
 

 

EXPERIMENTAL STUDIES ON MULTI-OPERAND ADDERS  

 

S. D. Thabah; M. Sonowal and P. Saha 

Department of Electronics and Communication Engineering 

National Institute of Technology 

Meghalaya, India 793003 

Emails:  sheba.diamond99@nitm.ac.in; mridupawan.sonowal@nitm.ac.in; 

sahaprabir1@gmail.com 

 

 

 Submitted: Feb.  15, 2017             Accepted: Apr. 15, 2017                  Published: June 1, 2017 

 

 

 

Abstract-  In this paper, different multi-operand adders have been analyzed in terms of propagation 

delay, power consumption and resource utilization. The functionality of the adders have been verified 

using Verilog hardware description language and synthesized in Xilinx ISE. The device chosen for 

implementation is Virtex 6 (XC6VLX240T) with FF1156 package. Simulation results show that 

Wallace tree adder is the fastest adder and consumes least amount of power. The Wallace tree adder 

also consumes the least amount of hardware resources as per the synthesis results. 

 

Index terms:  Multi-operand adders; synthesis results; tree adders; Verilog. 
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I. INTRODUCTION 

 

Arithmetic processing units are basic building blocks of many digital systems like 

Microprocessors, Digital signal processors, and most of the dedicated signal processing circuits 

[1-6]. For any arithmetic processing unit, adders are one of the most crucial components because 

of its resource consumption and the delay involved in processing. Adders also form a part of 

multipliers which is another resource intensive component of arithmetic circuits [7]. For an 

efficient implementation of arithmetic circuits, the choice of a particular adder thus becomes an 

important design consideration [1-9]. Considering the importance associated with the 

implementation of an adder, in this work, some of the existing adder implementations are 

compared with respect to the delay incurred, resource utilization and power consumption.         

Addition of two bits can be done by using a half adder, while a basic adder that has always been 

used for performing addition is a full adder. This 1-bit full adder can be used to add multiple 

operands by using multiple numbers of full adders [8].  Addition of more than two numbers of 

operands calls for a multi-operand adder [10,11]. In 2005, R. D Kenney and M. J Schulte [1] 

introduces and analyzes three techniques for performing fast operands addition. Multioperand 

adder designs are constructed and synthesized for 6 to 12 input operands. S. Singh and R. 

Waxman [8] described a scheme for multiple operand addition and multiplication, applying the 

bit-partitioning technique so that each partition contains m-bits of each of these k numbers, where 

m=[log2(k-1)] is an integer ≥ log2(k-1), the final sum can be obtained in m+1 addition cycles. In 

2013, J. Hormigo, J. Villalba et. al. [10] efficiently implemented compressor trees [11] on FPGA, 

which is more efficient in terms of area and speed, and is made possible by using the specialized 

carry chains of linear array compressor tree. Linear array compressor trees lead to marked 

improvements in speed compared to carry propagate adder (CPA) approaches and, in general, 

with no additional hardware cost. Furthermore the high definition of carry save adder (CSA) 

arrays based on CPAs facilitates ease-of-use and portability. 

Multi-operand adder can simply be represented by an architecture comprising of a compressor 

tree [13], which reduces the partial sum and propagated carry [10]. There are different types of 

multi-operand adders but the adders taken up in this work are Array tree adder, Wallace tree 

adder, Balanced delay tree adder and Overturned-stairs tree adder.     
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The operands considered for addition can be single bit or of multiple bits, thus the input and 

output of the adder can be in multiple bits. Nowadays, 8-bits, 16-bits and 32-bits multi operand 

adder are used in many circuits, for the purpose of comparison, the above mentioned parameters 

are used. The adders are implemented in Verilog code, and synthesized in Xilinx ISE 13.4 

platform. The device chosen for implementation is Virtex 6 (XC6VLX240T) with FF1156 

package.  

 

II. CLASSIFICATION OF MULTI-OPERAND ADDERS 

 

Some of the most popular multi-operand adders [13] which have been chosen for implementation 

purpose are discussed hereunder: 

a.  Array Tree Adders 

Array tree adder is a straight forward multi-operand adder to add and accumulate partial sums 

[14]. Figure 1, shows architecture of an Array adder for six operands, each of 8 bits.  Ri are the 

inputs (operands), Si and Ci  are the partial sums and partial carries respectively.  Sum  and Cout 

are the final sum and carry outputs. The shifted version of Ci by one bit position in the left 

direction are represented by Ci′. 

 

 

 

Figure 1: Array tree adders; (a) 6-operand array tree adders (b) 9-operand array tree adders. 
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b. Wallace Tree Adder 

 

Figure 2  shows the architectures of  Wallace tree adder for 6 and 9 operands respectively. In 

Figure 2, all operands are  utilized in a parallel manner, in the first level itself using multiple  

carry save adders (CSAs). The partial sums and carries (Si and  Ci) generated from the first level 

are then operated upon in the subsequent levels of the CSA tree, to generate the input for the 

carry propagete adder (CPA). The final outputs are then obtained from the  CPA adder.   

 

 

Figure 2: Wallace tree adder; (a) 6-operand (b) 9-operand 
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c.  Balanced Delay Tree Adders 

 

Architectures of balanced delay tree adder for 6 and 9 operands are shown in Figure 3. In this 

adder, some of the input operands are taken in the first level and the other operands at   later 

stages. In balanced delay tree adders, the amount of delay incurred for each input is 

approximately same as amount of delay for the other inputs [15].  When the operation of all the 

partial outputs of the first level is completed, then the other left out inputs are taken in for 

operation.  

 

 

 

Figure 3: Balanced delay tree adder; (a) 6-operand (b) 9-operand 
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d.  Overturned-stairs Tree Adder 

 

 

Figure 4: Overturned-stair tree adder 

 

Figure 4, shows architecture of Overturned-stairs tree adder [17] for 9 operands. For 6 operands, 

the resulting architecture is same as that of a Balanced delay tree adder. Here, it doesn’t wait to 

balance the sets of inputs given to the CSA tree. All operands are accommodated in the first level 

itself. For  9 operands, in Overturned-stairs tree adder, all operands are accommodated in the first 

level itself but not in Balanced delay tree. In Balanced delay tree, some sets of operands are taken 

in the first level and others in the next level so as to balanced the partial sums of the adder. 

 

III. BUILDING BLOCKS 

 

Given below is the brief description of the components used to create the multi-operand adders 

described in the preceding sections. 

 

a. Carry Propagate Adder (CPA) 

 

Carry propagate adder [18] is designed from a 1-bit full adder (FA). A cascade of n FAs gives a 

n-bits CPA. Figure 5 shows a block diagram of 4bit-CPA, which add two operands of 4-bits. 
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Figure 5: Block diagram of carry propagate adder 

 

Each FA is taking Mi and Ni as inputs and where, Mi and Ni  are the corresponding bits of a 4-bit 

word. Si and Ci  are the sum and carry output of the addition of the two operands. The carry 

output of the first FA is fed to the second FA and so on, thus the carry is propagated from first 

FA to the last FA. The first operation of this design starts from the first FA, there is no carry bit 

in the first FA, thus a half adder can be used or a FA with carry-bit = ‘0’(C0=’0’). The output of 

first FA is S0 and C1. The carry output C1 is fed to the carry input of second FA and so on. The 

final carry output is C4 in the Figure 5. 

b.  Carry Save Adder (CSA) 

Carry save adder [17,19] is simply a ripple carry adder where the carries are stored rather than 

propagated. Figure 6 shows a block diagram of CSA. 

 

 

Figure 6: Block diagram of CSA 

 

Similar to Figure 5, the inputs to each of the FA are Mi and Ni  and the carry input is Xi, outputs 

are Si and Ci. The carry output from each of the FA are not fed to the input of the next FA, 

implying that the carries are not propagated.  
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Example: Consider a 4-bit CSA adder 

Mi= (1111)2 = (15)10 

Ni= (1111)2 = (15)10 

Xi= (1111)2 = (15)10 

Mi →         1 1 1 1                  Mi →         1 1 1 1 

Ni →         1 1 1 1                  Ni →          1 1 1 1    

Xi →         1 1 1 1                  Xi →          1 1 1 1 

Si→           1 1 1 1                  Ci→            1 1 1 1          

Si→           1 1 1 1                     

Ci’→      1 1 1 1                     

Final Sum→ (1 0 1 1 0 1)2 = (45)10 

 

In the above example, a 4-bit addition is performed where each FA inputs are of 1bit, implying 

that the CSA used above is a 4-bit CSA each FA of single bit inputs. The calculation is done 

separately for sum Si and carry-out Ci. The carry-out is then shifted by one bit position to the left 

and added with the sum to get the final sum. 

 

IV. RESULTS AND DISCUSSIONS 

 

The adders are implemented in Verilog code, and synthesized in Xilinx ISE 13.4 platform. The 

device chosen for implementation is Virtex 6 (XC6VLX240T) with FF1156 package. 

Performance parameters like as delay, power and resource utilization in terms of look-up tables 

(LUT) have been considered for the comparison purpose.  

 

Performance parameters as a function of logic delay and routing delay of various multi-operand 

adders is shown in Table I, II and III. In Table I, 6 operand adders delay have been tabulated 

where length of each operand length 8-bits, 16-bits and 32-bits have been taken for the reference 

purpose of the calculations. In Table II, 9 operand adders delay have been tabulated where length 

of each operand length 8-bits, 16-bits and 32-bits have been considered. Finally in Table III, 12 

operand adders have been considered with the same bit length respectively. 
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Table I: Performance parameters comparison as a function of propagation delay of 6 operand adders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table II: Performance parameters comparison as a function of propagation delay of  9 operand adders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table III: Performance parameters comparison as a function of propagation delay of 12 operand adders 

 

 

 

 

 

 

 

Bit Size → 

 

 

Architecture 

↓ 

8bits 16bits 32bits 

Propagation delay(ns) Propagation delay(ns) Propagation delay(ns) 

Logic 

Delay 

Routing 

Delay 

Total 

Delay 

Logic 

Delay 

Routing 

Delay 

Total 

Delay 

Logic 

Delay 

Routing 

Delay 

Total 

Delay 

Array Tree 0.686 6.369 7.055 0.958 8.389 9.347 1.502 12.568 14.070 

Balanced 

Delay Tree 

0.618 5.523 6.141 0.890 7.543 8.433 1.434 11.575 13.009 

Overturned-

stairs Tree 

0.618 5.523 6.141 0.890 7.543 8.433 1.434 11.575 13.009 

Wallace 

Tree 

0.550 5.360 5.910 0.822 7.380 8.202 1.366 11.412 12.778 

Bit Size → 

 

Architecture 

↓ 

8bits 16bits 32bits 

Propagation delay(ns) Propagation delay(ns) Propagation delay(ns) 

Logic 

Delay 

Routing 

Delay 

Total 

Delay 

Logic 

Delay 

Routing 

Delay 

Total 

Delay 

Logic 

Delay 

Routing 

Delay 

Total 

Delay 

Array Tree 0.890 8.673 9.563 1.162 10.693 11.855 1.774 15.230 17.004 

Balanced 

Delay Tree 

0.754 6.948 7.702 1.026 8.968 9.994 1.638 13.505 15.143 

Overturned-

stairs Tree 

0.686 6.441 7.127 0.958 8.461 9.419 1.570 12.998 14.568 

Wallace 

Tree 

0.618 5.956 6.574 0.890 7.976 8.866 1.502 12.660 14.162 

Bit Size 

→ 

 

Architect

ure 

↓ 

8bits 16bits 32bits 

Propagation delay(ns) Propagation delay(ns) Propagation delay(ns) 

Logic 

Delay 

Routin

g 

Delay 

Total 

Dela

y 

Logic 

Delay 

Routin

g Delay 

Total 

Delay 

Logic 

Delay 

Routin

g Delay 

Total 

Delay 

Array 

Tree 

1.230 11.460 12.6

9 

1.502 13.480 14.98 2.046 17.520 19.56

6 

Balanced 

Delay 

Tree 

0.958 8.465 9.42 1.230 10.485 11.71 1.774 14.525 16.3 

Overturne

d-stairs 

Tree 

0.822 8.197 9.02 1.094 10.217 11.31 1.638 14.257 15.89 

Wallace 

Tree 

0.822 7.776 8.59 1.094 9.796 10.89 1.638 13.836 15.47 
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Figure 7: (a) 

 

 

 

Figure 7: (b) 
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Figure 7: (c) 

 

Figure 7: Resource utilization as a function of Look-Up-Tables (LUTs) (a) 6 operand adders (b) 9 

operand adders (c) 12 operand adders 

The resource utilization as a function of Look-Up-Tables (LUTs) of various length multi operand 

adders is shown in Figure 7.  Each operand of 8-bits, 16-bits and 32-bits respectively has been 

considered for the calculation purpose.  The utilization of slices LUTs is more in Balanced delay 

tree adder and least in Wallace tree adder. 

  

 

Figure 8: (a) 
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Figure 8: (b) 

 

 

Figure 8: (c) 

 

Figure 8: Switching power analysis (a) 6 operand adders (b) 9 operand adders (c) 12 operand 

adders 

 

The switching power analysis of various length multi operand adders is shown in Figure 8. It can 

be seen from the simulated values [Figure (8)]  Balanced delay tree adder consume more power 

and Wallace tree the least.  
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The simulation results offered, Wallace tree adder gives the lowest overall propagation delay and 

Array tree adder the highest overall propagation delay. The result of Balanced delay tree and 

Overturned-stairs tree for 6 operands is same since the architecture is same for 6 operands. So, 

with increasing number of operands and bit length, Wallace tree adder offered the lowest 

propagation delay compared to others along-with least consumption of power. 

 

V. CONCLUSIONS 

 

In this paper, different multi-operand adders have been analyzed in terms of propagation delay, 

power consumption and resource utilization. The adders are implemented in Verilog code, and 

synthesized in Xilinx ISE 13.4 platform. The device chosen for implementation is Virtex 6 

(XC6VLX240T) with FF1156 package. The simulation results shows that Wallcace tree adder 

gives the best performace among all the adders for all the parameters taken up for consideration. 
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