録

抗, サイリスタ, リレーを用いることにより, 抵抗型超 電導限流器を模擬し、超電導限流器による系統安定度向 上効果について検証実験を行った。その結果,2機無限 大母線系統を模擬した系統シミュレータ実験により、以 下の結論を得た。

(1) 限流用抵抗が大きいほど、故障電流が抑制されると 共に、電力動揺も抑制される。対象としたモデル系統で は、その値が $R_{scfcl} = 13.0\Omega(1.0 \text{ p.u.})$ 程度を越えると、 それ以上の改善がみられない。従って、限流抵抗の値は 約1.0 p.u. が適当であると考えられる。

(2)SCFCL は故障電流に対して、完全に動作すること が望ましい。

(3) PSCAD/EMTDC によるディジタルシミュレーショ ンにより実験の妥当性が確認できた。

今後,実際の超電導限流器を用いることにより,SCFCL 設置場所や他のタイプの限流器との比較、実運用上の問 題点、ディジタルシミュレーションのための同期発電機 のパラメータ推定などについて検討を行う必要がある。

(平成11年3月1日受付,同11年6月28日再受付)

文 献

- (1) 仁田:「特集 電力機器への超電導応用 超電導応用電力機器の開発の意 義」, 電学誌, 117,215(1997-4)
- (2) T.Hara, T.Okuma, T. Yamamoto, D. Ito, KTasaki and K.Tsurunaga," Development of a New 6.6kV/1500A Class Superconducting Fault Current Limiter for Electric Power Systems", IEEE Trans. on Power Delivery, Vol.PWRD-8, No.1, pp.182-192, 1993
- (3) W.Paul, Th.Baumann, J.Phynera and F.Platter," Test of 100kW Hight-Tc Superconductomg Fault Current Limiter", IEEE Tarns. on Applied Superconductivity, Vol.ASC-5, No.2, pp1059-1062,1995
- (4) T.Verhaege, CCotteviville, P.Estop, P.G. Therond, P. Thomas, Y.Laumond, M.Bekhaled, P.Bonnet and V.D.Pham, "Inverstigations of HV and EHV Superconducting Fault Current Limiters", IEEE Trans. on Applied Superconductivity, Vol.ASC-5,No.2,pp.1062-1066,1995
- (5) 松村:「特集 高速限流遮断システムのニューウェーブ 超電導使用によ る限流システム」、 OHM, 98/6,47(1998-6)
- (6) 久保ほか:「超電導限流器による同期発電機の安定化に関する検討」電 気学会論文誌 B. Vol.119-B.No.1.1999
- (7) 亀田,谷口:「超電導限流器の動作パラメータの設定方法」,電力中央研 究所研究報告書, T95025
- (8) 関根,仁田:「超電導限流器の電力系統安定度向上効果に関する考察」, 電気学会論文誌 B, Vol.114-B, No.6, 1994
- (9) 関根, 仁田:「超鑑導限流器の故障電流抑制効果とその仕様決定に関す る考察」, 電気学会論文誌 B, Vol.114-B,No.9,1994
- (10) 藤川, 白井, 仁田, 福西:「電力系統から要求される限流器の仕様に 関する一考察」, 電気学会電力技術・電力系統技術研究, PE-97-158 PSE-97-158,1997
- (11) 郭, 横木, 後藤, 加藤, 松村, 塚本, 藤田:「電力系統における超伝導限流 器の導入効果」, 電気学会電力技術電力系統技術合同研究会, PE-97-101, PES-97-101,1997
- (12) 郭, 横水, 松村, 藤田:「配電系統における二線短絡故障に対する超伝導 限流器の導入効果」、PE-98-52(PSE-98-42)、電力技術・電力系統技 術合同研究会 (1998-10)
- (13) 故障電流抑制用限流技術調査専門委員会:「故障電流抑制用限流技術の 現状と展望」,電気学会技術報告第 709 号,1999
- (14) 松崎,他:「6.6kV/2kA 級超載導限流器の限流特性」,電気学会静止 器研究会資料, SA-96-30,1996
- (15) 原:「超電導限流器の開発の現状」,低温工学,26,NO.4,236,1991

付

本論文で用いた PSCAD/EMTDC の使用定数を付表1 に示す。ここで、同期発電機は MAC100 Machine Model を用いた。また送電線路は抵抗とコイルで模擬をした。 付表1 発電機諸定数

app.Table.1 Generator constants.

項目	発電機 G2	発電機 G3
H	1.0	1.0
омо	314.15 rad/sec	314.15 rad/sec
D	0.0	0.0
Vbase	7.967kV	7.967kV
Ibase	0.12kA	1.2kA
VT	1.0 p.u.	1.0p.u
Pheta	0.0 rad	0.0 rad
Xp	0.163 p.u.	0.163 p.u.
Xd	1.014 p.u.	1.014 p.u.
X d'	0.314 p.u.	0.314 p.u.
X d''	0.280 p.u.	0.280 p.u.
Xq	0.770 p.u.	0.770 p.u.
$xq^{\prime\prime}$	0.375 p.u.	0.375 p.u.
Ra	0.10 p.u.	0.10 p.u.
Td0'	6.55 sec	6.55 sec
Td0''	0.039 sec	0.039 sec
Tq0''	0.071 sec	0.071 sec
AGFC	1.0	1.0

後藤 泰之 (正員) 1958 年生。1985 年 3 月 東海大学大学院工学 研究科博士課程満了。同年同大学助手。1988年同 講師。1990年4月名古屋大学工学部講師。1993 年4月愛知工業大学助教授 現在に至る。工学博 士。主として 電力系統の解析・制御,熱プラズマ の工学的応用に関する研究に従事。日本ファジィ 学会, IEEE の各会員

新實 正 (学生員) 1974 年生。1999 年 3 月 愛知工業大学大学 院工学研究科修士課程修了。現在、株式会社ハイ テックスに勤務。

雪田 和人(正員) 1967 年生。1997 年 3 月 東海大学大学院工 学研究科博士課程満了。同年愛知工業大学助手。 1998年同講師。現在に至る。博士(工学)。主と して 電力系統の運用・制御に関する研究に従事。 IEEE などの各会員。

水野 勝教 (正員) 1965 年生。1990 年愛知工業大学大学院工学研 究科修士課程修了,同年愛知工業大学助手,1997 年同大学講師、現在に至る。主として、自然エネ ルギーの有効利用に関する研究に従事。電子情報 通信学会,情報処理学会,IEEE 各会員。

一柳 勝宏 (正員) 1925 年生。1979 年 3 月 愛知工業大学大学 院工学研究科修士課程修了。同年愛知工業大学助 手。その後、助教授を経て、1993年4月教授、現 在に至る。工学博士。主として 電力系統の安定度 に関する研究、自然エネルギーの有効利用に関す る研究に従事。土木学会,エネルギー・資源学会, IEEE などの各会員。

育 紅 (学生員) 1968年1月31日生。1990年中国東北 電力学院工学部電気工学科卒業。同年9月から中 国東北電力管理局に二年間勤務。1995年中国東北 電力学院大学院工学研究科電気専攻修士課程修了。 1997年名古屋大学大学院工学研究科電気専攻博士 課程後期課程入学、現在に至る。主として、超伝 導限流器を導入した大都市電力系統に関する研究 に従事。

横水康伸(正員) 1962年10月13日生.90年3月名古屋 大学大学院工学研究科博士課程後期課程満了。同 年4月同大学助手。97年10月~98年7月連合 王国リバプール大学 Visiting Fellow。97年10月 名古屋大学講師、98年10月同大学理工科学総合 研究センター講師併任、現在に至る。工学博士。高 温状態および極低温環境下における大電流現象お よび環境調和型エネルギーシステムに関する研究

に従事。IEEE およびエネルギー・資源学会会員。

松村 年郎 (正員) 1951 年生。1979 年 3 月 名古屋大学工学研 究科博士課程後期課程満了同年4月同大学助手, 1987年2月同大学講師。1987年3月京都大学講 師。1992年1月名古屋大学助教授,1995年4月 同大学教授,現在に至る。工学博士。主として大 電流工学・電気エネルギーの有効利用に関する研 究に従事。