

EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

S. D. Thabah; M. Sonowal and P. Saha

Department of Electronics and Communication Engineering

National Institute of Technology

Meghalaya, India 793003

Emails: sheba.diamond99@nitm.ac.in; mridupawan.sonowal@nitm.ac.in;

sahaprabir1@gmail.com

 Submitted: Feb. 15, 2017 Accepted: Apr. 15, 2017 Published: June 1, 2017

Abstract- In this paper, different multi-operand adders have been analyzed in terms of propagation

delay, power consumption and resource utilization. The functionality of the adders have been verified

using Verilog hardware description language and synthesized in Xilinx ISE. The device chosen for

implementation is Virtex 6 (XC6VLX240T) with FF1156 package. Simulation results show that

Wallace tree adder is the fastest adder and consumes least amount of power. The Wallace tree adder

also consumes the least amount of hardware resources as per the synthesis results.

Index terms: Multi-operand adders; synthesis results; tree adders; Verilog.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

327

I. INTRODUCTION

Arithmetic processing units are basic building blocks of many digital systems like

Microprocessors, Digital signal processors, and most of the dedicated signal processing circuits

[1-6]. For any arithmetic processing unit, adders are one of the most crucial components because

of its resource consumption and the delay involved in processing. Adders also form a part of

multipliers which is another resource intensive component of arithmetic circuits [7]. For an

efficient implementation of arithmetic circuits, the choice of a particular adder thus becomes an

important design consideration [1-9]. Considering the importance associated with the

implementation of an adder, in this work, some of the existing adder implementations are

compared with respect to the delay incurred, resource utilization and power consumption.

Addition of two bits can be done by using a half adder, while a basic adder that has always been

used for performing addition is a full adder. This 1-bit full adder can be used to add multiple

operands by using multiple numbers of full adders [8]. Addition of more than two numbers of

operands calls for a multi-operand adder [10,11]. In 2005, R. D Kenney and M. J Schulte [1]

introduces and analyzes three techniques for performing fast operands addition. Multioperand

adder designs are constructed and synthesized for 6 to 12 input operands. S. Singh and R.

Waxman [8] described a scheme for multiple operand addition and multiplication, applying the

bit-partitioning technique so that each partition contains m-bits of each of these k numbers, where

m=[log2(k-1)] is an integer ≥ log2(k-1), the final sum can be obtained in m+1 addition cycles. In

2013, J. Hormigo, J. Villalba et. al. [10] efficiently implemented compressor trees [11] on FPGA,

which is more efficient in terms of area and speed, and is made possible by using the specialized

carry chains of linear array compressor tree. Linear array compressor trees lead to marked

improvements in speed compared to carry propagate adder (CPA) approaches and, in general,

with no additional hardware cost. Furthermore the high definition of carry save adder (CSA)

arrays based on CPAs facilitates ease-of-use and portability.

Multi-operand adder can simply be represented by an architecture comprising of a compressor

tree [13], which reduces the partial sum and propagated carry [10]. There are different types of

multi-operand adders but the adders taken up in this work are Array tree adder, Wallace tree

adder, Balanced delay tree adder and Overturned-stairs tree adder.

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

328

The operands considered for addition can be single bit or of multiple bits, thus the input and

output of the adder can be in multiple bits. Nowadays, 8-bits, 16-bits and 32-bits multi operand

adder are used in many circuits, for the purpose of comparison, the above mentioned parameters

are used. The adders are implemented in Verilog code, and synthesized in Xilinx ISE 13.4

platform. The device chosen for implementation is Virtex 6 (XC6VLX240T) with FF1156

package.

II. CLASSIFICATION OF MULTI-OPERAND ADDERS

Some of the most popular multi-operand adders [13] which have been chosen for implementation

purpose are discussed hereunder:

a. Array Tree Adders

Array tree adder is a straight forward multi-operand adder to add and accumulate partial sums

[14]. Figure 1, shows architecture of an Array adder for six operands, each of 8 bits. Ri are the

inputs (operands), Si and Ci are the partial sums and partial carries respectively. Sum and Cout

are the final sum and carry outputs. The shifted version of Ci by one bit position in the left

direction are represented by Ci′.

Figure 1: Array tree adders; (a) 6-operand array tree adders (b) 9-operand array tree adders.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

329

b. Wallace Tree Adder

Figure 2 shows the architectures of Wallace tree adder for 6 and 9 operands respectively. In

Figure 2, all operands are utilized in a parallel manner, in the first level itself using multiple

carry save adders (CSAs). The partial sums and carries (Si and Ci) generated from the first level

are then operated upon in the subsequent levels of the CSA tree, to generate the input for the

carry propagete adder (CPA). The final outputs are then obtained from the CPA adder.

Figure 2: Wallace tree adder; (a) 6-operand (b) 9-operand

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

330

c. Balanced Delay Tree Adders

Architectures of balanced delay tree adder for 6 and 9 operands are shown in Figure 3. In this

adder, some of the input operands are taken in the first level and the other operands at later

stages. In balanced delay tree adders, the amount of delay incurred for each input is

approximately same as amount of delay for the other inputs [15]. When the operation of all the

partial outputs of the first level is completed, then the other left out inputs are taken in for

operation.

Figure 3: Balanced delay tree adder; (a) 6-operand (b) 9-operand

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

331

d. Overturned-stairs Tree Adder

Figure 4: Overturned-stair tree adder

Figure 4, shows architecture of Overturned-stairs tree adder [17] for 9 operands. For 6 operands,

the resulting architecture is same as that of a Balanced delay tree adder. Here, it doesn’t wait to

balance the sets of inputs given to the CSA tree. All operands are accommodated in the first level

itself. For 9 operands, in Overturned-stairs tree adder, all operands are accommodated in the first

level itself but not in Balanced delay tree. In Balanced delay tree, some sets of operands are taken

in the first level and others in the next level so as to balanced the partial sums of the adder.

III. BUILDING BLOCKS

Given below is the brief description of the components used to create the multi-operand adders

described in the preceding sections.

a. Carry Propagate Adder (CPA)

Carry propagate adder [18] is designed from a 1-bit full adder (FA). A cascade of n FAs gives a

n-bits CPA. Figure 5 shows a block diagram of 4bit-CPA, which add two operands of 4-bits.

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

332

Figure 5: Block diagram of carry propagate adder

Each FA is taking Mi and Ni as inputs and where, Mi and Ni are the corresponding bits of a 4-bit

word. Si and Ci are the sum and carry output of the addition of the two operands. The carry

output of the first FA is fed to the second FA and so on, thus the carry is propagated from first

FA to the last FA. The first operation of this design starts from the first FA, there is no carry bit

in the first FA, thus a half adder can be used or a FA with carry-bit = ‘0’(C0=’0’). The output of

first FA is S0 and C1. The carry output C1 is fed to the carry input of second FA and so on. The

final carry output is C4 in the Figure 5.

b. Carry Save Adder (CSA)

Carry save adder [17,19] is simply a ripple carry adder where the carries are stored rather than

propagated. Figure 6 shows a block diagram of CSA.

Figure 6: Block diagram of CSA

Similar to Figure 5, the inputs to each of the FA are Mi and Ni and the carry input is Xi, outputs

are Si and Ci. The carry output from each of the FA are not fed to the input of the next FA,

implying that the carries are not propagated.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

333

Example: Consider a 4-bit CSA adder

Mi= (1111)2 = (15)10

Ni= (1111)2 = (15)10

Xi= (1111)2 = (15)10

Mi → 1 1 1 1 Mi → 1 1 1 1

Ni → 1 1 1 1 Ni → 1 1 1 1

Xi → 1 1 1 1 Xi → 1 1 1 1

Si→ 1 1 1 1 Ci→ 1 1 1 1

Si→ 1 1 1 1

Ci’→ 1 1 1 1

Final Sum→ (1 0 1 1 0 1)2 = (45)10

In the above example, a 4-bit addition is performed where each FA inputs are of 1bit, implying

that the CSA used above is a 4-bit CSA each FA of single bit inputs. The calculation is done

separately for sum Si and carry-out Ci. The carry-out is then shifted by one bit position to the left

and added with the sum to get the final sum.

IV. RESULTS AND DISCUSSIONS

The adders are implemented in Verilog code, and synthesized in Xilinx ISE 13.4 platform. The

device chosen for implementation is Virtex 6 (XC6VLX240T) with FF1156 package.

Performance parameters like as delay, power and resource utilization in terms of look-up tables

(LUT) have been considered for the comparison purpose.

Performance parameters as a function of logic delay and routing delay of various multi-operand

adders is shown in Table I, II and III. In Table I, 6 operand adders delay have been tabulated

where length of each operand length 8-bits, 16-bits and 32-bits have been taken for the reference

purpose of the calculations. In Table II, 9 operand adders delay have been tabulated where length

of each operand length 8-bits, 16-bits and 32-bits have been considered. Finally in Table III, 12

operand adders have been considered with the same bit length respectively.

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

334

Table I: Performance parameters comparison as a function of propagation delay of 6 operand adders

Table II: Performance parameters comparison as a function of propagation delay of 9 operand adders

Table III: Performance parameters comparison as a function of propagation delay of 12 operand adders

Bit Size →

Architecture

↓

8bits 16bits 32bits

Propagation delay(ns) Propagation delay(ns) Propagation delay(ns)

Logic

Delay

Routing

Delay

Total

Delay

Logic

Delay

Routing

Delay

Total

Delay

Logic

Delay

Routing

Delay

Total

Delay

Array Tree 0.686 6.369 7.055 0.958 8.389 9.347 1.502 12.568 14.070

Balanced

Delay Tree

0.618 5.523 6.141 0.890 7.543 8.433 1.434 11.575 13.009

Overturned-

stairs Tree

0.618 5.523 6.141 0.890 7.543 8.433 1.434 11.575 13.009

Wallace

Tree

0.550 5.360 5.910 0.822 7.380 8.202 1.366 11.412 12.778

Bit Size →

Architecture

↓

8bits 16bits 32bits

Propagation delay(ns) Propagation delay(ns) Propagation delay(ns)

Logic

Delay

Routing

Delay

Total

Delay

Logic

Delay

Routing

Delay

Total

Delay

Logic

Delay

Routing

Delay

Total

Delay

Array Tree 0.890 8.673 9.563 1.162 10.693 11.855 1.774 15.230 17.004

Balanced

Delay Tree

0.754 6.948 7.702 1.026 8.968 9.994 1.638 13.505 15.143

Overturned-

stairs Tree

0.686 6.441 7.127 0.958 8.461 9.419 1.570 12.998 14.568

Wallace

Tree

0.618 5.956 6.574 0.890 7.976 8.866 1.502 12.660 14.162

Bit Size

→

Architect

ure

↓

8bits 16bits 32bits

Propagation delay(ns) Propagation delay(ns) Propagation delay(ns)

Logic

Delay

Routin

g

Delay

Total

Dela

y

Logic

Delay

Routin

g Delay

Total

Delay

Logic

Delay

Routin

g Delay

Total

Delay

Array

Tree

1.230 11.460 12.6

9

1.502 13.480 14.98 2.046 17.520 19.56

6

Balanced

Delay

Tree

0.958 8.465 9.42 1.230 10.485 11.71 1.774 14.525 16.3

Overturne

d-stairs

Tree

0.822 8.197 9.02 1.094 10.217 11.31 1.638 14.257 15.89

Wallace

Tree

0.822 7.776 8.59 1.094 9.796 10.89 1.638 13.836 15.47

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

335

Figure 7: (a)

Figure 7: (b)

Array Tree
Balanced

Delay Tree

Overturned-

stairs Tree

Wallace

Tree

8 -Bit 88 90 90 87

16 -Bit 148 150 150 147

32 -Bit 260 263 263 260

0

50

100

150

200

250

300

N
o

 o
f

L
U

T
S

LUTs Calculation of 6 Operand Adders

8 -Bit

16 -Bit

32 -Bit

Array Tree
Balanced

Delay Tree

Overturned-

stairs Tree

Wallace

Tree

8 Bits 145 149 147 143

16 Bits 245 249 247 243

32 Bits 457 462 459 455

0

50

100

150

200

250

300

350

400

450

500

N
o

 o
f

L
U

T
s

LUTs Calculation of 9 Operand Adders

8 Bits

16 Bits

32 Bits

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

336

Figure 7: (c)

Figure 7: Resource utilization as a function of Look-Up-Tables (LUTs) (a) 6 operand adders (b) 9

operand adders (c) 12 operand adders

The resource utilization as a function of Look-Up-Tables (LUTs) of various length multi operand

adders is shown in Figure 7. Each operand of 8-bits, 16-bits and 32-bits respectively has been

considered for the calculation purpose. The utilization of slices LUTs is more in Balanced delay

tree adder and least in Wallace tree adder.

Figure 8: (a)

Array Tree
Balanced

Delay Tree

Overturned-

stairs Tree

Wallace

Tree

8 Bits 244 259 256 243

16 Bits 376 399 396 375

32 Bits 640 679 676 639

0

100

200

300

400

500

600

700

800

N
o

 o
f

L
U

T
s

LUTs Calculation of 12 Operand Adders

8 Bits

16 Bits

32 Bits

Array Tree
Balanced

Delay Tree

Overturned-

stairs Tree

Wallace

Tree

8 -Bit 1.998 2.043 2.043 1.975

16 -Bit 3.359 3.405 3.405 3.337

32 -Bit 5.902 5.97 5.97 5.902

0

1

2

3

4

5

6

7

P
o

w
er

 i
m

 m
W

Switching Power of 6 Operand Adders

8 -Bit

16 -Bit

32 -Bit

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

337

Figure 8: (b)

Figure 8: (c)

Figure 8: Switching power analysis (a) 6 operand adders (b) 9 operand adders (c) 12 operand

adders

The switching power analysis of various length multi operand adders is shown in Figure 8. It can

be seen from the simulated values [Figure (8)] Balanced delay tree adder consume more power

and Wallace tree the least.

Array Tree
Balanced

Delay Tree

Overturned-

stairs Tree

Wallace

Tree

8 Bits 3.291 3.382 3.337 3.246

16 Bits 5.561 5.652 5.607 5.516

32 Bits 10.373 10.487 10.419 10.328

0

2

4

6

8

10

12

P
o

w
er

 i
n

 m
W

Switching Power of 9 Operand Adders

8 Bits

16 Bits

32 Bits

Array Tree
Balanced

Delay Tree

Overturned-

stairs Tree

Wallace

Tree

8 Bits 5.538 5.879 5.811 5.516

16 Bits 8.535 9.057 8.989 8.512

32 Bits 14.528 15.413 15.345 14.505

0

2

4

6

8

10

12

14

16

18

P
o

w
er

 i
n

 m
W

Switching Power of 12 Operand Adders

8 Bits

16 Bits

32 Bits

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

338

The simulation results offered, Wallace tree adder gives the lowest overall propagation delay and

Array tree adder the highest overall propagation delay. The result of Balanced delay tree and

Overturned-stairs tree for 6 operands is same since the architecture is same for 6 operands. So,

with increasing number of operands and bit length, Wallace tree adder offered the lowest

propagation delay compared to others along-with least consumption of power.

V. CONCLUSIONS

In this paper, different multi-operand adders have been analyzed in terms of propagation delay,

power consumption and resource utilization. The adders are implemented in Verilog code, and

synthesized in Xilinx ISE 13.4 platform. The device chosen for implementation is Virtex 6

(XC6VLX240T) with FF1156 package. The simulation results shows that Wallcace tree adder

gives the best performace among all the adders for all the parameters taken up for consideration.

REFERENCES

[1]. R. D. Kenney and M. J. Schulte, “High-Speed Multioperand Decimal Adders”, IEEE

Transactions on Computers, vol. 54, no. 8, pp. 953-963, Aug. 2005.

[2]. N. Chabini and S. Belkouch, “Area and delay aware approaches for realizing multi-

operand addition on FPGAs using two-operand adders”, in Proc. of IEEE/ACS

International Conference of Computer Systems and Applications (AICCSA), pp. 1-4,

2015.

[3]. P. Kumar and R. K. Sharma, “Real-time fault tolerant full adder design for critical

applications”, Engineering Science and Technology, an International Journal, vol. 19 no.

9, pp. 1465–1472, Sept. 2016.

[4]. M. Sushmidha and B. Premalatha “Design of high performance parallel self timed

adder”, in Proc. of Int. Conf. on Communication and Signal Processing (ICCSP) pp.

1400 – 1404, 2016

[5]. P. I. Balzola, M. J. Schulte, J. R. J. Glossner and E. Hokenek “Design Alternatives for

Parallel Saturating Multioperand Adders”, in Proc. of IEEE Int. Conf. on Computer

Design: VLSI in Computers and Processors, pp. 172-177, 2001.

[6]. L. Dadda, and V. Piuri, Pipelined Adders, IEEE Transactions on Computers, vol. 45,

no. 3, pp. 348-356, March 1996.

[7]. J. Saini, S. Agarwal and A. Kansal, “Performance, Analysis and Comparison of Digital

Adders”, in Proc. Int. Conf. on Advances in Computer Engineering and Applications

(ICACEA), pp. 80-83, 2015.

[8]. S. Singh and D. Waxman, “Multiple Operand Addition and Multiplication”, IEEE

Transactions on Computers, vol. C-22, no. 2, pp. 113-120, Feb. 1973.

[9]. A. Albeck and S. Wimer, “Energy efficient computing by multi-mode addition”,

Integration the VLSI journal, vol. 55, no. 9, pp. 176-182, Sept. 2016.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 2, JUNE 2017

339

[10]. J. Hormigo, J. Villalba and E. L. Zapata, “Multioperand Redundant Adders on FPGAs”,

IEEE Transactions on Computers, vol. 62, no. 10, pp. 2013-2025, Oct. 2013.

[11]. U. Cini and O. Kurt “MAC unit for reconfigurable systems using multi-operand adders

with double carry-save encoding”, Int. Conf. on Design and Technology of Integrated

Systems in Nanoscale Era (DTIS), pp. 1-4, 2016

[12]. J. Villalba, J. Hormigo, J. M. Prades and E. L. Zapata, “On–line Multioperand Addition

Based on On–line Full Adders∗”, in Proc. Int. Conf. on Application-Specific Systems,

Architecture Processors (ASAP'05), pp. 322-327, 2005

[13]. H. Parandeh-Afshar, P. Brisk and P. Ienne “Efficient Synthesis of Compressor Trees on

FPGAs”, in Proc. of Asia and South Pacific Design Automation Conference, Mar.

2008, pp. 138-143

[14]. Hardware Algorithm for Arithmetic Modules:

http://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html

[15]. H. Al-Twaijry and M. Flynn “Performance/Area Tradeoff in Booth Multipliers”

Technical Report, Nov. 1995, Stanford University.

[16]. W. Li and L. Wanhammar, “A complex multiplier using overturned-stairs adder tree,”

in Proc. of IEEE Int. Conf. on Electronics, Circuits and Systems, pp. 21-24, 1999.

[17]. S. J Piestrak, “Design of Residue Generators and Multi-operand Modular Adders using

carry save adder”, IEEE Transactions on Computers, vol.43, no.1, pp. 68-77, January

1994.

[18]. A. Ibrahim and F. Gebali, “Optimized structures of hybrid ripple carry and hierarchical

carry lookahead adders”, Microelectronics Journal, vol. 46, no. 9, pp. 783–794, Sept.

2015.

[19]. I. Koren, Computer Arithmetic Algorithms. Englewood Cliffs, N.J.:Prentice-Hall, 1993.

S. D. Thabah; M. Sonowal and P. Saha, EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS

340

http://www.aoki.ecei.tohoku.ac.jp/arith

