
EXPERIMENTAL STUDIES OF
LIQUEFACTION AND DENSIFICATION OF LIQUID OXYGEN

by

JONATHAN KOERT PARTRIDGE
B.S. Tennessee Technological University, 2003

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Mechanical Engineering

in the Department of Mechanical, Materials, and Aerospace Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2010



ii

The following is the result of research completed as a portion of the 
author’s duties as an employee of the National Aeronautics and Space 
Administration.  This work is hereby declared a work of the government 
and not subject to copyright within the United States of America.



ii

ABSTRACT

The propellant combination that offers optimum performance is very reactive with a low average 

molecular weight of the resulting combustion products.  Propellant combinations such as oxygen 

and hydrogen meet the above criteria, however, the propellants in gaseous form require large 

propellant tanks due to the low density of gas. Thus, rocketry employs cryogenic refrigeration to 

provide a more dense propellant stored as a liquid.  In addition to propellant liquefaction, 

cryogenic refrigeration can also conserve propellant and provide propellant subcooling and 

propellant densification.  Previous studies analyzed vapor conditioning of a cryogenic propellant, 

with the vapor conditioning by either a heat exchanger position in the vapor or by using the 

vapor in a refrigeration cycle as the working fluid.  This study analyzes the effects of 

refrigeration heat exchanger located in the liquid of the common propellant oxidizer, liquid 

oxygen.  

This study predicted and determined the mass condensation rate and heat transfer coefficient for 

liquid oxygen.  
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CHAPTER ONE: INTRODUCTION

Cryogenic Background

Refrigeration is an important technology that sustains our society and economy.  One of the 

initial uses of refrigeration preserved food, enabling the economic shipment of food from source 

to market.  Today refrigeration provides many uses, ranging from conditioning the air within 

buildings and vehicles to cooling the magnets in medical instruments, such as the Magnetic 

Resonance Imaging (MRI).  A special branch of refrigeration emerged in the nineteenth century 

known as cryogenics, defined as temperatures below -150°C.

Prior to the 1840s, mechanical refrigeration by compression and isenthalpic expansion could

condense most elements and compounds; the remaining elements and compounds were termed 

“permanent gases”.  After 1875 refrigeration technology entered the cryogenic temperature range 

when scientists condensed air.  Scientists condensed the remaining “permanent gases” one by 

one until Onnes finally condensed helium in 1908.  Cryogenic refrigeration was confined to the 

bench top until the early 1900s when Linde developed an economic process on an industrial 

scale to purify oxygen by the cryogenic distillation of air [1].  Eventually rocketry would take 

advantage of the industrial scale production of liquid oxygen and other cryogenic propellants and 

pressurants.
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In 1903 the early Russian rocket scientist, Tsiolkovsky, predicted the velocity needed to reach 

orbit about the Earth and suggested that liquid oxygen and liquid hydrogen offered optimum 

performance to achieve the orbital velocity [2].  The American, Goddard, launched the first 

liquid fueled rocket using the cryogenic oxidizer, liquid oxygen, with ethanol in 1926.  The 

Americans also developed the first fully cryogenic rocket engine, powered by liquid oxygen and 

liquid hydrogen, in 1963 [3].  Today, the hydrogen-oxygen rocket engine remains a common 

propellant combination, used by the nations of Japan, Europe, India, China, Russia, and the 

United States [1].  Since the beginning of the space age, rocket scientists have looked at 

cryogenic refrigeration for thermal control, to increase the propellant density and conserve 

propellant. Figure 1 shows the rocketry applications for cryogenic refrigeration.

Figure 1: Cryogenic Refrigeration and Rocketry Use
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Liquefaction

Liquefaction of propellant gases typically occurs at the source plant offers efficient storage and 

transportation of propellant gases.  For instance, liquid oxygen is approximately five times 

denser than gaseous oxygen transported at the typical industrial pressure of 2400 psi.  

Accounting for the thicker walls of the pressure vessels on the compressed gas trailer when 

compared to a cryogenic vessel, six compressed gas trailers deliver the same amount of oxygen 

as a single delivery of liquid oxygen.  Within the rocket, pump-fed systems pressurize the 

cryogen to high pressures before injection into the rocket’s combustion chamber.  Turbo pumps

offer increased efficiency in both pressurization and flow of a cryogenic liquid as opposed to gas 

compressor efficiency.  

A typical liquefier uses some variation of the Claude cycle, which compresses the fluid and 

subsequently expands the fluid both, isentropically and isenthalpically after removing the heat of 

compression.  An expansion engine, such as a turbine, accomplishes isentropic expansion, while 

an expansion valve, also known as a Joules-Thomson valve, accomplishes isenthalpic expansion

[4].  

Currently, no liquefaction occurs at the launch pad of any United States launch facility, since the 

cryogenic propellant required for launch is delivered as a liquid to storage tanks near the launch 

pad.  However, space missions to other surfaces with in-situ resource utilization, liquefaction at 

the launch site will be necessary.  Proposed methods of propellant liquefaction on other planetary 

surfaces utilize the compression – heat rejection – expansion methods, such as the Sterling cycle 

refrigerator [5].
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Zero Boil-off

Because the temperature difference between the ambient temperature surrounding a cryogenic 

vessel and the temperature of the cryogen, heat transfers from the ambient to the cryogen and the 

cryogen eventually evaporates from the cryogenic vessel.  Early cryogenic scientist/engineer, 

James Dewar, developed insulated cryogenic vessels, consisting of one glass flask inside of 

another glass flask.  Dewar evacuated the annular space between the two glass flasks to inhibit 

conductive and convective heat transfer, and Dewar silvered the glass between the glass flasks to 

inhibit radiation heat transfer.  Currently, stainless steel replaced the glass as the vessel material 

and perlite powder or multi-layer insulation replaced the silvering of vessel material. Recent

studies show that more efficient annular materials exist, but the economics questions the 

employment of the annular material. Nevertheless, these vessels are termed dewars, named after 

James Dewar.  

Insulation attempts to reduce heat entering the cryogenic vessel from the ambient, however, no 

insulation stops heat from entering the cryogenic vessel.  Thus, heat removal from the dewar 

remains the only method to maintain the dewar contents at cryogenic temperature.  Evaporation 

of the cryogen removes heat from the dewar through latent heat, but this method expends a 

portion of the cryogen in order to maintain the temperature.  Active cooling employs 

refrigeration to remove the heat that enters the vessel and requires energy, but conserves the 

cryogen by prohibiting cryogen evaporation or zero boil-off (ZBO).  Economic analysis 

determines the most beneficial type of insulation for ground support system, while space 

missions consider overall payload weight and length of service to determine insulation and active 

cooling requirements.
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Zero Boil-off Benefits in Rocketry

Space missions consider ZBO concepts for propellant management and cryogenic coolant.  

Typically, hypergolic propellants are used on long-term or deep space missions due to the 

storability of the hypergolic propellants.  Although cryogenic propellants offer higher 

performance than hypergolic engines, no cryogenic propellant will remain through the duration 

of the long-term mission unless the spacecraft employs a zero boil-off concept.  Simple analysis 

shows that any mission longer than 60 days for liquid hydrogen or 10 days for liquid oxygen 

benefit from ZBO [6].  Some telescopic instruments aboard spacecraft use cryogens, such as 

liquid helium, to cool the instruments to reduce radiation noise, however, the mission typically 

lasts three months because the helium warms to a temperature that can no longer shield radiation 

noise.

Zero Boil-off Challenges in Rocketry

No technical challenges exist to employ ZBO concepts for ground storage tanks, however, two 

technical challenges exist for ZBO in space: heat rejection and fluid thermal stratification.  A 

spacecraft relies on radiation heat transfer to reject any heat that an onboard cryogen (1) absorbs 

from other planetary or stellar bodies through radiation heat transfer or (2) absorbs because of 

spacecraft electrical power generation through conduction heat transfer.  Microgravity, as 

experienced in space, limits natural convection.  Without convection, a spacecraft’s cryogenic 

vessel can experience localized heating leading to complete vaporization in the immediate 

vicinity of heating even though the mean bulk temperature may remain below the saturation

temperature.  Thus, other means of convection, such as fans, magnets, or artificial gravity, 
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provide the heat transfer needed to cool the cryogen evenly while in space.  Numerous studies 

have addressed these issues [7] [8].

Zero Boil-off History in Rocketry

Earth Ground Systems – In the years prior to the Space Shuttle Program, NASA studied concepts 

to capture the boil-off from the two liquid hydrogen storage tanks at Launch Complex 39 (LC-

39) at the Kennedy Space Center.  At that time approximately 400 gallons of liquid hydrogen 

evaporated from each of the KSC storage tanks every day.  Two studies in the late 1970s 

suggested to place a cryocooler in the storage tank’s existing manhole, located at the top of 

storage tank, to condense the ullage vapor, maintaining the storage tank at a constant pressure 

[9][10].  Later in the 2006, Ames Research Center (ARC) analyzed the LC-39 cryogenic tanks 

for use in the Constellation Program.  ARC concluded that a refrigeration system on the LC-39 

tanks would be technically viable, however, the study questioned the economic benefits [11].

  

Passive In-Space Zero Boil-off – While in space, heat is transferred to the cryogenic propellant 

tank by two modes, conduction and radiation.  The Sun, planets, and other stellar bodies transfer 

heat by radiation to the spacecraft.  Also, the spacecraft itself conducts heat, that it absorbs from 

stellar bodies and generates for spacecraft power, toward the cryogenic propellant tank.  

Although most spacecraft with cryogenics aboard employ radiation shields and insulation 

supports to protect the cryogenic propellant tanks from both modes of heat transfer, passive zero 

boil-off rely exclusively on radiation shields and insulation supports to conserve cryogenic 

propellant.  Passive zero boil-off is possible for missions beyond the orbit of Mars [12] and for 

special applications such as the James Webb Space Telescope, which will be deployed to the L2 
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point where Earth and Sun are aligned so that a single radiation shield can protect the telescope 

from both bodies[13].  

Active In-Space Zero Boil-off – As mentioned above, most spacecraft employ insulation 

techniques to reduce heat transfer while in space.  If the insulation is insufficient to negate the 

overall heat transfer to the cryogenic propellant tank, active cooling can be employed to offset 

the heat into the cryogenic propellant tank. In the past 20 years, approximately twenty 

cryocoolers have been launched aboard NASA satellites.  The cyrocoolers operated in a 

temperature range of 55K to 150K, with the exception of the 20K cryocooler aboard the Plank 

spacecraft.  More recent cyrocooler designs hope to achieve 6K operational temperatures.  [14]
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Subcooling

Removing sensible heat from the liquid reduces the temperature of a liquid.  Also, the vapor 

pressure of a liquid decreases as the liquid temperature decreases.  The saturated temperature 

occurs at the temperature at which the liquid vapor pressure equals the system pressure.  To 

subcool a liquid, the vapor pressure must be lowered below the system pressure, or stated 

another way, the temperature must be lowered below the saturated temperature.  For further 

liquid subcooling, the liquid approaches the melting line.  A propellant, at the melting line, can 

exist as a liquid, solid , or slush defined as a mixture of liquid and solid.  

Subcooling Benefit in Rocketry

A subcooled propellant provides cooling, or a thermal sink, to a rocket with a small change in 

volume in the propellant.  The amount of cooling a subcooled propellant can store depends on 

the specific heat of the propellant and the temperature difference between the subcooled liquid 

temperature and the saturation temperature.  

Subcooling History in Rocketry

The National Aerospace Plane (NASP) intended to use slush hydrogen as a propellant.  NASA 

designed the NASP to be capable of withstanding the extreme heat caused by hypersonic 

velocity .  The slush hydrogen was intended to provide cooling to the plane structure prior to 

combustion.
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Densification

As with subcooling, the removal of sensible heat from a liquid increases the density of the liquid.  

The liquid density depends on temperature alone since a liquid is considered incompressible.  

Thus, liquid density continually increases from the critical point to triple point regardless of level 

of subcooling.  However, NASA typically stores propellants as single component-two phase with 

the ullage and liquid at saturated conditions.  

Density Benefit in Rocketry

Propellant comprises the majority of a rocket’s weight just prior to launch, with rocket engines, 

propellant tanks, and payload make up the remaining weight.  In order to maximize the payload 

weight, rocket scientists attempt to minimize the propellant tank weight.  Altering the tank 

material is one method of reducing the propellant tank weight.  NASA reconfigured the Space 

Shuttle’s External Tank three times throughout the history of the Space Shuttle Program to 

reduce weight.  Propellant densification, or increasing the density of the propellant, offers 

another method of reducing the overall rocket weight by making the tank smaller.  

Density Challenges in Rocketry

If the propellant refrigeration occurs on the earth’s surface and the ullage is not pressurized with 

a non-condensable, the propellant tank pressure becomes sub-atmospheric, which produces two 

challenges: (1) structural integrity of the propellant tank as well as (2) possible atmospheric 

intrusion into the propellant tank. If the intent of refrigeration is to maintain a consistency of 

slush propellant, further difficulty arises as the liquid temperature approaches the propellant 

melting line.  Because refrigeration equipment would add weight to a launch vehicle, propellant 
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densification occurs away from the launch vehicle.  Difficulty arises when maintaining the 

propellant in a densified state during transfer from the refrigeration equipment to the launch 

vehicle. 

Densification History in Rocketry

The sub-orbital launch vehicle, X-15, from the 1960s utilized a passive system of liquid oxygen 

densification by replenishing the liquid oxygen from the B-52 carrier aircraft.  As the B-52 and 

X-15 rose to altitude, the liquid oxygen boiling point reduced as the ambient pressure lowered, 

thus, the bulk liquid oxygen temperature decreased resulting in a densified liquid oxygen. The X-

33 was intended to use both, densified liquid oxygen and liquid hydrogen, to accomplish a single 

stage to orbit vehicle.  Several ground support systems to provide propellant densification were 

proposed in the late 1990s to support X-33 flights.  One used a sub-atmospheric liquid nitrogen 

as the working fluid [15] while another proposal bubbling liquid hydrogen through a liquid 

nitrogen working fluid [16].  The Space Shuttle Program studied densified propellants in the mid 

1990s and identified the changes needed to launch the STS with densified propellants; the result 

was considered too expensive to retrofit the current infrastructure, but recommended looking at 

densified propellants for a new program [17].  
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Purpose of This Work

For ground systems, the argument for cryogenic refrigeration system becomes purely economic. 

The economic trade for propellant ZBO, propellant subcooling, and propellant densification 

depends on the cost of propellant and rocket specification and performance versus the 

operational and capital costs of a cryogenic refrigeration system.  Propellant liquefaction may 

occur at the launch site on other planetary surfaces, but will probably occur away from the 

launch site for future NASA launch concepts.  

Previous concepts use propellant ullage vapor as working fluid to produce refrigeration, which 

introduces the possibility of contaminating the propellant.  Other concepts employed a heat 

exchanger or cold head within the ullage to control dewar pressure.  This paper studies the effect 

of employing a heat exchanger or cold head beneath the liquid surface.  Because the location of 

the heat exchanger or cold head is inside the tank, this type of configuration is intended for the 

ground storage tanks on earth or other planetary surfaces.  Specifically, this paper investigates 

the heat and mass transfer at the vapor-liquid interface as a result of cooling the liquid.  
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CHAPTER TWO: LITERATURE SEARCH

Condensation

Condensation occurs by four different methods – film condensation, dropwise condensation, 

homogeneous condensation and direct contact condensation.  Film condensation and dropwise 

condensation occur at a solid surface and depend on surface conditions.  Film condensation 

occurs on a surface that promotes liquid wetting, thus, a thin film of liquid covers the solid 

surface.  Dropwise condensation occurs on a solid surface that inhibits liquid wetting, therefore

drops or beads of liquid form over the solid surface.  Homogeneous condensation occurs when 

vapor condenses in the gas phase and the condensation remains suspended in the gas phase.

Direct contact condensation occurs when vapor condenses into a body of liquid.  Vapor can 

come in direct contact with a liquid by either the vapor directly above a liquid or by vapor 

bubbles rising through a body of liquid.  The type of condensation investigated in the IRAS 

experiment is direct contact condensation [18].  Models below predict heat transfer coefficient 

both types of direct contact condensation.

Direct Contact Condensation Models

Direct Contact Condensation by Ullage Collapse

Due to safety concerns, vapor exists above a layer of cryogenic liquid, known as ullage.  As the 

liquid achieves a subcooled state, the pressure of the ullage above the liquid decreases.  In 

accordance with the gas laws, the decrease in ullage pressure can be attributed to a (1) decrease 
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in ullage temperature, (2) an increase in ullage volume due to liquid densification, or (3) a 

decrease in ullage mass due to ullage condensation.  Direct Contact Condensation by Ullage

Collapse refers to the ullage condensation on a liquid surface and is (1) modeled using kinetic 

theory and (2) modeled the liquid as a flat, horizontal, cold plate.

  

Kinetic Theory – Condensation heat transfer coefficient has been estimated with the use of 

kinetic theory.  Kinetic theory characterizes the random motion of molecules using statistical 

mechanics.  Equation 1 and Equation 2 are used to predict the mass condensation rate and heat 

transfer coefficient, respectively [19].  

G���� = � M2πR�T��� �P��� − P��
Equation 1

h = � M2πR�T��� h���T v��
Equation 2

Equation 1 was modified by applying correction factors to both individual condensation and 

evaporation mass flux equations.  Both mass flux equations are combined into Equation 3, with 

supporting definitions provided by Equation 4 and Equation 5.  No additional heat transfer 

coefficient is predicted using Equation 3.

G���� = � M2πR�T��� �Γ(a)σ�P� − σ�P��
Equation 3

Γ(a) = exp(−a�) + a√π[1 + erf(a)]
Equation 4
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a = G����P� �R T2 M
Equation 5

Cold Plate Model – The cold plate model assumes the heat from the enthalpy of condensation is 

transferred though the liquid to the cold plate.  The heat transferred through the liquid is by 

thermal conductance and neglects convective heat transfer.  The thermal resistance increases 

with time because the height, or thickness, of the liquid increases as the ullage condenses.  

Equation 6 and Equation 7 give the mass condensation rate and the heat transfer coefficient, 

respectively, for the cold plate analysis, as derived in APPENDIX D.

G���� = k�(T��� − T�)�  ρ�h���2 k� (T��� − T�) t + δ�� h�� ρ��
Equation 6

h = k�� h�� ρ�2 k� (T��� − T�) t + δ�� h�� ρ�
Equation 7

Direct Contact Condensation by Bubble Collapse

Direct contact condensation of a bubble rising through a layer of subcooled liquid is a complex 

subject.  Typically, the bubbles are injected into the liquid by a nozzle and the bubble separates 

from the nozzle at a specific diameter, called the bubble departure diameter.  Equation 8

estimates the bubble departure diameter [20].  

D�,� = �6 σ D�ρ�� g�
Equation 8
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The diameter of the bubble continually decreases as the bubble rises through the subcooled liquid 

because of bubble vapor cooling.  The vapor within the bubble cools as the bubble transfers heat 

to the subcooled liquid, which reduces the volume of the bubble according to the gas laws and 

ultimately condenses portions of the bubble.  Equation 9 shows the rate at which the bubble 

diameter decreases as with time [21].  

β = D�(t)D�,� = �1 − 3√π  Ja �Re�� Pr�� Fo����
Equation 9

Although literature has suggested that a bubble rising through subcooled liquid goes through an 

acceleration and deceleration phase [22], this study assumes constant vertical velocity.  Equation 

10 [23] and Equation 11 [24] calculates the vertical bubble velocity and terminal bubble velocity, 

respectively.  

u� = C�1 − α
�g σ ρ��

ρ�� ���
Equation 10

u� = �2.14 σ�
ρ�D + 0.505 g D

Equation 11

As mentioned above, the bubble collapses as it rises to the surface, partly due to condensation of 

the vapor within the bubble.  The mass of the vapor that condenses while the bubble rises is 

dependent on the heat transfer rate and the residence time the bubble spends within the 

subcooled liquid.  Given the above constant bubble rise velocity assumption, Equation 12

calculates the residence time of the bubble within the subcooled liquid.
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t� = Hu�
Equation 12

Equation 13 calculates the mass that condenses from a single spherical bubble.

m�,���� = ρ� 4π3 �D�,�2 �� − ρ� 4π3 �D��2 ��
Equation 13

However, during the proposed IRAS test matrix as outlined in the following chapter, a steady 

stream of bubbles depart from the nozzle instead of a single bubble.  The frequency at which a 

bubble departs the nozzle depends on the mass flow rate of the gas flowing through the nozzle

and the mass of the bubble at departure.  Equation 14 and Equation 15 calculate the bubble 

departure frequency and mass condensation rate of the bubble.  APPENDIX D shows the 

derivation for Equation 14 and Equation 15.

��,� = 6 ṁ���
π ρ� D�,��

Equation 14

ṁ�,���� = ṁ����1 − β����
Equation 15

Equation 16 calculates the instantaneous Nusselt number [21]. 

Nu� = 1√π �Re�   Pr��
Equation 16

Equation 17 calculates the average heat transfer coefficient by averaging the Nusselt number at 

the time of departure and at the moment the bubble reaches the surface.

h��� = k�2√π
�Re�,�Pr�� �β�� + 1

β�� �
Equation 17
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Previous IRAS Work

The Integrated Refrigeration and Storage (IRAS) system is a dewar with a large flanged 

connection at the top of the dewar.  The large flanged connection allows instrumentation cables 

and fluid connections pass from the inside of the dewar to the outside.  The fluid connections are 

intended for liquid nitrogen coolant to flow through a heat exchanger, which is intended to 

simulate the cold head of a Brayton cycle cryocooler.  The flange connection allows coldhead 

height to be altered.  The following chapter provides additional details of the IRAS system and 

supporting equipment.

Eden Cryogenics delivered the IRAS to KSC in the summer of 2008.  Over the next nine months, 

the IRAS was cleaned to oxygen cleanliness specifications, integrated with the rest of the test 

apparatus, and functionally tested with liquid nitrogen.  The liquid nitrogen functional test 

determined the heat transferred to the IRAS wall from the ambient as 17.5W [25].  

Following the liquid nitrogen functional test, ZBO experimentation began with liquid oxygen.  

Liquid oxygen filled the IRAS dewar to approximately 70% of full capacity.  The heat exchanger 

was placed at the 10%, 40%, and 60% locations inside the IRAS dewar, and ZBO runs occurred 

at an IRAS dewar pressure of 3 psig, 5 psig, and 7 psig.  Results from these experimental testing 

showed that the optimum heat exchanger location was at the 40% level [26].
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CHAPTER THREE: METHODOLOGY

Experimental Setup

The Integrated Refrigeration and Storage (IRAS) dewar comprises the main test article for this

study and is complimented by a liquid nitrogen supply, a gaseous oxygen supply, a nitrogen 

subcooler, numerous analyzers and sensors, and a data acquisition system. Figure 2 shows the 

simplified schematic of the experimental setup, while Table 1 shows the legend and component 

specification details.  

Figure 2: Experimental Setup - Simplified Process Instrumentation Diagram
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Table 1: Experimental Setup - Simplified Process Instrumentation Diagram Legend

REFERENCE 
DESIGNATOR

DESCRIPTION

TK-01 Liquid Nitrogen Tank
HV-1 IRAS Dewar Inlet Valve
HV-2 IRAS Dewar Exit Valve
PT-7 IRAS Dewar Pressure Transducer
CV-8 IRAS Heat Exchanger Mass Flow Controller
HX-9 IRAS Heat Exchanger
HX-10 Coolant Ambient Heat Exchanger
KB-12 Gaseous Oxygen K-Bottle
CV-18 Gaseous Oxygen Mass Flow Controller
MV-286 Liquid Nitrogen Storage Tank Isolation Valve
CV-20 Subcooler Control Valve
SC-21 Subcooler
TC-22 Subcooler Cooling Fluid Exit Temperature Sensor
HX-23 Subcooler Cooling Fluid Ambient Heat Exchanger
TC-24 Subcooler Process Fluid Exit Temperature Sensor
PT-25 Subcooler Process Fluid Exit Pressure Transducer

APPENDIX B provides the detailed schematic and component specifications.

IRAS

The IRAS was custom built, consisting of a 400 liter dewar and a male bayonet.  Both 

components were constructed of 304 stainless steel and double walled with a nominal vacuum of 

five microns of mercury within the annular space.  Figure 3 shows a cross-sectional view of the 

IRAS. 

Male Bayonet – The male bayonet connects to the IRAS dewar by a ten inch flange and all 

sensor and nitrogen fluid connections route through the male bayonet.  Non-vacuum jacketed

nitrogen fluid lines extend approximately one foot below the male bayonet and terminate with 

threaded fittings.  Stainless steel tubing connect the terminated nitrogen fluid fitting to a copper 

heat exchanger.  The copper heat exchanger is in the shape of a “U” and has annular fins.  The 
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Figure 3: Cross-Section of IRAS Dewar and Male Bayonet

IRAS Heat Exchanger

IRAS Gaseous 
Nitrogen  Vent Tube

IRAS Liquid 
Nitrogen Fill Tube

IRAS Dewar

IRAS Annular Space

IRAS Male Bayonet
Red line represents boundary 
between IRAS Male Bayonet 
and IRAS Dewar 

Variable
Length 
Tubing

Liquid  Nitrogen 
Subcooler

Liquid Oxygen  
Fill Line

Liquid Nitrogen
Thermocouple

Liquid Nitrogen 
Pressure Transducer

Nitrogen System 
Relief Valve

Nitrogen Vent 
Heat Exchanger

Liquid Oxygen  
Fill Line Valve

Liquid  Nitrogen 
Subcooler Inlet
From Liquid Nitrogen 
Supply Tank

Liquid  Nitrogen 
Subcooler Exit

Sensor Rake

Temperature Sensor



21

stainless steel tubing is insulated with Teflon tubing from the copper heat exchanger to the 

bottom of the vacuum insulated male bayonet.  Heat transfer analysis of the Teflon insulated 

stainless steel tubing and copper heat exchanger is provided in APPENDIX A.   Also attached to 

and extending below the male bayonet is a micarta instrumentation rake, where the internal 

temperature sensors, resistance temperature diodes, are strategically placed.  The instrumentation 

rake extends to about six inches above the bottom of the IRAS dewar, with two horizontal rakes 

measuring the lateral temperature gradient.

IRAS Dewar – The IRAS dewar is an open container with a neck sized to accept the IRAS Male 

Bayonet.  The liquid oxygen fill line and gaseous oxygen vent line are routed through the annular 

space, around the neck, and routed to the inside of the IRAS Dewar.  Both lines have an external 

manual valve.  Two pressure relief valves and a burst disc, which are located between the IRAS 

Dewar and the valve in the gaseous oxygen vent line, provide over-pressurization  protection of 

the dewar.  The IRAS dewar pressure is monitored by a pressure gauge and a pressure 

transducer, which is connected to the data acquisition system.

IRAS Support Equipment

Liquid Nitrogen Supply – A 6,000 gallon vertical tank provides liquid nitrogen to the IRAS 

dewar.  The liquid nitrogen supply tank has a MAWP of 250 psi.  The liquid nitrogen is procured 

to a military specification, MIL-PRF-27401E Grade B, which is an industrial grade nitrogen.  

The procurement requirements and laboratory analysis are found in APPENDIX C.
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Gaseous Oxygen Supply – A 1.5 cubic foot water volume k-bottle provides gaseous oxygen to 

the IRAS dewar.  The gaseous oxygen k-bottle has a MAWP of 2,200 psi.  The gaseous oxygen 

is procured to a military specification, MIL-PRF-25508G Grade F, which is an electronic grade 

oxygen.  The oxygen is 99.99% oxygen allowing a maximum impurity concentration of 100 

parts per million.  The procurement requirements and laboratory analysis is found in APPENDIX 

C.  The gaseous oxygen pressure is regulated down to approximately 25 psig upstream of the 

mass flow controller.

Nitrogen Subcooler – The liquid nitrogen supply tank is operated at an elevated pressure in order 

to flow liquid nitrogen to the IRAS dewar.  Once the liquid nitrogen supply tank reaches steady 

state conditions, the nitrogen becomes saturated at the elevated pressure, which corresponds to 

an elevated bulk liquid nitrogen temperature.  As the liquid nitrogen flows to a lower pressure, a

Figure 4: Liquid Nitrogen Subcooler
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portion of the liquid nitrogen evaporates increasing the quality of the liquid nitrogen.  Since the 

heat removed from the IRAS dewar is calculated by the latent heat of liquid nitrogen flowing 

through the IRAS, the validity of the calculation depends on the ability to obtain liquid nitrogen 

with no quality.  The nitrogen subcooler is employed to subcool the liquid nitrogen and 

subsequently ensure the quality remains negligible.  

The nitrogen subcooler is rectangular in shape, as shown in Figure 4, and constructed of 

aluminum, with the flow passages filled with aluminum metal foam.  The nitrogen subcooler 

operates by splitting the liquid nitrogen into a process stream and a cooling stream.  The cooling 

stream flow rate is regulated by a hand operated control valve located upstream of the subcooler.  

The cooling stream expands to atmospheric pressure downstream of the control valve, where the 

cooling stream boils at its normal boiling point providing cooling to the process stream.  The 

process stream is maintained at pressure near the liquid nitrogen supply tank pressure, cooled in 

the subcooler, and enters the IRAS dewar.  The nitrogen subcooler has experimentally provided 

approximately 11ºC of subcooling in the mass flow rate range [27].

Flow Control Valves – The flow control valves measure and set the mass flow rates of the liquid 

nitrogen and the gaseous oxygen, which controls the cooling rate in the IRAS and measures the 

oxygen condensation rate.  The nitrogen and oxygen flow control valves range from 0-20 

standard liters per minute (sLm) and 0-100 sLm, respectively, with a tolerance of ±0.2 sLm and 

±1 sLm, respectively.
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Data Acquisition – The computer software, Labview, acquires data from the IRAS sensors or 

pressure transducers, thermocouples, resistance diodes, and mass flow controllers.  The IRAS 

sensors are connected to field points and then to an ethernet switch.  The ethernet switch is 

connected to the computer by a single RJ45 network cable.  Labview records the signals from the 

pressure and temperature sensors and records and controls the mass flow controllers.  

Test Configurations

The Integrated Refrigeration and Storage (IRAS) dewar is designed to measure the energy flow 

in a cryogenic storage system during active refrigeration.  Figure 5 shows the energy balance 

about the IRAS, with the dotted line representing the control volume.

Table 2: IRAS Energy Balance Definitions

Figure 5: IRAS Energy Balance

The energy balance shown in Figure 5 can be further subdivided into an energy balance about the 

liquid and an energy balance about the ullage.  Figure 6 shows the subdivided IRAS energy 

balances.
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Table 3: Subdivided IRAS Energy Balance Definitions

Figure 6: Subdivided IRAS Energy Balance

The energy balance from both, Figure 5 and Figure 6, are defined by Equation 18 through 

Equation 20, where Equation 18 represents the total IRAS energy balance, while Equation 19

and Equation 20 represent the components of the IRAS energy balance, the ullage balance and 

liquid balance, respectively.

IRAS Heat Balance Q��� + Q�̇��� + Q�̇��� = Q���� + Q��
Equation 18

Ullage Subdivided Heat BalanceQ���,��� + Q�̇��� ,��� + Q�̇��� + Q�̇��� = Q���� + Q�̇��� + Q�� ���� + Q�� ����    
Equation 19

Liquid Subdivided Heat BalanceQ���,��� + Q�̇��� ,��� + Q�̇��� = Q�� ��� + Q�̇���
Equation 20

Adding Equation 19 and Equation 20 gives Equation 18 with the following definitions:Q��� = Q���,��� + Q���,���
Equation 21

QMGO2,ULL Heat entering ullage with incoming gaseous oxygen

QMGO2,LIQ Heat entering liquid with incoming gaseous oxygen

QMGHe Heat entering ullage with gaseous helium

QEVAP Heat exiting the ullage through evaporation

QHX LIQ Heat entering heat exchanger from liquid

QHX VENT Heat entering heat exchanger vent line from ullage

QHX FILL Heat entering the heat exchanger fill line from ullage

QAMB,ULL Heat entering ullage through dewar insulation

QAMB,LIQ Heat entering liquid through dewar insulation

QM,LIQ Heat entering ullage from liquid mass evaporation

QM,ULL Heat entering liquid from ullage mass condensation
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Q�̇��� = Q�̇��� ,��� + Q�̇��� ,���
Equation 22Q�� = Q�� ��� + Q�� ���� + Q�� ����
Equation 23

From Equation 18 the individual heat components will be isolated for possible quantification in 

the following tests.  

Test 1

The first test quantifies the ambient heat component by not adding gaseous oxygen, gaseous 

helium, or liquid nitrogen through the heat exchanger.  This type of operation is typically termed 

normal evaporation, and the mass flow rate exiting the IRAS is typically termed the Normal 

Evaporation Rate.  Under the normal evaporation configuration, 

Equation 18 reduces to Equation 24.  Q�̇��� = Q�̇��� = Q�� = 0Q��� = Q����
Equation 24

Test 2

The second test quantifies the efficiency the heat exchanger by operating the IRAS dewar in a 

zero boil-off (ZBO) configuration, or no evaporation, while neither gaseous oxygen nor gaseous 

helium enter the IRAS dewar.  Three variations of Test 2 are run, which varies the vertical height

of the IRAS heat exchanger.  Under ZBO conditions, 

Equation 18 reduces to Equation 25.

Q�̇��� = Q�̇��� = Q���� = 0
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Q��� = Q��
Equation 25

Test 3

The third test quantifies the liquefaction rate of the IRAS dewar.  Gaseous oxygen enters the 

IRAS dewar, while the IRAS maintains ZBO conditions and no gaseous helium enters the IRAS 

dewar.  Two variations of Test 3 are run; one test flows gaseous oxygen into the ullage, while the 

other test flows gaseous oxygen into the liquid. The two tests are intended to isolate the 

condensation rate, or liquefaction rate, at the surface of the liquid.  For the liquefaction runs, 

Equation 18 reduces to Equation 26. Q�̇��� = Q���� = 0 Q��� + Q�̇��� = Q��
Equation 26

Test 4

The fourth test quantifies the densification rate of liquid oxygen in the IRAS dewar.  Since the 

ullage pressure becomes sub-atmospheric if the temperature of liquid oxygen is reduced below 

its normal boiling point, gaseous helium enters the IRAS dewar in order to maintain a positive 

pressure.  Under the densification conditions, IRAS still maintains ZBO conditions and no 

gaseous oxygen flows into the IRAS.  Under densification conditions,

Equation 18 reduces to Equation 27. Q�̇��� = Q���� = 0Q��� + Q�̇��� = Q��
Equation 27
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Test Matrices

As noted in Chapter Two, Test 1 has already been performed and the ambient heat input reported 

as 17.5W.  The remaining tests will be performed at three different IRAS dewar pressures.  Table 

4 and Table 5 show the test matrices to accomplish Test 2 and Test 3.

Table 4: Test 2 Matrix – Zero Boil-off
Test Run Number IRAS Set 

Pressure
Gaseous Oxygen Flow Rate
Percentage        

of Maximum
Oxygen      

Flow Rate

Test Run 2a 3 psig                            
(20.7 kPag) 0% Max. GO2 0 sLm

Test Run 2b 5 psig             
(34.5 kPag) 0% Max. GO2 0 sLm

Test Run 2c 7 psig            
(48.3 kPag) 0% Max. GO2 0 sLm

Table 5: Test 3 Matrix – Liquefaction
Test Run Number    

GO2 Top Fill
Test Run Number   
GO2 Bottom Fill

IRAS Set 
Pressure

Gaseous Oxygen Flow Rate
Percentage        

of Maximum
Oxygen      

Flow Rate
Test Run 3a Test Run 3m 3 psig                            

(20.7 kPag)

25% Max. GO2 2.5 sLm
Test Run 3b Test Run 3n 50% Max. GO2 sLm
Test Run 3c Test Run 3o 75% Max. GO2 sLm
Test Run 3d Test Run 3p 100% Max. GO2 sLm
Test Run 3e Test Run 3q 5 psig                            

(34.5 kPag)

25% Max. GO2 sLm
Test Run 3f Test Run 3r 50% Max. GO2 sLm
Test Run 3g Test Run 3s 75% Max. GO2 sLm
Test Run 3h Test Run 3t 100% Max. GO2 sLm
Test Run 3i Test Run 3u 7 psig                            

(48.3 kPag)

25% Max. GO2 sLm
Test Run 3j Test Run 3v 50% Max. GO2 sLm
Test Run 3k Test Run 3w 75% Max. GO2 sLm
Test Run 3l Test Run 3x 100% Max. GO2 sLm

Table 6 shows the densification test matrix.  Test Runs 4a – 4d are the densification runs that 

allow the IRAS dewar to operate at a pressure lower than atmospheric pressure.  Sub-

atmospheric operation occurs because the condensable ullage, gaseous oxygen, remains above 

the liquid throughout the densification test run.  Test Runs 4e – 4p are the densification runs that 
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operate the IRAS at pressures above atmospheric by replacing the gaseous oxygen that 

condenses with non-condensable gaseous helium.

Table 6: Test 4 Matrix – Densification
Test Run Number IRAS Set 

Pressure
Gaseous Nitrogen Flow Rate Ullage Gas

Percentage of 
Available

Nitrogen Flow 
Rate

Test Run 4a Subatmospheric
<0 psig                            

(<0 kPag)

25% GN2 Avail. 40 sLm GO2
Test Run 4b 50% GN2 Avail. 60 sLm GO2
Test Run 4c 75% GN2 Avail. 80 sLm GO2
Test Run 4d 100% GN2 Avail. 100 sLm GO2
Test Run 4e 3 psig                            

(20.7 kPag)

25% GN2 Avail. 40 sLm GHe
Test Run 4f 50% GN2 Avail. 60 sLm GHe
Test Run 4g 75% GN2 Avail. 80 sLm GHe
Test Run 4h 100% GN2 Avail. 100 sLm GHe
Test Run 4i 5 psig                            

(34.5 kPag)

25% GN2 Avail. 40 sLm GHe
Test Run 4j 50% GN2 Avail. 60 sLm GHe
Test Run 4k 75% GN2 Avail. 80 sLm GHe
Test Run 4l 100% GN2 Avail. 100 sLm GHe
Test Run 4m 7 psig                            

(48.3 kPag)

25% GN2 Avail. 40 sLm GHe
Test Run 4n 50% GN2 Avail. 60 sLm GHe
Test Run 4o 75% GN2 Avail. 80 sLm GHe
Test Run 4p 100% GN2 Avail. 100 sLm GHe
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CHAPTER FOUR: RESULTS AND DISCUSSION

Initial IRAS Checkout

Instrument Checkout

Prior to liquid oxygen test runs, the IRAS was filled with liquid nitrogen to checkout or ensure 

proper performance of the pressure, temperature, and flow instrumentation.  Initially, the IRAS 

was subjected to atmospheric pressure by opening of hand valve, HV-2.  During this phase of 

checkout, resistance temperature diode, T27, T30, T32,and T33 read off-scale high at 1123K, 

while thermocouple, TC1 read off-scale high at 2048K.  These temperature sensors were not 

replaced because T26 measures the temperature of a lateral position provides no relevant 

information for the calculations of liquefaction and densification.  The T31 thermocouple was 

damaged during the installation of the teflon tubing on the vent and fill tubing in the IRAS heat 

exchanger.  The T31 thermocouple was intended to measure the temperature of the IRAS heat 

exchanger exit, however, previous tests show the location of the thermocouple did not measure 

the nitrogen at the heat exchanger exit well.

The second phase of checkout ensured the proper performance of the pressure transducers.  The 

pressure transducers were calibrated by the NASA-KSC calibration laboratory and found to have 

an error of .  The IRAS dewar was allowed to pressurize to the relief valve, RV-11, set at 8 psig.  

The pressure gauge, PG-6, correlated well with the PT-7 as read on the Labview program during 
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the pressurization. The IRAS heat exchanger loop was pressurized with helium to 25 psig, as 

recorded with a separate pressure gauge.

IRAS Heat Exchanger Leak Check

As mentioned in Chapter Three, stainless steel and copper compose the IRAS heat exchanger.  

The tubing were connected using a threaded fitting at ambient conditions and as the metals cool 

to liquid nitrogen temperatures, the two metals contract at different rates.  A pressure decay test 

was conducted to ensure the IRAS heat exchanger did not develop a leak during cool down.  

While liquid nitrogen was in the IRAS dewar, the IRAS heat exchanger loop was pressurized to 

approximately 25 psig with gaseous helium and allowed to decay for fifteen minutes.  The 

pressure decay was approximately 0.5 psig over the fifteen minutes and the profile is shown in 

Figure 7.  Equation 28 represents an isentropic pressure vessel blowdown analysis, while 

Equation 29 represents an isothermal blowdown analysis to estimate the size of the leak within 

the heat exchanger loop [28].  Equation 28 and Equation 29 estimate a 0.00013 inch diameter 

leak and 0.00016 inch diameter leak, respectively.  Equation 30 estimates the mass flow rate [29]

through the leak at 0 0.0081 sLm of nitrogen and 0.0081 sLm of nitrogen by the isentropic 

blowdown analysis and isothermal blowdown analysis, respectively. 

PP� = �1 + �γ − 12 � � 2
γ + 1� (γ��)�(γ��) �γ g�P�

ρ�   A tV � ��γ(γ��)
Equation 28

PP� = exp �− �γ − 12 � � 2
γ + 1� (γ��)�(γ��) �γ g�P�

ρ�   A tV �
Equation 29
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ṁ = ρ Q =  ρ C� A�2 ∆P g�
ρ

= C� A �2 P ρ g�
Equation 30

Figure 7: IRAS Heat Exchanger Leak Check

Temperature Profile within the IRAS Dewar

As shown in Figure 8, the temperature profile within the liquid is steady at the boiling point of 

the liquid.  Natural convection currents within the liquid provide sufficient mixing to maintain a 

uniform temperature with no thermal stratification within the liquid.  However, a temperature 

gradient exists within the ullage and is thermally stratified.  Thermal stratification in the ullage 

occurs because a constant temperature boundary condition exists at the liquid portion of the 

liquid-vapor interface due to the consequent vaporization.  Heat transfer from the ambient warms 

the vapor at the dewar wall causing the vapor to become less dense and more buoyant.  Because 

the lowest temperature in the ullage exists at the bottom of the ullage, natural convection is too 

weak to provide sufficient mixing within the ullage.  
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Figure 8: Temperature Profile of IRAS Containing Liquid Oxygen

Normal Evaporation Test

From Equation 24, the heat transferred to the IRAS dewar from the ambient can be determined 

by measuring the mass flow rate that evaporates from IRAS.  The heat released from the IRAS 

with the evaporation is calculated by Equation 31.  

Q���� = ṁ(h� − h�) = ṁ �� c�,�dT���
�� + h�� + � c�,�dT����� �

Equation 31

Once the liquid within the IRAS dewar reaches steady conditions, the liquid is saturated at the 

IRAS dewar pressure, however, a temperature gradient exists within the ullage.  Thus, the liquid 
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sensible heat portion of Equation 31 can be neglected, while the vapor sensible heat portion of 

Equation 31 remains a significant fraction of the total evaporation heat calculation.  

As the IRAS dewar was filled with liquid nitrogen, a flow meter was placed on the IRAS dewar 

vent, downstream of HV-2, during normal venting to measure the mass flow rate of the normal 

evaporation.  The average flow rate over the period of an hour measured 5.3 sLm, and the 

measured ullage temperature gradient ranges from 77 K to 160 K.  The measured flow rate 

represented an average heat transfer rate of 17.6 W, which agrees well with the value reported by 

Notardonato.  

Zero Boil-off

From Equation 25, the heat transferred to the IRAS dewar from the ambient can be removed by 

the coolant through the IRAS heat exchanger.  The heat removed from the IRAS dewar is 

measured and calculated by Equation 32.  

Q�� = ṁ��(h�� ���� − h�� �����) = ṁ�� �� c�,�dT���
��� ����� + h�� + � c�,�dT��� ������� �

Equation 32

The inlet condition is measured by TC-24 and PT-25 to determine saturation conditions and level 

of subcooling, while the exit condition is by TC.  The cooling requirement as determined by 

Equation 32 is 21.44W, 21.78W, and 20.32W for IRAS pressures of 3 psig, 5 psig, and 7 psig, 

respectively.  
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Liquefaction

From Equation 26, the heat that enters the IRAS dewar with the oxygen flow rate is removed by 

the coolant through the IRAS heat exchanger.  The heat removed from the IRAS dewar is 

measured and calculated by Equation 26 and Equation 32.  Another way to measure the heat 

removed from the IRAS dewar during the liquefaction tests is by Equation 33.

Q�̇�� = ṁ���h������,�� − h�����,�������� = ṁ�� �h�� + � c�,�dT����������� �
Equation 33

Equation 26 coupled with Equation 32 or Equation 33 provides the heat transfer for the entire 

IRAS dewar.  Equation 1, Equation 2, Equation 3, Equation 6, and Equation 7 predict the heat 

and mass transfer at the vapor-liquid interface.  

Liquefaction – Top Fill

For the Test Run 3a through Test Run 3l, the gaseous oxygen flows through the IRAS vent 

valve, HV-2, and enters the IRAS dewar from the top.  The gaseous oxygen enters the IRAS 

dewar at a temperature close to ambient, which is the temperature the gaseous oxygen k-bottle.  

The gaseous oxygen stream enters as a jet into the ullage, however, the gas begins to rise due to 

buoyancy effects as soon as the downward velocity dissipates.  Figure 9 shows the warm gaseous 

oxygen entering the IRAS dewar, with the isotherms within the ullage.

Because of the buoyancy effects within the ullage, liquefaction by the top fill method condenses 

the cold isothermal layers nearest the liquid-vapor interface.  No mass motion occurs in the 

ullage except for the general bulk downward movement of the ullage to replace the volume 

occupied by the vapor that is condensed. Thus, the heat transfer from the liquid surface to the 



36

gaseous oxygen is conduction dominant.  Nevertheless, heat is transferred within the liquid 

oxygen by natural convection currents.

Figure 9: Convection Currents within IRAS Dewar during Top Fill Liquefaction
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calculated cooling requirement to condense oxygen at the higher pressures.  The cooling 

requirement increases as the oxygen condensation rate increases; the measured cooling 

requirement, as shown in Figure 10, agrees with calculated cooling requirement increase of 

approximately 8W/sLm.

Figure 10: Cooling Rate at Constant Oxygen Flow Rate and Pressure

Using temperature and pressure measurements during the test runs 3a through 3l, Equation 1, 
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Figure 11: Equation 1 Results for Test Run 3a through Test Run 3l

Figure 12: Equation 3 Results for Test Run 3a through Test Run 3l
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Figure 13: Equation 6 Results for Test Run 3a through Test Run 3l
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The gaseous oxygen within the bubbles continue to cool and collapse as the bubbles rise through 

the liquid oxygen.  If insufficient cooling is provided to the bubble, the gaseous oxygen 

eventually reaches the liquid oxygen surface.  The gaseous oxygen continues to rise into the 

ullage until the it reaches the isotherm equal to the temperature of the cooled gaseous oxygen as 

shown in Figure 14.  The bottom fill takes advantage of the convection currents within the liquid 

to provide cooling to the gaseous oxygen bubble as well as placing the gaseous oxygen in the 

ullage at a distance closer to the liquid surface.  Since the ullage remains conduction dominant, 

the shorter distance to the liquid surface allows for more efficient heat transfer than the top fill 

where the gaseous oxygen is placed at the top of the IRAS dewar.

Figure 14: Convection Currents within IRAS Dewar during Bottom Fill Liquefaction
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Densification

Helium solubility in liquid oxygen is in the 17 ppm, 28 ppm, and 40 ppm for pressure of 3 psig, 

5 psig, and 7 psig from calculations from Zimmerli et. al. [29].
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APPENDIX A: HEAT TRANSFER ANALYSIS
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Heat Transfer Analysis Through Teflon Insulation

The vertical tubing carrying the liquid nitrogen to the heat exchanger and the vaporized gaseous 

nitrogen from the heat exchanger needs to be insulated to minimize heat transfer into the ullage.  

It is desired to optimize the insulation thickness before specifying the design requirements for the 

insulation.  An optimum insulation thickness, or heat transfer minimum, does not exist for radial 

systems, but a heat transfer maximum can exist [18].  To ensure that the insulation thickness 

inhibits heat transfer, the heat transfer through the fill and vent tubes are analyzed.  

Figure 15: Fill and Vent Tubing Thermal Resistance Model
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Figure 15 shows cutaway of the fill and vent tubes.  The fill and vent tubes are composed of the 

stainless steel tubing surrounded by the Teflon tubing as insulation.  Depending on the Teflon

outer wall temperature, oxygen may condense on the outside of the Teflon.  The nitrogen flows 

down through the fill tube as two phase fluid; then the nitrogen flows up through the vent tube as 

a gas.   The outside of both the fill and vent tube is the natural convection.  Heat transfers from 

the gaseous oxygen ullage through the natural convection boundary layer, through the oxygen 

condensate, through the Teflon and stainless steel by conduction, and through the internal 

convection layer.

Overall Radial Heat Transfer to the Fill Tube and Vent Tube – Incropera (3.29 & 3.30)

Equation 34 calculates the overall heat transfer through the fill and vent tubes [18].

q� = T����� − T�����R���
Equation 34

q� = T����� − T�����12πr�Lh�� + ln �r�r��2πk��L + ln �r�r��2πk����L + 12πr�Lh�� + 12πr�Lh��
Equation 35

Convection of Nitrogen Flowing Inside Fill Tube

Equation 36 through Equation 44 develop the convective heat transfer coefficient from the 

stainless steel tube wall to the nitrogen.  Even though the nitrogen is precooled before entering 

the IRAS, these calculations assume two-phase flow once entering the fill tube.  Two 

correlations were used to evaluate the heat transfer coefficient, the Chen correlation and the 

Kandlikar correlation, which provided the same order of magnitude result.  The Chen correlation 
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sums the convective contributions from the bulk convection and the microscopic nucleate boiling

[30].  

h�� = h��� + h���
Equation 36

h��� = 0.00122 � k��.��c���.��ρ��.��
σ�.�μ��.��h���.��ρ��.��� [T� − T���(P�)]�.��[P���(T�) − P�]�.��S

Equation 37

S�Re��� = �1 + 2.56x10��Re���.�����
Equation 38

Re�� = Re�[F(X��)]�.��
Equation 39

X�� = �1 − xx ��.� �ρ�
ρ� ��.� �μ�

μ���.�
Equation 40

F(X��) = �1                                                  X���� ≤ 0.12.35 �0.213 + 1X����.���         X���� < 0.1� 
Equation 41

h��� = h�F(X��)
Equation 42h� = 0.023 �k�D� Re��.�Pr��.�
Equation 43Re� = 4ṁ

πμ�D
Equation 44
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Convection of Nitrogen Flowing Inside Vent Tube - Incropera (8.55), (8.63), (8.21)

Equation 45 calculates the convective heat transfer coefficient across the boundary layer from 

forced convection of the gaseous nitrogen flowing upward through the inside of the vent tube.  

Equation 45 is developed by solving the Navier-Stokes energy equation in cylindrical 

coordinates and assuming (1) laminar, fully developed flow and (2) isothermal inner vent tube 

wall[18].  

h�� = k�D Nu� = 3.66  k�D
Equation 45

Equation 46 calculates the convective heat transfer coefficient across the boundary layer from 

forced convection of the gaseous nitrogen flowing upward through the inside of the vent tube

[18].  Equation 46 uses the Gnielinski correlation by assuming (1) turbulent flow through (2) a 

smooth tube.  For the most realistic flow regimes (GN2 flows above 5 sLm), the GN2 flow is 

turbulent.  

h�� = k�D Nu� =  k�D � (f 8⁄ )(Re� − 1000)Pr1 + 12.7(f 8⁄ )� �⁄ (Pr� �⁄ − 1)�
Equation 46

f = (0.790lnRe� − 1.64)��
Equation 47

Condensation Correlation – Incropera (10.30), (10.26), (10.33)&(10.34), (10.38), (10.39)

Equation 48 represents the condensation convection coefficient and was developed using the 

Nusselt approximation for laminar flow, which is conditional on the value of the Reynolds 
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number defined by Equation 50.  Equation 51 and Equation 52 represent the condensation 

convection coefficient for the wavy and turbulent flow, respectively [18].

h��� = 0.943 �gρ��ρ� − ρ��k��h��′
μ�(T��� − T�)L �

Equation 48

h��′ = h��(1 + 0.68Ja)
Equation 49

Reδ = 4h��(T��� − T�)L
μ�h��′

Equation 50h����ν��/g�� �⁄k� = Reδ1.08Reδ
�.�� − 5.2             30 ≤ Reδ ≤ 1800

Equation 51h����ν��/g�� �⁄k� = Reδ8750 + 58Pr��.��Reδ
�.�� − 253�       Reδ > 1800

Equation 52

Natural Convection of Gaseous Oxygen Outside Fill Tube and Vent Tube – Incropera (9.27)

Equation 53 calculates the convective heat transfer coefficient through boundary layer developed 

by the natural convection[18].  Equation 53 assumes (1) flat, vertical plate analysis and (2) 

isothermal tube wall temperature and suggested for Rayleigh numbers below 109.  The flat plate 

assumption can be applied to vertical cylinders if the boundary layer is much less than diameter 

of the cylinder; the condition is satisfied by Equation 54.  The assumption that the tube walls are 

isothermal is a great approximation for the fill tube because the nitrogen is saturated and heat 

transferred to the nitrogen from the ullage gas produces a phase change and not a temperature 

change, thus, the nitrogen maintains the tube wall temperature.  Although heat transferred to the 
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nitrogen in the vent tube produces a temperature increase, the temperature increase is minimal, 

typically less than 10°C, and the isothermal assumption for the vent tube outer wall remains a 

good approximation. 

h�� = k���D Nu����� = k���D ⎣⎢⎢
⎢⎢⎡0.68 + 0.670Ra�� ��

�1 + �0.492Pr �� ��� �� �� ⎦⎥⎥
⎥⎥⎤

Equation 53DL = 35Gr�� �⁄
Equation 54

The results for simultaneous solutions for Equation 34 through Equation 53 as a function of 

insulation thickness are shown in Figure 16 and Figure 17 for the fill tube and vent tube, 

respectively.  Each figure shows a “break-even” insulation thickness, which is the minimal 

insulation thickness required to make any thermal resistance improvements. The proposed 

insulation thickness is 1.0625 inches and 1 inch for the fill tube and vent tube, respectively, and 

is shown by the arrow on the right hand side of the figure pointing upward.  The proposed 

insulation decreases the heat transfer through the fill tube and vent tube by 1.1W and 2.7W, 

respectively.
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Figure 16: Fill Tube Insulation Optimization

Figure 17: Vent Tube Insulation Optimization
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Heat Transfer Analysis for IRAS Heat Exchanger

The IRAS heat exchanger is a ½” copper tubing in the shape of a “U” with annular fins.  Figure 

18 represents the heat exchanger and Figure 19 represents a cross-section of the IRAS heat 

exchanger for calculation purposes.  The variables in Figure 19 are consistent with fin heat 

transfer presented in Incropera [18].  The overall length of the heat exchanger is 14 inches and 

the fins extend 5/16” in the radial direction from the base of the tubing.  

Figure 18: IRAS Heat Exchanger
Figure 19: IRAS Heat Exchanger Cross-Section

The heat transfer through the IRAS heat exchanger is calculated from  From Incropera (3.101):

q� = h A� �1 − N A�A� (1 − η�)� θ�
Equation 55

From Incropera (9.33) and (9.34), The convective heat transfer coefficient is given by Equation 

56:

Nu����� = h�Dk =  �0.60 + 0.387Ra�� �⁄[1 + (0.559 Pr⁄ )� ��⁄ ]� ��⁄ ��
Equation 56

From Incropera (3.99), the total surface area of the heat exchanger is given by Equation 57:
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A� = NA� + A� = NA� + 2πr�(H − Nt)
Equation 57

From Incropera Table 3.5 for straight fins:A� = 2π�r�,� − r���
Equation 58

From Incropera (3.89) and (3.90), the single fin efficiency is given by Equation 59:

η� = tanh mL�mL� = tanh �� 2hkA��� �⁄ L�� �⁄ �
�� 2hkA��� �⁄ L�� �⁄ �

Equation 59

The heat exchanger is capable of transferring 3,400 W of heat.  The fins increase the heat 

transfer rate capability by approximately 1000% when compared to a copper tube without fins.
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APPENDIX B: EXPERIMENTAL SETUP INFORMATION



53

Figure 20: Experimental Setup - Detailed Process Instrumentation Diagram
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Table 7: Experimental Setup - Detailed Process Instrumentation Legend

REFERENCE 
DESIGNATOR

DESCRIPTION SPECIFICATION MANUFACTURER MANUFACTURER 
NUMBER

TK-01 LIQUID NITROGEN TANK 6,000 GALLON MINNESOTA VALLEY VCS-6000-SC-250
HV-1 IRAS DEWAR INLET VALVE (TYPICALLY LO2) ½” EDEN CRYOGENICS BC-02042-8101-1
HV-2 IRAS DEWAR EXIT VALVE (GO2 VENT) ½” EDEN CRYOGENICS BC-02042-8100-1
BD-3 IRAS BURST DISC 75PSIG FIKE CORPORATION P ST
RV-4 IRAS MAIN RELIEF VALVE SET 61.7PSIG, 84SCFM FLOWSAFE, INC 01-2190M-101
RV-5 IRAS COOLANT LOOP RELIEF VALVE SET 63PSIG FLOWSAFE, INC. 01-2190M-101
PG-6 IRAS DEWAR PRESSURE GAUGE 0-100 PSIG ASHCROFT 1008
PT-7 IRAS DEWAR PRESSURE TRANSDUCER 0-25PSIG TELEDYNE TABER 2415
CV-8 IRAS COOLANT LOOP MASS FLOW CONTROL VALVE 0-100 SLM ± 1SLM TELEDYNE INSTR. HFC-203
HX-9 IRAS HEAT EXCHANGER ½” COPPER TUBE
HX-10 IRAS COOLANT LOOP AMBIENT HEAT EXCHANGER ½” COPPER TUBE
RV-11 IRAS OPERATIONAL RELIEF VALVE SET 8PSIG
KB-12 GASEOUS OXYGEN/HELIUM K-BOTTLE 1.5 FT³ (W.V)
HV-13 K-BOTTLE ISOLATION VALVE
PG-14 K-BOTTLE UPSTREAM PRESSURE GAUGE 0-4000 PSI

CONCOA 312-4311-540
F-15 GASEOUS OXYGEN FILTER 10 MICRON
PRV-16 K-BOTTLE PRESSURE REGULATING VALVE 3000PSI TO 0-250PSI
PG-17 K-BOTTLE DOWNSTREAM PRESSURE GAUGE 0-400 PSI
CV-18 GASEOUS OXYGEN MASS FLOW CONTROL VALVE 0-20 SLM  ±  0.2SLM MKS INSTRUMENTS 1179A
MV-286 LIQUID NITROGEN STORAGE TANK ISOLATION VALVE PHPK
CV-20 SUBCOOLER CONTROL VALVE 970272-5300-21
SC-21 SUBCOOLER
TC-22 SUBCOOLER COOLING FLUID EXIT THERMOCOUPLE TYPE T (-200 to 350°C) OMEGA
HX-23 SUBCOOLER COOLING FLUID AMBIENT HEAT EXCHANGER
TC-24 SUBCOOLER PROCESS FLUID EXIT THERMOCOUPLE TYPE T (-200 to 350°C) OMEGA
PT-25 SUBCOOLER PROCESS FLUID EXIT PRESSURE TRANSDUCER 0-30 PSIG WIKA INSTR. 4258112
T1 – T32 IRAS DEWAR POSITION TEMPERATURE SENSOR
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Table 7: Experimental Setup - Detailed Process Instrumentation Legend (Continued)

REFERENCE 
DESIGNATOR

DESCRIPTION SPECIFICATION MANUFACTURER MANUFACTURER 
NUMBER

TC-FP THERMOCOUPLE FIELD POINT 8 CHANNEL NATIONAL INSTRUM cFP-TC-120
CB-FP INTEGRATED CONTROL BLOCK FIELD POINT 8 CHANNEL NATIONAL INSTRUM cFP-CB-1
RTD-FP TEMPERATURE MODULE FIELD POINT 8 CHANNEL NATIONAL INSTRUM cFP-RTD-124
AO-FP ANALOG VOLTAGE OUTPUT MODULE FIELD POINT 8 CHANNEL 0-10V NATIONAL INSTRUM cFP-AO-210
CNT-FP INTELLEGIENT CONTROLLER FIELD POINT 2 PORT NATIONAL INSTRUM cFP-2110
MOD ETHERNET SWITCH MODEM 5 PORT B&B ELECTRONICS ELINX EIR205
COMP COMPUTER 2.99GHz, 1.00GBRAM DELL PRECISION 670
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APPENDIX C: FLUID COMPOSITION
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Nitrogen

NASA procures nitrogen in accordance with the military specification, MIL-PRF-27401.  The 

purity and impurity limits are listed in Table 8 under the column titled, “Procurement 

Specification.”  The military specification requires the vendor to verify that the individual tanker 

load met the procurement specification prior to shipment, and shows an actual concentrations of 

the liquid procured.  In addition to the vendor analysis, NASA randomly samples a tanker and 

analyzes the sample on a periodic basis. Table 8 provides average results from vendor and 

NASA analysis.

Table 8: Nitrogen Procurement Specification and Laboratory Analysis

Component Procurement 
Specification

Vendor Laboratory 
Analysis

NASA Laboratory 
Analysis

Nitrogen 99.5% (min) >99.99 %
Oxygen 50 ppm (max) <2 ppm
Total Hydrocarbons 25 ppm (max) <1 ppm
Water 11.6 ppm (max) <2 ppm
Argon Not Required Not Required 7 ppm

Nitrogen is procured to military specification, MIL-PRF-27401F Grade B.
The unit, ppm, is parts per million by volume as a gas at standard conditions.
A less than (“<”) represents a value below the lower detection limit of the analytical equipment.
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Oxygen

NASA procures oxygen in accordance with the military specification, MIL-PRF-25508.  Table 9

lists the purity and impurity requirements from the military specification. Like the nitrogen, a 

vendor analysis exist for every oxygen delivery.  Unlike the nitrogen, a NASA analysis exists for 

every oxygen delivery as well.  Table 9 shows the average analysis for oxygen.  

Table 9: Oxygen Procurement Specification and Laboratory Analysis

Component Procurement 
Specification

Vendor Laboratory 
Analysis

NASA Laboratory 
Analysis

Oxygen 99.99% (min) >99.99 % >99.989 %
Total Hydrocarbons 20 ppm (max) <10.00 ppm 6 ppm
Water 3 ppm (max) <3.00 ppm <2 ppm
Methane 16 ppm (max) 5.53 ppm 6 ppm
Ethane 2 ppm (max) Not Measured Not Measured
Propane 1 ppm (max) <1.00 ppm Not Measured
Nitrous Oxide 1 ppm (max) <1.00 ppm <1 ppm
Halogenated Hydrocarbons 1 ppm (max) <1.00 ppm <1 ppm
Carbon Monoxide 1 ppm(max) <1.00 ppm <1 ppmCarbon Dioxide
Nitrogen

75 ppm(max)
4.50 ppm <5 ppm

Argon 31.56 ppm 19 ppm
Krypton Not Measured <5 ppm
Helium Not Required Not Required <10 ppm

Oxygen is procured to military specification, MIL-PRF-25508G Grade F.
The unit, ppm, is parts per million by volume as a gas at standard conditions.
A less than (“<”) represents a value below the lower detection limit of the analytical equipment.
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Helium

NASA procures helium in accordance with the military specification, MIL-PRF-27407 as a 

liquid.  The purity and impurity limits are listed in Table 10 under the column titled, 

“Procurement Specification.”  The military specification requires the vendor to verify that the 

individual tanker load met the procurement specification prior to shipment, and shows an actual 

concentrations of the liquid procured.  In addition to the vendor analysis, NASA randomly 

samples a tanker and analyzes the sample on a periodic basis. Table 10 provides average results 

from vendor and NASA analysis.

Table 10: Helium Procurement Specification and Laboratory Analysis

Component Procurement 
Specification

Vendor Laboratory 
Analysis

NASA Laboratory 
Analysis

Helium 99.95% (min)
Water 9 ppm (max)
Total Hydrocarbons 5 ppm (max)
Oxygen 3 ppm (max)
Nitrogen + Argon 14 ppm (max)
Neon 23 ppm (max)
Hydrogen 1 ppm (max)
Carbon Dioxide 1 ppm (max)
Carbon Monoxide 1 ppm (max)

Helium is procured to military specification, MIL-PRF-27407C Grade A.
The unit, ppm, is parts per million by volume as a gas at standard conditions.
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APPENDIX D: HEAT TRANSFER COEFFICIENT DERIVATION
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Direct Contact Condensation by Vapor Collapse

Consider a flat, horizontal, cold plate with quiescent saturated oxygen vapor above the cold 

plate.  A film of liquid oxygen condenses on the cold plate, with the film thickness, (t), 

increasing with time as shown in Figure 21.  A control volume, represented by the dotted line, is 

established around the liquid-vapor interface.  The energy balance through the control volume is 

given by Equation 60. 

Figure 21: Heat Transfer Coefficient Derivation Model

Q������������ = Q����������
Equation 60

ṁ����  h��′ = k� A� �T��� − T�H(t) �
Equation 61

Where the height of the liquid from the cold plate is given by Equation 62.H(t) =  δ� + δ(t)
Equation 62

ṁ���� = ρ�A� �dHdt �
Equation 63

Equation 64 is obtained by substituting Equation 63 into Equation 61.
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ρ� A�  �dHdt �  h��� = k� A� �T��� − T�H(t) �
Equation 64

Rearranging Equation 64 , Equation 65 is obtained.

H dH =  k� (T��� − T�)h��′  ρ�  dt
Equation 65

Integrate Equation 65 to obtain Equation 67.

� H dH����
�� =  k� (T��� − T�)h��′  ρ�  � dt�

�
Equation 66

�12 (δ� + δ)� − 12 (δ�)�� =  k� (T��� − T�)h��′  ρ�  (t − 0)
Equation 67

Rearrange Equation 67 to obtain Equation 73.12 ��δ�� + 2δ�δ +  δ�� − (δ�)�� =   k� (T��� − T�)h��′  ρ�  t                                                  (68)
Equation 68

�2δ�δ + δ�� + δ�� =  2 k� (T��� − T�)h��′  ρ�  t + δ��                                                            (69)
Equation 69

(δ� + δ)� =  2 k� (T��� − T�)h��′  ρ�  t + δ��                                                                           (70)
Equation 70

δ� + δ =  �2 k� (T��� − T�) th��′  ρ� + δ��                                                                               (71)
Equation 71

δ =  �2 k� (T��� − T�) th��′  ρ� + ��� − δ�                                                                              (72)
Equation 72
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δ =  �2 k� (T��� − T�) t + δ�� h�� ρ�h�� ρ� − δ�                                                                   (73)
Equation 73

The general definition of the heat transfer coefficient is given by Equation 74.  

h = k�H(t) = k�δ(t) + δ�                                                                                                     (74)
Equation 74

Substitute Equation 73 into Equation 74 to obtain Equation 75, the derived heat transfer 

coefficient for condensation on flat, horizontal cold plate.  

h = k���2 k� (T��� − T�) t + δ�� h�� ρ�h�� ρ� − δ�� + δ�
                                                      (75)

Equation 75

h = k�� h�� ρ�2 k� (T��� − T�) t + δ�� h�� ρ�                                                                       (76)
Equation 76

The condensation mass flux is found by rearranging Equation 61.

G���� = ṁ����A� = k�h�� �T��� − T�H(t) �
Equation 77

Substituting Equation 73 into Equation 77, gives the condensation mass flux, Equation 78.

G���� = k�h��′ (T��� − T�)
��2 k� (T��� − T�) t + δ�� h�� ρ�h�� ρ� − δ�� + δ�

Equation 78

G���� = k�h��′ (T��� − T�)� h�� ρ�2 k� (T��� − T�) t + δ�� h�� ρ�
Equation 79
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G���� = k�(T��� − T�)�  ρ�h���2 k� (T��� − T�) t + δ�� h�� ρ��
Equation 80

Direct Contact Condensation by Bubble Collapse

Bubble Departure Frequency Derivation

��,� = ṁ���m�,�
Equation 81

��,� = ṁ���ρ�V�,�
Equation 82

��,� = ṁ���ρ� �43 π �D�,�2 ���
Equation 83

��,� = 6 ṁ���
π ρ� D�,��

Equation 84

Mass Condensation Rate of Bubbleṁ�,���� = �m�,��������,��
Equation 85

ṁ�,���� = � 6 ṁ���
π ρ� D�,�� � �ρ� 4π3 �D�,�2 �� − ρ� 4π3 �D��2 ���

Equation 86

ṁ�,���� = � 6 ṁ���  π ρ� D�,�� � �ρ� π6 �D�,�� − D�� ���
Equation 87
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ṁ�,���� = ṁ��� �D�,�� − D���D�,�� �
Equation 88

ṁ�,���� = ṁ��� ��D�,�D�,��� − � D��D�,����
Equation 89

ṁ�,���� = ṁ����1 − β����    where D�,��D�,� = β��
Equation 90ṁ���� = ṁ�,���� + ṁ���,����ṁ���� = ṁ�����1 − β���� + G����A�������ṁ���� − ṁ�����1 − β���� = ṁ�����1 − �1 − β����� = G����A�������ṁ�����β��� = G����A�������

ṁ���� = G����A�������β��

Average Heat Transfer Coefficient

Nu�,� = h D�,�k� = 1√π �ρ�u�D�,�μ�   Pr��
Equation 91

Nu�,�� = h D�,��k� = 1√π �ρ�u�D�,��μ�   Pr��
Equation 92

h��� = k�2√π �ρ�u�μ� Pr�� � 1�D�,� + 1�D�,�� �
Equation 93

h��� = k�2√π �ρ�u�
μ� Pr�� � 1�D�,� + 1�D�,��� �D�,��D�,�
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Equation 94

h��� = k�2√π
�ρ�u�D�,�

μ� Pr�� �1 + �D�,��D�,���
Equation 95

h��� = k�2√π
�Re�,�Pr�� �1 + 1

β���
Equation 96

h��� = k�2√π
�Re�,�Pr�� �β�� + 1

β�� �
Equation 97
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APPENDIX E: OXYGEN AND NITROGEN PROPERTY CORRELATIONS
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Oxygen Vapor Pressure

Equation 98 and Equation 99 calculate the vapor pressure of oxygen at a given temperature [31].

ln �PP�� = Aχ + Bχ� + Cχ� +  Dχ(1 − χ)ε

Equation 98

χ = �1 − T�T ��1 − T�T��
Equation 99

Where,
A = 7.7977723
B = 4.5773000
C = -1.9281264
D = 3.2931232
 = 1.5
Pt = 0.001464 bar
Tt = 54.359 K
Tc= 154.581 K
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Oxygen Vapor Heat Capacity

Equation 100 calculates the heat capacity of oxygen vapor [31].

c�,��R = A�T� + A�T� + A�T + A� + A�T + A�T� + A�T� + A� �A�T �� e����e��� − 1��
Equation 100

Where,
A1 = -1.86442361 x 102

A2 = 2.07840241 x 101

A3 = -3.42642911 x 10-1

A4 = 3.50297163 x 100

A5 = 2.05866482 x 10-7

A6 = -1.11035799 x 10-8

A7 = 2.08612876 x 10-11

A8 = 1.01894691 x 100

A9 = 2.23918105 x 103
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Oxygen Vapor Density

Equation 101, Equation 102, and Equation 103 calculate the vapor density of oxygen at a given 

temperature and pressure [31].P = T R ρ���  �1 + B ρ��� + C ρ��� ��
Equation 101

B =  � B� T�����
�

Equation 102

Where,
B1 = -8.638001288 x 102

B2 = 1.733064315 x 104

B3 = -1.241961054 x 105

B4 = 3.956609285 x 105

B5 = -4.904475356 x 105

C =  � C� T�����
�

Equation 103

Where,
C1 = 3.569552013 x 105

C2 = -2.696578423 x 107

C3 = 8.152809009 x 108

C4 = -1.229796911 x 1010

C5 = 9.252345993 x 1010

C6 = -2.771904509 x 1011
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Oxygen Latent Heat

A third order polynomial curve was applied to data for oxygen latent heat obtained from 

Weber[31].  Equation 104 shows the third order polynomial curve from Excel.  Figure 22 shows 

the thermal conductivity data with the plot of Equation 104.

h�� = A + BT + CT� +  DT�
Equation 104

Where,
A = -0.000081397422873
B = 0.014733449692986
C = -1.651586006233110
D =301.861319160972000

Figure 22: Oxygen Latent Heat

y = -0.000081397422873x3 + 0.014733449692986x2 - 1.651586006233110x + 
301.861319160972000

R² = 0.999992413689128
150

175

200

225

250

50 60 70 80 90 100 110

O
xy

ge
n 

L
at

en
t H

ea
t (

J/
K

)

Temperature (K)



72

Liquid Oxygen Heat Capacity

A fifth order curve was applied to data for liquid oxygen density obtained from Barron [33].  

Equation 105 shows the sixth order curve from Excel.  Figure 23 shows the liquid oxygen 

density data with the plot of Equation 105.

c�,��� = A + BT + CT� +  DT� +  ET� +  FT�
Equation 105

Where,
A = -804.941841795574000
B = 157.662398397089000
C = -3.989099267857940
D = 0.049706461920543
E = -0.000304345673485
F = 0.000000737635884

Figure 23: Liquid Oxygen Heat Capacity

y = 0.000000737635884x5 - 0.000304345673671x4 + 0.049706461949784x3 -
3.989099269977310x2 + 157.662398450278000x - 804.941841345198000

R² = 0.999520571840045
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Liquid Oxygen Density

A sixth order curve was applied to data for liquid oxygen density obtained from Weber [31].  

Equation 106 shows the sixth order curve from Excel.  Figure 24 shows the liquid oxygen 

density data with the plot of Equation 106.

ρ��� = A + BT + CT� +  DT� +  ET� +  FT� +  GT�
Equation 106

Where,
A = 1,828.148354159390000
B = -24.432705431840600
C = 0.601754991149983
D = -0.009840755672421
E = 0.000092502281069
F = -0.000000472160225
G = 0.000000001000684

Figure 24: Liquid Oxygen Density

y = 0.000000001000684x6 - 0.000000472160178x5 + 0.000092502271091x4 -
0.009840754422011x3 + 0.601754904093500x2 - 24.432702496477700x + 

1,828.148319238490000
R² = 0.999999824619697
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Liquid Oxygen Thermal Conductivity

A third order polynomial curve was applied to data for liquid oxygen thermal conductivity 

obtained from Barron [32].  Equation 107 shows the third order polynomial curve from Excel.  

Figure 25 shows the thermal conductivity data with the plot of Equation 107.

k� = A + BT + CT� +  DT�
Equation 107

Where,
A = 0.213338803988351
B = 0.000289487448988
C = - 0.000014585678268
D = 0.000000041651737

Figure 25: Liquid Oxygen Thermal Conductivity

y = 0.000000041651737x3 - 0.000014585678268x2 + 0.000289487448995x + 
0.213338803988180

R² = 0.999997208665343
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Liquid Oxygen Viscosity

A fifth order polynomial curve was applied to data for liquid oxygen viscosity obtained from 

Barron [32].  Equation 108 shows the third order polynomial curve from Excel.  Figure 26 shows 

the thermal conductivity data with the plot of Equation 108.

μ��� = A + BT + CT� +  DT� + ET� + FT�
Equation 108

Where,
A = 0.0147150601738570000000000
B = - 0.0006548489914963950000000
C = 0.0000120104628576337000000
D = - 0.0000001112279435282560000
E = 0.0000000005158199664826930
F = -0.0000000000009536294392749

Figure 26: Liquid Oxygen Viscosity

y = -0.0000000000009536294385105x5 + 0.0000000005158199661382020x4 -
0.0000001112279434669950000x3 + 0.0000120104628522819000000x2 -

0.0006548489912676710000000x + 0.0147150601700601000000000
R² = 0.9999928906474380000000000

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

50 60 70 80 90 100 110 120 130

L
iq

ui
d 

O
xy

ge
n 

V
is

co
si

ty
 (k

g/
m

·s)

Temperature (K)



76

Liquid Oxygen Surface Tension

A third order polynomial curve was applied to data for liquid oxygen surface tension obtained 

from Barron [32].  Equation 109 shows the third order polynomial curve from Excel.  Figure 27

shows the surface tension data with Equation 109.σ� = A + BT + CT� +  DT�
Equation 109

Where,
A = 0.03784273362256790000
B = - 0.00028019982284562800
C = - 0.00000009855225489719
D = 0.00000000194328853049

Figure 27: Liquid Oxygen Surface Tension

y = 0.00000000194328853053x3 - 0.00000009855225490759x2 -
0.00028019982284466600x + 0.03784273362254010000

R² = 0.99999835795141000000
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Nitrogen Vapor Pressure

Equation 110 calculates the vapor pressure of nitrogen at a given temperature [33].

ln(P) = N�T +  N� +  N�T +  N�(T� − T)�.�� +  N�T� + N�T� +  N�T� +  N�T� +  N�ln (T)
Equation 110

Where,
N1 = 0.8394409444 x 104

N2 = -0.1890045259 x 104

N3 = -0.7282229165 x 101

N4 = 0.1022850966 x 10-1

N5 = 0.5556063825 x 10-3

N6 = -0.5944544662 x 10-5

N7 = 0.2715433932 x 10-7

N8 = -0.4879535901 x 10-10

N9 = 0.5095360824 x 103
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Nitrogen Vapor Heat Capacity

Equation 111 calculates the heat capacity of nitrogen vapor [33].

c�,��R = N�T� + N�T� + N�T + N� + N�T + N�T� + N�T� + N� �N�T �� e����e��� − 1��
Equation 111

Where,
N1 = -0.7352104012 x 103

N2 = 0.3422399804 x 102

N3 = -0.5576482846 x 100

N4 = 0.3504042283 x 101

N5 = -0.1733901851 x 10-4

N6 = 0.1746508498 x 10-7

N7 = -0.3568920335 x 10-11

N8 = 0.1005387228 x 101

N9 = 3353.4061
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Nitrogen Latent Heat

A sixth order polynomial curve was applied to data for nitrogen latent heat obtained from 

Jacobsen and Stewart [33]. Equation 112 shows the sixth order polynomial curve from Excel.  

Figure 28 shows the thermal conductivity data with the plot of Equation 112.

h�� = A + BT + CT� +  DT� +  ET� +  FT� +  GT�
Equation 112

Where,
A = -2948.433966063970000
B = 227.928493462180000
C = -6.728937040380770
D = 0.104914396711496
E = -0.000915160992150
F = 0.000004235559605
G = -0.000000008148664

Figure 28: Nitrogen Latent Heat

y = -0.000000008148664x6 + 0.000004235559564x5 - 0.000915160982450x4 + 
0.104914395513572x3 - 6.728936959480790x2 + 227.928490700281000x -

2,948.433930306330000
R² = 0.999998873337188
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Liquid Nitrogen Density

A sixth order polynomial curve was applied to data for liquid nitrogen density obtained from 

Jacobsen and Stewart [33]. Equation 113 shows the sixth order polynomial curve from Excel.  

Figure 29 shows the thermal conductivity data with the plot of Equation 113.ρ��� = A + BT + CT� +  DT� +  ET� +  FT� +  GT�
Equation 113

Where,
A = -5,400.668730378720000
B = 454.403865170203000
C = - 13.412411829511900
D = 0.208986234251856
E = - 0.001826834840131
F = 0.000008485691357
G = -0.000000016386729

Figure 29: Liquid Nitrogen Density

y = -0.000000016386728x6 + 0.000008485691318x5 - 0.001826834830788x4 + 
0.208986233008159x3 - 13.412411736559300x2 + 454.403861678750000x -

5,400.668682476710000
R² = 0.999998629398363
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Helium Solubility in Liquid Oxygen

Normally, the ullage gas is composed of the same component as the liquid in cryogenic systems.  

When the ullage gas is replaced with a non-condensable, a portion of the non-condensable gas is 

absorbed into the liquid.  The non-condensable gas, helium, is used in the IRAS densification 

runs.  The amount of non-condensable gas that is absorbed in the liquid is a function of the 

relative volatility and the system pressure.  The relative volatility is the volatility of the non-

condensable gas compared to the volatility of the liquid.  Equation 114 through Equation 117

provide the correlation of helium solubility in liquid oxygen as a function of temperature and 

pressure. x = P∗exp(a(T) + b(T)P∗)
Equation 114a(T) = a� + a�T + a�T�
Equation 115b(T) = b� + b�T + b�T�
Equation 116

P∗ = �P − P�P��� �
Equation 117

Where
a0 = -13.82
a1 = 0.0934/K
a2 = -0.00021/K²
b0 = 0
b1 = 0/K
b2 = 0/K²
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APPENDIX F: SAMPLE CALCULATIONS
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Equation 1

G���� = � M2πR�T��� �P� − P����
The molecular weight of oxygen is 0.032 kg/mol.  The universal gas constant is 8.314 J/mol·K.  

The sample calculation for Equation 1 uses a liquid temperature of 94K at a IRAS system 

pressure of 7 psig.  Equation 98 estimates the saturated pressure at a temperature of 94K.

G���� = � 0.032 kgmol2π �8.314 Jmol · K� 94K��� [149,588Pa − 148,353Pa]
G���� = 3.153 kgs ∙ m�
Equation 2

h = � M2πR�T��� h���T v��
The components inside the parenthesis have been addressed in the Equation 1 sample

calculation.  Equation 104 estimates the latent heat at a temperature of 94K, while the difference 

between the reciprocals of Equation 101 and Equation 106 provides the specific volume change 

from vapor to liquid.  

h = � 0.032 kgmol2π �8.314 Jmol · K� 94K���   �209,190 Jkg��
(94K) � 14.127 kgm� − 11122.252 kgm��

h = 5,097 kWm� ∙ K
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Equation 3

G���� = � M2πR�T��� �Γ(a)σ�P� − σ�P��
The components inside the parenthesis and the two pressures were determined in the two above 

sample calculations.  The condensation coefficient, c, and evaporation coefficient, e, are set 

equal to 1.  The function, (a), is determined by Equation 4 and Equation 5 by iterative 

calculation with Equation 3 using Microsoft Excel.  For this sample calculation, assume GCOND

equals 0.24 kg/m²·s.

Equation 5

a = G����P� �R T2 M = 0.24 kgm� ∙ s149,588Pa ��8.314 Jmol ∙ K� (94K)2 �0.032 kgmol� = 0.005
Equation 4

Γ(a) = exp(−a�) + a√π[1 + erf(a)] =  exp(−(0.005)�)(0.005)√π[1 + erf(0.005)]
Γ(a) = 1.0089

G���� = � 0.032 kgmol2π �8.314 Jmol · K� 94K��� [(1.0089)(1)149,588Pa − (1)148,353Pa]
G���� = 0.24 kgm� ∙ s
No need to continue with iterations, since condensation mass flux agrees with assumption.

Equation 6

G���� = k�(T��� − T�)�  ρ�h���2 k� (T��� − T�) t + δ�� h�� ρ��
The latent heat (hlv), liquid oxygen density (l), and thermal conductivity (kl) are determined by 

Equation 104, Equation 106, and Equation 107.  For the purposes of this sample calculation, the 
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saturated temperature is 94K, with an IRAS heat exchanger surface of temperature of 85K, a 

liquid height of 12 inches above the heat exchanger, and an elapsed time of 10 seconds.

G���� = k�(T��� − T�)�  ρ�h���2 k� (T��� − T�) t + δ�� h�� ρ��G����= �0.1463 Wm ∙ K� (94K − 85K)
∙ �  1122 kgm��209,190 Jkg� �2 �0.1463 Wm ∙ K� (94K − 85K)(10s) + (0.305m)�  �209,190 Jkg� �1122 kgm���
G���� = 3.215x10�� kgm� ∙ s
Equation 7

h = k�� h�� ρ�2 k� (T��� − T�) t + δ�� h�� ρ�
The sample calculation for Equation 6 provides the values for each of the components in 

Equation 7.h= �0.1463 Wm ∙ K�
∙ � �209,190 Jkg� �1122 kgm���2 �0.1463 Wm ∙ K� (94K − 85K)(10s) + (0.305m)�  �209,190 Jkg� �1122 kgm���
h = 5.75 Wm� ∙ s
Equation 8
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D� = �6 σ D�ρ�� g�

The sample calculation below uses Equation 109 to estimate the liquid oxygen surface tension.  

The nozzle diameter is the inner diameter of the liquid oxygen fill tube, which is a 0.500” x 

0.049” and downstream of HV-1.  The difference between the liquid density and vapor density is 

obtained from Equation 106 and Equation 101, respectively, at a liquid oxygen temperature of 

94K.

D� = � 6 �0.01225 Nm� [0.010211m]�1122.2 kgm� − 4.273 kgm�� �9.81 ms���

D� = 0.00409m
Equation 9

β = �1 − 3√π  Ja �Re�� Pr�� Fo���� = �1 − 3√π ρ�c�(T��� − T�)ρ�h��  �ρ�u�D�μ�  Pr��  α t�D�� ���
The sample calculation below uses Equation 106, Equation 105, Equation 98, Equation 101, 

Equation 104, and Equation 108 to estimate the liquid density, liquid specific heat capacity, 

saturation temperature, vapor density, latent heat, liquid viscosity, respectively, evaluated at a 

temperature of 94K and a pressure of 7 psig.  The bubble velocity, ub, and departure diameter, 

Dd, are determined by the sample calculations for Equation 8 and Equation 10.  

Ja = ρ�c�(T��� − T�)ρ�h�� = �1122.2 kgm�� �1.705 kJkg ∙ K� (94.09K − 94K)�4.273 kgm�� �209.2 kJkg� = 0.1291
Re�� = ρ�u�D�μ� = �1122.2 kgm�� �0.1554 ms � (0.003615m)�0.000173 kgm ∙ s� = 4115.8
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Pr = c�,�μ�k� = �1704.8 Jkg ∙ K� �0.000173 kgm ∙ s��0.1463 Wm ∙ K� = 2.012
β = �1 − 3√π (0.1291) �(4115.8) (2.012)��  �7.645x10�� m�s � (5.88s)(0.003615m)� ���

β = 0.65
Equation 10

U� = C�1 − α �g σ ρ��ρ�� ��� = 1.531 − 0 ⎝⎛
�9.81 ms�� �0.01225 Nm� �1122.2 kgm� − 4.273 kgm���1122.2 kgm��� ⎠⎞

�� =
U� = 0.1554 ms
Equation 12

t� = Hu� = 0.9144m0.1554 ms
Assume H = 36 inches or 0.9144 m and the upward velocity, ub, is provided by the result of 

Equation 10 sample calculation.t� = 5.88s
Equation 14

��,� = 6 ṁ���
π ρ� D�,��

Assume the gaseous oxygen mass flow rate is 2 sLm.  The oxygen vapor density is estimated by  

Equation 101, assuming a vapor temperature of 200 K. Although the oxygen vapor originates in 

k-bottle at ambient temperature, the oxygen vapor flows through ½” stainless steel tubing 
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through the IRAS dewar to the bottom of the IRAS dewar.  As the gaseous oxygen flows through 

the tubing, the oxygen cools. Sample calculations of Equation 8 gives the value for the bubble 

departure diameter, Db,d.

��,� = 6 (2 sLm) �0.001326 kgsL � �min60s�
π �1.955 kgm�� (0.00409m)�

��,� = 631.24s
Equation 28PP� = �1 + �γ − 12 � � 2

γ + 1� (γ��)�(γ��) �γ g�P�
ρ�   A tV � ��γ(γ��)

Rearrange to solve for the area (A).

A =  � 2γ − 1� �γ + 12 � (���)�(���) � ρ�γ g� P�  Vt  ��PP���(���)�� − 1�
For IRAS heat exchanger leak check, a gaseous helium at an initial pressure of 25.2378 psig 

(275,333 Pa) decayed to a final pressure of 24.7485 psig (271,959 Pa) in 1,110 seconds.  The 

specific heat ratio of helium is 1.67 and the initial density of gaseous helium is 2.226 kg/m³.  The 

gaseous helium occupies approximately 0.000445 m³ inside the IRAS heat exchanger.

A =  � 21.67 − 1� �1.67 + 12 � (�.����)�(�.����) � 2.226 kgm³1.67(275,333Pa)  4.45x10��m³1110 s  ��271,959Pa275,333Pa��(�.����)�(�.��) − 1�A = 5.43x10���m�
Equation 29
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PP� = exp �− �γ − 12 � � 2
γ + 1� (γ��)�(γ��) �γ g�P�

ρ�   A tV �
Rearrange to solve for area (A).

A = − � 2
γ − 1� �γ + 12 � (γ��)�(γ��) � ρ�

γ g� P�  Vt   ln �PP��
A =  − � 21.67 − 1� �1.67 + 12 � (�.����)�(�.����) � 2.226 kgm³1.67(275,333Pa)  4.45x10��m³1110 s  ln �271,959Pa275,333Pa�
A = 2.70x10���m�
Equation 30ṁ = C� A �2 ∆P ρ g�
The below sample calculation uses the Isentropic Blowdown area result from Equation 28, the 

liquid nitrogen mass flow rate through the leak.  From orifice flow calculations, CD ranges from 

a minimum of 0.54 to a maximum of unity [29], thus, the below sample calculation uses CD

equal to 1.00 to represent a maximum liquid nitrogen flowing through the leak in place of an 

uncertain CD.  The pressure difference (P) is from the pressure of the liquid nitrogen flowing 

through the IRAS heat exchanger at 45 psig (411,588Paa) to the pressure within the IRAS dewar

of 3 psig (122,588 Paa).  The density of the liquid nitrogen is estimated from Equation 113 at a 

temperature of 80K.  

ṁ = (1.00) (5.43x10���m�) �2 (411,588 Pa − 122,010 Pa) �796.23 kgm�� � Nm�Pa � �kg ms�N �
ṁ = 1.40x10�� kgs = 0.0072sLm
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Equation 31Q���� = ṁ �� c�,�dT���
�� + h�� + � c�,�dT����� �

From Equation 112, h��(T) = h��(77.3K) = 85.44 ��
From Equation 111,

� c�,�dT����� = � R ⎣⎢⎢⎢
⎡N�T� + N�T� + N�T + N� + N�T + N�T� + N�T� + N� �N�T �� e����e��� − 1�� ⎦⎥⎥⎥

⎤ dT����
��.��
= R �− N�4T� − N�3T� + N�lnT + N�T + N�T�2 + N�T�3 + N�T�4 + N�N��e��� − 1��
= 85.79 Jg

Q���� = ṁ �� c�,�dT���
�� + h�� + � c�,�dT����� � = ṁ �h�� + � c�,�dT����� �
= ṁ �h�� + � c�,�dT����� � = 5.3sLm �1.1614 gsL � �min60s� �85.44 Jg + 85.79 Jg�Q���� = 17.57W
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