recognize 
the cyber-attacks on the network. Furthermore, the 
suggested IoT platform presents the status of 
transmitted data through the internet network if it is 
real or fake to enhance the decision-making about the 
motor status. Besides, the IoT platform converted the 
traffic light to red color in order to remind the user to 
take care of the network against cyber-attacks issue. 

• The latency/overhead of the proposed fault and 
cyberattack detection process is analyzed by the 
proposed IoT platform and presented in Fig. 19. 

 

V. CONCLUSIONS 

This paper introduces a new IoT architecture for online 
monitoring of the faults of the induction motor instead of the 
traditional methods. The proposed IoT architecture is 
developed based on effective machine learning techniques to 
recognize the fault classes of the motor. Besides, the cyber-
attacks issue is taken into the account and the attack can be 
detected and suppressed by the proposed IoT topology. 
Different experimental testing is performed to confirm the 
effectiveness of the proposed IoT architecture based on 
machine learning. The results emphases the superiority of the 
prosed IoT architecture to recognize motor faults and cyber-
attacks with high accuracy. Furthermore, the results are 
visualized on CONTACT Elements for IoT platform clearly 
that enhance the decision making about the motor statues. That 
allows the system to run for a long time in healthy conditions 
and improve the industrial environment that represents the 
main target of Industry 4.0. In addition, the proposed IoT 
architecture provides a promising solution to apply to different 
machines for future work. 
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FIGURE 19. The latency/overhead of the proposed fault and cyberattack detection process based on the proposed IoT platform. 
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