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An experimental study is presented that examines the interaction of a vortex ring with 
a free surface. The main objective of this study is to identify the physical mechanisms 
that are responsible for the self-disconnection of vortex filaments in the near-surface 
region and the subsequent connection of disconnected vortex elements to the free 
surface. The understanding of those mechanisms is essential for the identification and 
estimation of the appropriate spatial and temporal scales of the disconnection and 
connection process. In this regard, the velocity and vorticity fields of an obliquely 
approaching laminar vortex ring with a Reynolds number of 1150 were mapped by 
using Digital Particle Image Velocimetry (DPIV). The evolution of the near-surface 
vorticity field indicates that the connection process starts in the side regions of the 
approaching vortex ring where surface-normal vorticity already exists in the bulk. A 
local strain rate analysis was conducted to support this conclusion. Disconnection in 
the near-surface tip region of the vortex ring occurs because of the removal of surface- 
parallel vorticity by the viscous flux of vorticity through the surface. Temporal and 
spatial mapping of the vorticity field at the surface and in the perpendicular plane of 
symmetry shows that the viscous flux is balanced by a local deceleration of the flow at 
the surface. I t  is found that the observed timescales of the disconnection and 
connection process scale with the near-surface vorticity gradient rather than with the 
core diameter of the vortex ring. 

1. Introduction 
Surface shear flows, such as the wake of an island or a ship, and flows generated by 

under-surface current present intriguing features. The persistence of some of the 
observed features are uniquely puzzling in that they do not obey any known decay 
laws of fully submerged flows. Typical ship wakes and surface currents in the ocean 
possess Reynolds numbers in excess of lo8 which, in combination with the complex 
nature of these turbulent flows, makes their full simulation difficult, if not impossible, 
to perform. One interesting feature during the formation and evolution of surface shear 
flows is the dominant role of sub-surface vortices and large-scale vortical structures. In 
this regard, studies of the free-surface interaction of vortices such a vortex rings and 
vortex pairs are critical in the understanding of the main features of surface shear 
flows. Therefore, the research scene in free-surface turbulence is dominated by efforts 
that focus on the understanding of the interaction of elemental vortex flows with free 
surfaces. 

Vortex rings and vortex pairs have received much attention as the primary 
constituents of any generic shear flow. The problem of a vortex ring or a vortex pair 
approaching a boundary with a free-slip or no-slip condition (whether it is solid or 
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deformable) is challenging, since it involves unsteady three-dimensional vortex 
interactions. The pioneering work of Sarpkaya zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Henderson (1989, and subsequent 
important studies of Ohring & Lugt (1991) and Dommermuth (1992) on the vortex- 
pair problem, and the work by Kwon (1989) and Bernal & Kwon (1989) on the vortex- 
ring problem opened a new era in our understanding of vortex/free-surface 
interactions. In those studies, vortex trajectories and surface signatures such as scars 
and striations have been investigated extensively. However, the connection of vortex 
filaments to a free surface had not received serious attention until the experiments of 
Bernal & Kwon (1989) and the analytical studies of Lugt (1987) who elegantly 
explained the proper kinematic conditions at the surface. Bernal & Kwon made the first 
clear demonstration of the early stages that a vortex ring undergoes as it rises toward 
a free surface. Their observations raised many important fundamental questions 
regarding the interaction with the free surface which is drastically different from the 
case of a vortex ring interacting obliquely with a solid wall (Lim 1989; Chu, Wang & 
Hseih 1993). However, Bernal & Kwon did not clarify the issue of whether the apex of 
the vortex ring simply tilts and connects to the free surface, or whether it disconnects 
and subsequently connects its free ends to the surface. In their experiments, the effect 
of the angle of approach was found to be significant regarding the connection 
timescale, while the Reynolds number of the vortex ring did not play an important role. 
They argued that the viscous diffusion timescale overpredicts the connection timescale 
and, therefore, assumed an inviscid scaling based on the circulation and core diameter 
of the vortex ring. However, the latter resulted in the underprediction of the connection 
timescale (see figure 14 of Kwon 1989). Therefore, the main question is: What are the 
proper physical parameters that describe the connection timescale for a given angle of 
approach of a vortex ring? 

In this paper, we focus on the mechanisms that lead to the disconnection and surface 
connection of a laminar vortex ring as it approaches the free surface at a shallow angle. 
Our objective is to present a clear picture of the stages that are involved in the early 
disconnection and subsequent connection process by using results of velocity- and 
vorticity-field measurements. Obviously, as has been shown by Bernal et al. (1989), the 
physical state of the free surface is a point of concern in terms of the presence of 
surfactants. We address these concerns by conducting two sets of experiments where 
a vortex ring approaches a very clean and a semi-clean water surface. In our 
investigations, Digital Particle Image Velocimetry (DPIV) was employed to map the 
spatial and temporal evolution of the velocity and vorticity fields during the interaction 
with the free surface. The mapping process was carried out (in some cases 
simultaneously) very close to the free surface and at various two-dimensional cross- 
sections in the flow. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. Experimental setup and procedures 

Experiments were conducted in a water tank using a mechanical vortex-ring 
generator. As the schematic in figure 1 shows, vortex rings of diameter D, circulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T, and propagation velocity U,  were generated by a piston that pushes fluid out of a 
sharp-edged cylindrical nozzle with an inner orifice diameter of Do = 3.0 cm. The non- 
deformed water surface coincides with the (x, z)-plane where the positive z-axis points 
toward the reader. The centreline of the vortex-ring generator (i.e. the x’-axis) is 
inclined to the water surface at an angle a, and the origin x’ = 0 is located at x = 0 and 
y = -h, where h designates the submergence depth of the generator. 

To minimize surface-contamination effects and surface-tension differences between 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. General schematic of the experimental setup. 

the water in the bulk and at the surface, careful steps were taken to keep the water and 
its surface clean. Besides using de-ionized water and working in a clean environment 
(i.e. in a class 100000 clean room, wearing non-contaminating gloves, cleaning all parts 
in contact with water using ethyl alcohol, and operating a UV filter to prevent bacterial 
growth in the water), a constantly operating skimmer and a vacuum-operated suction 
device were using to remove the aging water surface. Surface-tension measurements 
were performed before and after each experimental run using a ring tensiometer 
(Fisher Surface Tensiomat, Mod. 21). 

An IBM PC provided precise timing and synchronization of different events (time 
resolution better than s) including vortex-ring generation, dye injection for flow 
visualization, and initialization of measurement processes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs figure 2 (a)  shows, an off- 
axis shadowgraph setup with a parallel beam diameter of 8 in. was used for the 
visualization of the vortex-ring/free-surface interaction and the resulting surface- 
deformation fields. 

Regarding Digital Particle Image Velocimetry (DPIV), only those aspects of the 
measurement technique that are relevant to the present work are described in this paper. 
(For a more detailed discussion, the reader is referred to Willert & Gharib 1991 .) DPIV 
measures the two-dimensional displacement-vector field of particles that are suspended 
in the flow and illuminated by a thin, pulsed sheet of laser light. A video camera is 
positioned normal to the illuminated measurement plane and records a sequence of 
particle-image fields. The exposure times and time difference between successive image 
exposures are synchronized and controlled by a camera controller and a shutter. The 
latter prevents streaking particle images and limits the maximum displacement of 
particles in the imaging plane. The recorded image sequence is stored on an analog 
video disk and subsequently digitized by a frame grabber. By cross-correlating spatial 
sub-samples (windows) of two successive video images, the average local displacement 
vector of the particles contained in the correlation window is estimated. Moving the 
correlation window over the entire image, the displacement-vector field is obtained. 
The latter is divided by the time difference between two successive image exposures 
yielding the velocity-vector field. 

In the present experiments, we used single and quasi-simultaneous double-plane 
DPIV measurements in order to map the velocity fields close to the free surface and in 
the plane of symmetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0. Figure 2(b) shows the experimental setup of the quasi- 
simultaneous measurement technique that uses two separate DPIV cameras, two 
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FIGURE 2. (a)  Shadowgraph setup. (b) DPIV system for the quasi-simultaneous velocity-field 
measurement in two perpendicular measurement planes. (c) Timing sequence and synchronization of 
the video camera, shutter, and laser scanner. 

optical setups for the illuminating laser-light sheets, and a laser-scanning device. The 
scanner oscillates the laser beam (green line of an Argon/Ion laser, h = 514.5 nm) 
between the two light-sheet optics and alternates the illumination of the horizontal 
( y  = -0.1 cm) and vertical ( z  = 0) measurement plane in synchronization with the 
DPIV cameras. The light sheets are formed by using cylindrical lenses with a focal 
length of f=  0.64 cm, while their thickness of 0.1 cm is adjusted by a lens with a focal 
length o f f=  100 cm. 

The scanning light-sheet technique was implemented by placing a rotating mirror at 
the focal point of a scanner lens ( f =  30.48 cm, F# = 3) such that the rotation of the 
laser beam is transformed into a plane-parallel motion. The stepper-motor drive of the 
rotating mirror is synchronized to the frame marker of one video camera and allows 
for a rapid oscillatory beam displacement over a distance of up to 6.0cm with a 
scanning rate of 20 ms/scan. 

As the pulse sequence in figure 2 (c) shows, the DPIV cameras and their frame read- 
out are phase-locked to each other, while the illumination sequence is controlled by a 
synchronized shutter. The individual DPIV measurements are phase-shifted by two 
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video frames (66 ms) resulting in the quasi-simultaneous and alternating measurement 
of the velocity fields in the horizontal and vertical plane. 

In the DPIV measurements, neutrally buoyant silver-coated glass spheres with an 
average diameter of 14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 5 pm were used as seeding particles. The exposure times and 
time difference between exposures of the DPIV cameras were tPl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAteZ = 4 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlop3 s and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
At = 7 x lo-" s, respectively. The video images were digitized with a resolution of 
768 x 480 pixels, and processed with a window wide of 32 x 32 pixels and a step size of 
8 x 8 pixels (75 YO window overlap). The data processing results in a field measurement 
of 96 x 60 velocity vectors and, for a typical field of view of 11 x 8 cm, in a spatial 
wavelength resolution of 0.46 x 0.54 cm. Since the location of the cross-correlation 
peak can be resolved with a sub-pixel accuracy of approximately 0.01 pixel (Willert & 
Gharib 1991) the maximum uncertainty based on the local velocity and vorticity 
magnitude is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 1 YO and -t 3 %, respectively. 

3. Results 
3. I .  Initial conditions 

Prior to the investigation of the free-surface interaction, the physical properties of the 
laminar vortex rings were investigated in the fully submerged case by means of flow 
visualization and Digital Particle Image Velocimetry (Weigand & Gharib 1995). In the 
present work the oblique interaction with the free surface was studied by using vortex 
rings with a diameter of D = 3.0 cm and a Reynolds number of Re = 1150 where the 
Reynolds number is defined by the ratio of the circulation r a n d  the kinematic viscosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1' (i.e. Re = T/v). As a result of the DPIV measurements, the core size of the vortex 
rings was found to be relatively large with an initial core to vortex-ring diameter ratio 
of approximately 0.6. In all flow cases, the submergence depth and inclination angle of 
the vortex-ring generator are h = 3.0 cm (one nozzle diameter) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcx = 7", respectively. 
The resulting Froude and Weber numbers are Fr = r / ( g D 3 ) ' "  z 0.07 and W e  = 

p P / ( n D )  z 0.6, using the measured surface tension of D.1.-water v = 

72.120.5 dyn cm-' (1 dyn = lo-" N), the density of water p = 1000 kg m-3, and the 
gravitational acceleration g = 9.81 m s-l. In order to be able to map the velocity field 
close to the free surface, the Reynolds and Froude numbers were chosen to be relatively 
small such that only small surface deformations are generated (i.e. deformations of the 
order of magnitude of the laser-sheet thickness). 

In the following sections, the results of two distinct flow cases are presented. In the 
first, referred to as the 'clean' case, extraordinary care was taken to keep the water 
surface clean and uncontaminated, while, in the second, referred to as the ' semi-clean' 
case, slight surface contamination was present. However, surface-tension meas- 
urements using a ring tensiometer with a nominal accuracy of CO.1 dyn cm-l and an 
experimentally determined repeatability of C0.5 dyn cm-l did not reveal the degree of 
contamination. Therefore, the distinction between the clean and semi-clean flow cases 
is based on differences in their surface-interaction and connection behaviour, and on 
differences in the formation of Reynolds ridges (Scott 1982). In contrast to the semi- 
clean case, the formation of Reynolds ridges due to surface-tension differences was not 
observed in the clean case. 

3.2. Results of flow risua/izurion 

To obtain a qualitative understanding of the flow at the free surface, the shadowgraph 
technique was used (Weigand 1995). In order to improve the quality of the 
shadowgraph images, the visualization experiments were conducted at higher Froude 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3(a). For caption see facing page 
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FIGURE 3. Shadowgraph images of thc surface deformation during the vortex-ring interaction with 
(a) clean surface, ( h )  contaminated surface. Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5000 and Fr = 0.2 (direction of the flow is from left 
to right. all frames are the same scale, and time is indicated in each frame). 
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numbers with Fr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.2. However, the DPIV measurements were conducted with the 
aforementioned Froude number of Fr zz 0.07 in order to avoid strong surface 
deformations. 

As the shadowgraph sequence in figure 3(a)  indicates, the clean interaction is 
initially characterized by an elliptical surface deformation followed by the appearance 
of two distinct and round surface depressions that enlarge with time. As was reported 
by Bernal & Kwon (1989), later stages involve the fold-up and splitting of the lower 
part of the vortex ring which results in the formation of two half-vortex rings that are 
connected to the surface. Similar to the observations of Bernal & Kwon, the symmetric 
surface depressions appear to be associated with the connection of the vortex ring, i.e. 
the opening of the upper portion of the vortex-ring. In this paper, we focus on the early 
but important stages of the vortex-ring connection. In order to relate these observations 
to the connection process, the evolution of the velocity and vorticity fields as the 
surface and in planes normal to it are discussed next. 

3 . 3 .  Free-surface velocity field 

In the clean and semi-clean cases, DPIV provided many velocity fields of the vortex 
ring during the course of its interaction with the free surface. This enabled us to identify 
some important milestones in the interaction process which are referred to as stages. 
Based on the evolution of the surface-velocity field, those stages were observed to be 
common to both clean and semi-clean cases. However, the reader should be cautioned 
that, in the case of extremely contaminated surfaces with more than 5dyncm-' 
difference in surface tension, the vortex connection and the observed stages might not 
occur (Gharib 1994; Willert & Gharib 1995). 

An example of such a highly contaminated surface is shown in the shadowgraph 
images of figure 3 (b) .  In this case, the observed stages are drastically different from the 
flow-visualization results of the clean case. In comparison to figure 3(a)  the most 
obvious difference evolves during the final stages where the surface connection of the 
lower part of the vortex ring and the formation of two symmetric half-vortex rings were 
not observed. 

Stage I in figure 4 shows the initial surface motion induced by the irrotational 
velocity field of the vortex ring. This early stage is characterized by the appearance of 
two stagnation regions (marked by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS1 and S2) that are located on the centreline at 
x1 = 8.3 cm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 6.1 cm, respectively. The flow in the centre region accelerates 
from S1 in the negative x-direction and decelerates towards S2. Between Stages I and 
111, the surface-flow pattern resembles that of a doublet. This pattern results from the 
oblique approach of the vortex ring toward the surface and is a manifestation of the 
induced velocity field of the small upper arc-portion of the vortex ring. While S2 
moves downstream towards S1, the two stagnation regions merge and form a larger 
region with an overall reduction in velocity magnitude. 

From Stage I11 to IV, a qualitative change in the flow behaviour occurs in the form 
of a flow reversal between S1 and S2. The flow reversal changes the doublet into a 
dipole pattern by Stage IV. Subsequently, a strong forward current on the centre-line 
enhances the dipole pattern which results in the appearance of two counter-rotating 
elongated regions at Stage V. Stage VI shows the formation of two identifiable circular 
surface-flow patterns and the completion of the connection process. 

Figure 5 shows simultaneous velocity-vector fields for the clean case, obtained in the 
plane of symmetry z = 0 and at the free surface. The initial formation of the stagnation 
regions can be clearly seen to correspond to the sub-surface induced velocity field of 
the approaching tip of the vortex ring (figure 5cz-c). However, during the flow reversal 
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FIGURE 4. Surface velocity fields due to the interaction of the vortex ring with a clean surface. 
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FIGURE 5. For caption zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee facing page. 
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at the surface in figure 5 ( d ) ,  it is interesting to note that the sub-surface flow still retains 
its initial direction. From Stage V on (figure 5e),  the direction of the surface flow 
complies again with that of the sub-surface flow. At Stage VI, the lower core of the 
vortex ring rises toward the free surface. A similar sequence of surface-velocity fields 
marks the major stages for the semi-clean case. 

3.4. Surface-normal and surface-parallel uorticity jields 

Figure 6 shows the simultaneous temporal and spatial evolution of the vorticity fields 
that correspond to the velocity fields of figure 5.  Owing to the symmetry of the flow 
field at the surface, only the half-plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0 is shown. During Stage I (figure 6a) ,  the 
first appearance of a closed surface-normal vorticity contour becomes visible. Between 
Stages 111 and IV, a tail pattern appears upstream of the connected vortex which 
essentially coincides with the merging of the stagnation regions SI and S2. Eventually, 
the tail pattern grows and amalgamates with the initial vortex and leads to the 
formation of a larger vortical region at the surface. 

The vorticity fields in the plane of symmetry indicate the approach and gradual 
elongation of the upper core of the vortex ring. It is important to note that the first 
appearance of surface-normal vorticity during Stage 1 occurs off the plane of symmetry 
and before the forward tip of the vortex reaches the free surface. The location of the 
surface-normal vorticity is above the region where the vorticity contours in the 
symmetry plane become parallel to the free surface (figure 6a).  This interesting 
behaviour demonstrates that the connection process does not occur in the forward tip 
region, but in the side regions of the approaching vortex. The induced velocity field of 
the surface-normal vorticity is opposite to that of the sub-surface flow, which results 
in a major reduction of the velocity magnitude and the subsequent flow reversal in the 
region between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS1 and S2 at the free surface. This observation is supported by the 
velocity fields at Stages 111-V (figure 5c-e) where the flow reversal starts at the surface 
and subsequently propagates into the bulk until the whole tip region changes its flow 
direction. 

A very noticeable feature in the plane of symmetry is the formation of strong 
vorticity-gradient regions between the upper core of the vortex ring and the free 
surface. At Stages I and I1 (figure 6a ,  b), these regions can be identified by the 
concentrated vorticity contours. During Stage I1 I ,  the strong gradients disappear, 
while at Stage IV, they reappear again. During the completion of the connection 
process between Stages V and VI, the strong gradients close to the surface disappear. 
The observed process is an indication of the advection of the upper-core vorticity field 
toward the surface and its simultaneous removal at the surface. 

For the semi-clean case, figures 7 and 8 show the evolution of the vorticity field at 
the surface and in the plane of symmetry. As in the clean case, figure 7(a:f) depicts a 
similar evolution of the dynamics of the stagnation regions and the vorticity field. 
Figure 8 (a-e) indicates the existence of a surface-parallel secondary vortex with 
clockwise vorticity upstream of the upper core of the vortex ring. In figure 6(a ,  b), a 
similar, but much weaker secondary vortex can also be observed in the clean case. 
Similar to the clean case, Stages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 and III (figure 8 a , b )  indicate a compression of the 
vorticity contours which results in the formation of strong vorticity-gradient regions 
close to the surface. At Stage VI, these vorticity gradients disappear. 

FIGURE 5. Results of the simultaneous velocity field measurements at  the free surface and in the plane 
of symmetry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0 from the clean interaction case. (u)  Stage I ,  t = 4.3 s; (b )  Stage 11, I = 4.6 s ;  (c) 
Stage 111. t = 4.7 s; ( d )  Stage IV, t = 5.0 s ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( e )  Stage V, f = 5.3 s; ( , f )  Stage VI, t = 8.6 s. 
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4. Vorticity and vorticity flux at the free surface 

The results in 93 showed that, as the vortex ring approaches the free surface, its 
vorticity field in the symmetry plane weakens, while the surface-normal vorticity gains 
strength at the surface. The disappearance of surface-parallel vorticity from the 
symmetry plane indicates the disconnection process, while the appearance of surface- 
normal vorticity is an indication of the connection of the vortex ring to the free surface. 

In this section, some analytical concepts are developed in order to describe and 
correlate the observed events at the free surface and in the plane of symmetry. The role 
of the strong vorticity-gradient regions, the dynamics of their removal, and the reasons 
for the existence of a secondary vortex in the clean and semi-clean case are discussed 
in detail. In conjunction with the experimental data, the analytical concepts are used 
to describe the evolution of the total circulation, and the condition and flux of vorticity 
at the surface. 

4.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Free-surfuce Lwrticitx condition 

The issue of vorticity generation and vorticity flux at a free surface has only recently 
received recognition through the works of Lugt (1987, 1988), Lundgren (1988), Gharib 
et al. (1994) and Rood (1994a, h, 1995). Based on those investigations, the surface flux 
and boundary conditions are derived in the Appendix tjA.2. In general, the motion of 
the free surface is governed by the unsteady Navier-Stokes equation (Rood 1995): 

?U v -+-+gl. - - - + u u x - v v x o .  (; :: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"j - c't 

where u = ( u , ~ ,  w )  and w = ( m ) , ( o y , w z )  are the velocity and vorticity vectors in a 
Cartesian coordinate system, p is the pressure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the density and g is the gravitational 
acceleration. 

The initial surface motion is induced by the irrotational velocity field of the 
approaching vortex ring. Therefore, it is reasonable to assume that the vorticity is zero 
and stays negligible during that initial phase (i.e. up to Stage I in our experiments). 
Therefore, the vector products on the right-hand side are negligible, and equation (1) 
can be integrated along the constant-pressure surface to obtain an expression for the 
surface elevation : 

According to equation (2) and the schematic in figure 9, in the area downstream of 
the vortex (stagnation region SI), the fluid starts to accelerate in the negative x- 
direction and, therefore, rises due to the positive contribution of the acceleration 
integral. In this region, the free surface is characterized by negative surface velocities 
and a positive radius of the curvature. Upstream of the vortex, the velocity increases 
and the acceleration decreases. Therefore, the second term in equation (2) dominates 
and causes a trough at the surface which is characterized by a negative radius of 
curvature. As figure 9 shows, the change of the surface curvature between the 
stagnation regions indicates the existence of an inflection point (marked by I). 

According to the Appendix 9A.2 and the schematic in figure 15(h), the surface- 

FIGURE 6. Simultaneous vorticity field of the clean interaction case obtained from the velocity fields 
presented in figure 5. vorticity contours: (o,,,, = ~ ~ ~ 0 . 5  s I ,  A ~ O ~ ,  = A(,)? = 0.5 s l .  ( ~ ~ f )  Stages I-VI, 
times as in figure 5. 
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FIGURE 9. Schematic of the various vorticity conditions at the free surface due to the approaching 
vortex ring, the subsequent surface deformation, and the formation of a secondary vortex. Regions 
with high density of surface contaminations (i.e. relatively small surface tension) are indicated by 
thick lines. 
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parallel vorticity component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,  at the free surface can be obtained in a local two- 
dimensional curvilinear coordinate system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,ir is the shear stress imposed by the air on the surface, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg is the surface tension, 
R, is the local radius of curvature, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus and u, are the surface-parallel and surface- 
normal velocity components, respectively. Equation (3) defines the boundary condition 
and possible sources of surface-parallel vorticity at the surface. However, the existence 
of these sources does not necessarily imply that surface-parallel vorticity would flux 
into the body of motion. 

In the absence of any strong air motion, the shear stress imposed by air on water can 
be neglected (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,ir = 0). The combined effects of the third and fourth terms are 
manifested as unsteady changes of the surface slope (see the discussion in the Appendix, 
5A.2 and equation (A 9)). It is therefore important to note that the free-surface 
vorticity condition can change during the approach to the vortex ring according to the 
evolution of the surface-deformation field. 

The irrotational velocity field of the approaching vortex ring can redistribute the 
surface contaminants by transporting clean fluid from the bulk towards the surface. 
The latter results in the generation of surface-tension gradients. In the schematic of 
figure 9, regions with a high density of surface contaminants are indicated by a thick 
line. 

By inspecting the schematic in conjunction with equation (3), one can identify 
regions that can possess a positive or negative vorticity condition near the surface. In 
the region between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS1 and I, where Sl  is assumed to be close to the maximum height 
of the surface, the radius of curvature is positive, and the surface velocity is negative. 
Therefore, the term -u,/R is positive, which indicates the condition of positive 
vorticity in this region. In the same region, the surface-tension gradient acr/as is 
negative and, therefore, the term - l/,u(a~/c?s) is positive which also results in the 
condition of positive vorticity at the surface. Upstream of the inflection point, the 
radius of curvature is negative and the terms -u,/R and - l/,u@cr/as) are negative 
which supports the existence of negative vorticity near the surface. The role of the term 
&,/as can be clarified by inspecting the surface deformation induced by the 
approaching tip of the vortex ring in figure 9. Under these conditions, one can 
conjecture that, between S1 and I, the term au,/as is positive and, between I and S2, 
it is negative. Consequently, the contribution of this term supports the previously 
described surface condition of positive vorticity in the region between S1 and I and 
negative vorticity in the region between I and S2. 

4.2. Flux of vorticity at the free surface 
According to Lugt (1988) and Rood (1995), the viscous flux of surface-parallel vorticity 
through the surface can be derived in a two-dimensional curvilinear coordinate system 
(see the Appendix 5A.3) and results in 

where w, and u, are the surface-parallel vorticity and velocity components, p is the 
pressure at the surface, and 0 is the angle between the surface and the gravitational 
acceleration. Obviously, any analysis based on equation (4) can only be made in a local 
sense, since the surface is free to make vertical excursions and change its shape. 
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FIGURE 10. Vorticity-flux terms and net vorticity flux on the centreline zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY at various stages during 
the clean interaction. 

A positive value of v(C?~,/(?r) indicates an inward flux (in the negative r-direction) of 
positive vorticity, while a negative value indicates an outward flux (in the positive r- 
direction) of positive vorticity. Assuming a constant-pressure surface (c‘p/(?s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) and 
small surface slopes (gcos 0 z 0), the integration of equation (4) along s from - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 to 
+ 00 yields that the net surface-parallel vorticity contribution only arises from the 
temporal acceleration of the surface flow, i.e. 

where us = 0 as s + -t oc for all times. 
However, in order to understand the local dynamics of vorticity near the surface, the 

temporal and advective acceleration terms must be taken into account. Figure 10 
shows the resulting temporal and advective acceleration terms -c‘u,/c?t and - u,c?u,/?s 
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on the centreline for various stages of the free-surface interaction. At Stage I (figure 
10a), the region of positive vorticity in the schematic of figure 9 is dominated by a net 
inward flux of positive vorticity. This flux term reaches a maximum in the mid-region 
between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASl and I and decreases to zero at the inflection point I. The initial inward flux 
of positive vorticity in the region between S1 and I should result in the early appearance 
of positive vorticity very close to the free surface. The limited resolving power of the 
DPIV system and the difficulties involved with the near-surface illumination did not 
allow us to detect this vorticity region. However, since the positive vorticity region 
interacts with the same-sign vorticity of the upper core of the vortex ring, the vorticity 
contours should spread toward the free surface. This spreading can be seen clearly in 
figure 6(b). 

As figure 10(a) shows, a net inward flux of negative vorticity dominates the region 
upstream of the inflection point, where the condition of negative vorticity already exists 
due to the surface deformation and the surface-tension gradient (see $4.1). According 
to the schematics in figure 9, this flux causes an accumulation of negative vorticity in 
the sub-surface region which leads to the self-induced roll-up of the observed 
secondary vortex (Kaden 1931). These features are expected to be more prominent in 
flows with higher Froude numbers (i.e. larger surface deformations) such as numerically 
simulated by Ohring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Lugt (1995), for example. 

Between Stages I1 and IV (figure lob, c), when the surface velocities between S1 and 
S2 start to decrease and eventually reverse, the distribution of the net flux shifts to a 
negative value as the upper core of the vortex ring collides with the surface. Note that 
the net outward flux of positive vorticity is mainly due to the -au,/at term and not the 
-uU,au,/as term. During Stages I11 and IV, this flux is responsible for the removal of 
positive and surface-parallel vorticity from the sub-surface region between S1 and I. 
Therefore, it facilitates the subsequent removal of vorticity from the plane of symmetry 
that lies between the regions where the surface-normal vorticity was first observed to 
appear. Similarly, the inward flux of negative vorticity in the region between I and S2 
adds more to the existing negative vorticity and, therefore, accentuates the formation 
of the secondary vortex. 

4.3. The secondary vortex 

The existence of the secondary vortex can be seen clearly in the surface-parallel vorticity 
fields of the clean case (figure 6) and, with a much stronger appearance, in the semi- 
clean case in figure 8. As was discussed in $4.2, in the case of a clean and non- 
contaminated surface, and in the absence of any surface deformation, the secondary 
vortex cannot be formed. Owing to the curvature of the upper part of the vortex ring, 
the induced surface-velocity field will have a finite-size span during the early 
interaction. The finite-size region is clearly visible in the shadowgraph images of figure 
3 and suggests that the secondary vortex has a finite length with decreasing vorticity 
strength towards its ends. The diminishing vorticity magnitude in the end regions of the 
secondary vortex allows for a non-surface-normal termination of this vortex. 
Therefore, on the free surface, we should not expect the appearance of surface-normal 
vorticity due to the secondary vortex. 

4.4. Temporal evolution of the circulation at the surface 

In the present studies, the temporal evolution of the circulation in the bulk and at the 
free surface is used to demonstrate the connection process. Figure 11 shows the 
circulation that is lost by the upper core of the vortex ring and gained due to the 
connected vorticity at the free surface. In the clean and semi-clean flow cases, the loss 
of circulation in the plane of symmetry occurs at a similar rate. The initially slow decay 
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FIGURE 1 1. Temporal evolution of the circulation at the free surface and in the plane of 
symmetry 3 = 0 for the clean and semi-clean case. 

of the circulation is followed by a rapid loss and a subsequent asymptotic decay 
towards zero. In their numerical studies, Leighton & Swean (1991) report a similar gain 
and loss of vorticity at the free surface and in the plane of symmetry. 

In comparison to the semi-clean case, the gain of free-surface circulation in the clean 
case is characterized by a relatively steep slope and a slightly delayed appearance. The 
steeper slope suggests that the connection process in the clean case has a shorter time 
scale than in the semi-clean case. In both flow cases, the final level of circulation at the 
surface is the same and accounts for approximately 85 % of the initial circulation of the 
vortex ring. Figure I1  also shows that the evolution of the secondary vortex is 
characterized by a circulation maximum at the beginning and a rapid decay by the end 
of the connection process. 

4.5. Vortex connection timescale 

One of the intriguing features that Bernal & Kwon (1989) reported was the rapid 
nature of the connection process. In $4.2, it was shown that the main mechanism for 
the disconnection of the vortex ring near the surface is the rapid viscous flux of 
vorticity. From the evolution of the circulation in figure 11, the timescales for the 
disconnection and connection process can be observed to be similar, i.e. the time for 
the flux of surface-parallel vorticity out of the plane of symmetry approximately 
corresponds to the time that the circulation takes to reach a maximum value at the 
surface. For example, based on the slope of the loss and gain of circulation, the results 
in figure 11 suggest a disconnection timescale of 2.5 s and a connection timescale of 
2.2 s in the clean case. In the semi-clean case, the disconnection and connection 
timescales are similar at approximately 2 s and 2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, respectively. 

In combination with the vorticity-flux equation (equation (4)), which is mainly 
applicable during the disconnection process and the outward flux of surface-parallel 
vorticity, the resulting disconnection timescale can be used to obtain an estimate for the 
timescale of the connection process. In $ 5 ,  we will conjecture on the underlying reasons 
for this close relation between the two timescales. 

With the assumption that only temporal surface accelerations are responsible for the 
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FIGURE 12. Surface-parallel vorticity and velocity profiles at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 5.0 s: (a)  semi-clean case, 
(b)  clean case. 

connection process (see figure lob,  c and the discussion at the end of $4.2), an 
expression for the disconnection and connection timescales can be obtained from 
equation (4) in the form of 

where Au is the velocity difference and AwJAr is a best fit value for the vorticity 
distribution between the free surface and the location of the vorticity maximum in the 
plane of symmetry. 

In a first-order estimate, the vorticity gradient near the surface is approximated by 
an average value which introduces a lengthscale based on the local vorticity thickness. 
Figure 12 shows the near-surface velocity and vorticity profiles at t = 5.0 s which 
corresponds to the point in time where the vortex ring is half-way through the 
disconnection and connection process (see figure 11). In the clean case, the maximum 
value of AwJAr is 17.5 cm s-l, and the corresponding velocity difference Au is 
0.4 cm s-I. Equation (6) gives a connection timescale of At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 2.3 s which is surprisingly 
close to the experimentally observed value of 2.2 s obtained from the evolution of the 
circulation in figure 11. In the semi-clean case, a similar estimate gives a connection 
timescale of At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 4.1 s which is larger than the observed value of 2.5 s, but close 
enough to be considered as a good first-order estimate. 

The relevant parameters in estimating the disconnection and connection time (1.e. 
Awz, Au, and Ar) strongly depend on the angle of approach, vorticity structure in the 
core region, and the Reynolds number of the flow. This is a vast parameter space that 
was not covered in our studies. However, the dependency on the angle of approach 
(Bernal & Kwon 1989) and the distribution of vorticity in the core region makes the 
possibility of finding a global scaling law slim. 

5. Kinematics and dynamics of the approaching vortex ring 
In $3.1, we mentioned that the generated vortex rings have a core to vortex-ring 

diameter ratio of approximately 0.6. This implies that the vortex rings in our 
experiments have a relatively thick core, and, therefore, their kinematics and dynamics 
cannot be modelled as single vortex filaments. As the vortex ring approaches the free 
surface, but is not yet close enough to be influenced by the surface deformation, the 
vorticity field in the plane of symmetry (figure 6 a )  suggests that the upper part of the 
vortex ring is staggered backward in the negative x-direction. A similar behaviour has 
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been reported for flow cases where two vortex rings approach each other at an oblique 
angle (Schatzle 1987). In our case, the initially non-deformed surface acts as a shear- 
free symmetry plane. According to Ashurst & Meiron (1987), this stretching action is 
due to the interaction of the vortex ring with its image vortex above the free surface 
(see figure 1 of Ashurst & Meiron). Zhang & Yue (1996), who recently simulated the 
interaction of a vortex ring with a free surface, report a similar behaviour. 

The strain field that is induced on this backward-staggered region by the velocity 
field of the vortex ring plays an important role in determining the mechanisms that are 
responsible for the connection process. Figure 13 shows a sequence of schematics of the 
approaching vortex ring and its interaction with the free surface. To justify the 
illustrated dynamics, we start by considering the regions where the top portion of the 
vortex ring bends downward away from the plane of symmetry and the surface. In 
figure 13 (b), those regions are identified as side regions. They possess surface-normal 
vorticity components in the bulk and, therefore, are the most plausible candidates to 
connect to the free surface first. This conjecture is supported by the numerical 
observations of Kida, Takaoka & Hussain (1989), who report the side regions as the 
primary connection sites of vortex rings that approach each other at an oblique angle. 

To examine this conjecture, we apply the vorticity-transport equation and evaluate 
the various terms for the deformed vortex ring close to the free surface. In this analysis, 
viscous effects and effects of surface deformations are neglected; a local Cartesian 
coordinate system with the velocity vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = (u, u, w) and the vorticity vector o = 
(w5, wv, wz)  is used. From the maternal change 

Dw 
Dt 
- _  - (o .V)u ,  (7) 
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FIGURE 14. Schematic of the strain rate and vorticity field during the initial approach of the 
vortex ring. 

the rate of change of the surface-normal vorticity vector (y-component) due to tilting 
is 

(8) 

According to figure 14, near the tip region of the vortex ring, the z-component of the 
vorticity vector is dominant (i.e. w, = O), while the y-component of the induced 
velocity field is symmetric about the plane of symmetry z = 0 (i.e. av/az = 0). 
Therefore, equation (8) yields - 

u w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 = 0, 
Dt (9) 

and states that the tilting and subsequent connection of vortex filaments to the free 
surface cannot be expected to occur near the central tip region of the vortex ring. 

In the side region z < 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, and &/ax are both negative. Therefore, the tilting term 
w, av/ax is positive and contributes to the production of positive surface-normal 
vorticity (wy  > 0). Regarding the tilting term w, av/az in the region z < 0, w, and av/az 
are both positive and also contribute to the production of a positive w,-component. 
Similarly, in the side region z > 0 and for both tilting terms, the vorticity and strain- 
field analysis results in the production of negative surface-normal vorticity (wy < 0). 
These results are consistent with the observations in $4 and figure 6, where the first 
appearance of surface-normal vorticity was observed to occur in the side regions. 

It is important to note that the free-surface condition of zero shear stress requires 
that the vortex filaments connect normal to the free surface (see the Appendix, §A. 1). 
The Helmholtz theorem requires that a vortex filament does not terminate in the bulk 
of the fluid, but rather extends to the boundaries. Therefore, any disconnected vortex 
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filament near the free surface is required to connect normal to the surface. Such an 
argument would apply in the region that bridges the surface-connected side regions. 
Owing to the removal of positive vorticity from the symmetry plane in this bridging 
region, disconnected vortex filaments connect to the free surface and add to the 
strength of the already connected vortices (Stages I1 to V in figures 6 and 13). This 
process explains the link between the loss of surface-parallel vorticity from the plane 
of symmetry and the gain of circulation at the surface. 

The appearance of the tail pattern in the surface-vorticity field during Stage TI1 
(figure 6c)  and its evolution can be attributed to the rapid forward motion of the 
stagnation region S2. This motion, which is due to the induced velocity field of the 
surface-normal vorticity in the side regions, can generate strong local surface-velocity 
gradients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u- and w-components). The rate of change of these gradients can be 
considered to be a source of surface-normal vorticity (Rood 1995). We observed the 
existence of those gradients in our experiments. However, owing to the required triple 
derivations and the inherent increase in the noise level, it is difficult to obtain reliable 
estimates of the surface-normal vorticity flux terms from the surface-velocity data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Concluding remarks 

The physical model described suggests that the connection of an approaching vortex 
ring to a free surface occurs in two steps. The first step involves the connection of the 
regions of the vortex ring that already possess components of surface-normal vorticity 
near the surface. We showed that the action of the local strain-rate field supports this 
early connection process. 

DPIV measurements show that the second step, which involves the disconnection of 
the connected regions of the vortex ring, is associated with a strong outward flux of 
vorticity from the central top region of the approaching vortex ring. Such removal of 
vorticity due to local surface decelerations facilities the connection of surface-normal 
vorticity to the surface, which is required by the kinematic condition imposed by the 
shear-free surface condition. The connection and disconnection timescales were 
estimated based on the local vorticity flux and the local viscous flow properties near the 
surface. The estimates agree very well with the measured values. It was shown that the 
approaching vortex is capable of generating a secondary vortex and that a less clean 
surface is capable of generating a stronger secondary vortex. While we commented on 
the subject of surface-normal vorticity flux through the surface, high-spatial- and 
temporal-resolution DPIV measurements must be conducted in order to properly 
address this issue. 

This work has been supported by the Office of Naval Research, ONR-URI grant 
N00014-92-5-1610. The authors would like to thank Dr Willert for his contributions 
during the initial processing of the DPIV data. The valuable discussions with Dr Rood 
and Dr Ashurst on the subject of vortex kinematics and vorticity flux have been 
essential to our presentations in the paper. 

Appendix 

A free surface can be distinguished from a no-slip, solid boundary by its inability to 
support shear and its ability to make free vertical excursions. A flat surface condition 
can be used to demonstrate the special condition that a vortex filament has to follow 

A. 1. Vorticity elements and free surface 
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Free surface 
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FIGURE 15. (a)  Local Cartesian coordinate system. (b) Local curvilinear coordinate system. 

in order to connect to a free surface. The flat surface condition is proper when the 
radius of curvature approaches infinity. However, one can always think of local 
interactions where precise flat surface conditions with non-zero slope can be used. In 
a local Cartesian coordinate system with the velocity vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, w) (see figure 
15a), the vorticity vector is given by 

0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(wzr wy, 4, 
with the components 

a w  av au a w  av au 
OJ =--- w = - - -  w = - - -  ay aZ3 y aZ ax’ * ax ay. 

Using the flat surface condition (v = const.) and the zero-shear-stress condition at the 
surface ( T ~ ~  = T~~ = 0), the following terms can be eliminated: av/az = av/ax = 
au/ay = aw/i3y = 0. This leaves only the w,-component of the vorticity vector re- 
maining at the flat free surface and forces vortex lines to terminate normal to the 
surface. In contrast, the no-slip wall only permits the existence of wall-parallel vorticity. 

The surface-normal termination of vortex lines applies only at the surface. 
Immediately below the surface, surface-parallel vorticity can exist without violating 
any surface condition. However, as a consequence of the kinematic condition, vortex 
filaments cannot terminate within the fluid, and disconnected filaments will have a 
tendency to connect normal to the nearby surface. 

A.2. Vorticity boundary conditions at a free surface 

As has already been shown by Lugt (1987, 1988), flow beneath a shear-free and curved 
surface produces surface-parallel vorticity at the interface. Both analyses treat only the 
steady case where the net-vorticity production below the surface remains zero. 
Following Lundgren (1988) and Gharib et al. (1994), we present the derivation of a 
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more general expression for the boundary condition of surface-parallel vorticity in the 
unsteady flow case. Using a curvilinear coordinate system (see figure 15b), the analysis 
is performed for the two-dimensional flow case (i.e. the radius of curvature R, in the 
r ,  z-plane is infinite). 

The shear stress rrS on the surface has two components: (i) the stress T , ~ ~  imposed 
by the air on the liquid and (ii) the stress ?n/c's created by surface tension gradients: 

This interfacial shear stress is balanced by the stress on the fluid element below the 
surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

where u, and u,. are the surface-parallel and surface-normal velocity components and 
R,  is the local radius of curvature (Schlichting 1987). The corresponding vorticity 
component parallel to the boundary (i.e. the free surface here) is given by 

At the interface r = 0, the stresses balance and using equation (A 5 )  to replace the 
term c?u,/c?r yields the expression for the surface-parallel vorticity 

Equation (A 6) is the boundary condition for the contaminated and deformed surface 
and contains four sources of vorticity: (i) the shear force imposed by the adjoining 
medium which, in the case of air, is negligible; (ii) the force due to surface tension 
gradients; (iii) the curvature of the surface itself as already set forth by Lugt (1987); 
(iv) the vertical motion of the surface which has the characteristics of an unsteady term. 

It is interesting to note that, if the shape of the free surface is described by the 
function y = y/(x, I )  in two-dimensional Cartesian coordinates, the surface-normal 
velocity component and the surface-parallel vorticity component can be expressed as 

c?q 
i t '  

z ' = -  

and 

The term c?q/?s defines the one-dimensional slope S of the free surface (i.e. S = &~/2x), 
and therefore, equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A 8) becomes 

A comparison of equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A 6) and (A 9) shows that the combined effect of the last 
two terms i n  equation (A 6) can be thought of as being equivalent to an unsteady 
change of the li.ce-surfi.tce slope. 
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A.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVorticitypux at a free surface 

Rood (19944 has presented a rigorous approach to extend Lugt's (1987) formulation 
to the case of unsteady vorticity flux at a free surface. Here, we present a similar though 
less rigorous derivation by using the continuity and momentum equation in a two- 
dimensional curvilinear coordinate system (figure 15 b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

R, au, au, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+-+A = 0, ___ 

R,+r as ar R,+r 

au, R, au au u,u, -+- us>+ u++- 
at R,+r as ar R,+r 

+ 2R, -+ au, R,r -__- au,aR, 
Rsur !!.!$) (A 1 1 )  

(R,+r)' as (R,+r)3 as as (R,+r)3 as ' 

where g is the gravitational acceleration and 0 is the local angle of the free surface to 
the gravitational vector. 

The viscous flux of surface-parallel vorticity (0,-component) is obtained by 
differentiating equation (A 5 )  with respect to r :  

In equation (A 12), the term R,/(R,+r)a2u,/i3sar can be substituted by the 
corresponding term of equation (A 10) which is first differentiated with respect to s. 
The substitution yields 

R; a2u, azu, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 au, %-- - _ _ _ ~ _ _ _ _ _  
ar (R,+r)' i3s2 ar' R,+r ar 

aRs (A 13) 

The comparison of equation (A 13) with the momentum diffusion on the right hand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUS 2 ~ ,  au, R, au +-- 
(R, + r)' (R, + r)' X - ( R ,  + r)3 I' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$-',I as' 

side of equation (A 1 1 )  yields the viscous flux of surface-parallel vorticity : 

With the expression for vorticity (equation (A 5))  

au u Rs aur 
0) = - - s - s  +-- 

ar R,+r R,+r as' 
equation (A 14) becomes 

At the surface, where r = 0 and u, = 0, the surface-parallel vorticity flux results from 
equation (A 15)  : 

(A 16a) 
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with the total head of the surface defined by 

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ;u; +-+gscos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A 16b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

Equations (A 16) predict that any removal or introduction of surface-parallel vorticity 
through the interface is balanced by a change in the hydrodynamic head H and/or a 
local surface acceleration/deceleration. 
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