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Abstract: This paper  is an experimental study on hypegraph partitioning  using the simple genetic algorithm
(GA) based on the schema theorem and the advanced algorithms based on the estimation of distribution of
promising solution. Primarily we have implemented a simple GA based on the GaLib library[Gal94] and some
hybrid variant included a fast heuristics to speed up the convergence of  the optimization process. Secondly we
have implemented the Univariate Marginal Distribution algorithm (UMDA) and the Bivariate Marginal
Distribution algorithm (BMDA), both have been published even recently[Pel98] and used a share version of a
superior new program  BOA based on the Bayesian Optimization Algorithm [Pel99]. We have also extended the
BMDA algorithm to a new version with finite alphabet encoding of chromozomes and new metric that enables
the m-way partitioning graphs. The aim of our paper is to test the efficiency of  new approaches for discrete
combinatorial problems represented by hypergraph partitioning.
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1    Introduction
Hypergraph partitioning  is a well known problem of graph theory. In case of so called 2-way partitioning the
bisection term is used.  The graph representation can be used for many application problem e.g. for the system
segmentation, network partitioning and VLSI layout.
More formal, the particular partitioning problem can be defined as follows: Let us assume a  hypergraph
G=(V,E), with n = |V| nodes and t = |E| edges.  Let m be a natural number. A m-way partition is specified by
disjoint partitions  of nodes A0, A1,…,Am-1 with equal or predefined cardinality. The cost of the partition is
defined as a function of the hyperedges having nonempty intersection with at least two partitions from the
partitions A0 , A1,…,Am-1. We call  these hyperedges external ones. From the previous premises it follows that an
unconstraint balanced partitioning problem is solved.
Many heuristics  are used to solve this NP-complete problem. We can refer to  the recent paper [Oom96] where a
good overview of the known local search techniques is done and  automaton-based algorithm is described in
more detail. The hybrid genetic algorithm is described in [Pat95],[Bui96]. The mentioned simple genetic
algorithms are based on the schema theory [Gol86]. It is known that during evolving a new population standard
genetic operators  often cause disruption of schemata mainly of large defining length. To prevent the problem a
techniques of reordering of  graph nodes in chromosomes was proposed by [Bui96]. We focus in this paper on
another promising approach based on an estimation of the joint distribution of promising solutions  proposed in
[Pel98], [PGC98], [MUE98].

2   Problem formulation

The hypergraph is often modelled by bigraph (see Fig 1), where a bigraf G(V,S) with the set of nodes V and set
of nets S is  presented. This is an example of 3-way partitioning problem with a 9 nodes  and a 10 nets. Each
partition/assembly A0 ,A1, A2 contains  3 nodes. The cost/objective function L is based on  external nets that
connect nodes from different assemblies:

∑
∈

−=
ei

i

Ss
sDL ]1)([ (1)

where D(si) is the degree of  the external nets Se ={s1, s2,, s3 }.



The incidence of external nets to each assembly is represented by dashed lines.  The minimal set {L1, L2, L3, L4}
of external connections  is represented by full lines produced by the spanning tree technique. In the following 3-
way partitioning the cost L equals to 4.
Another way how to calculate the external connection is based on the number of nets that incident with i-th
assembly. The Si items can be simply stated : S0 =5,  S1 = 5, S2 =4; for the known total number of nets t=10 we
get L=4.
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Fig.1 The 3- way partitioning case of a hypergraph.

In case  that each net connects only 2 nodes  the hypergraph can be reduced to a simple graph G(V,E,W), where
the connection matrix W=[wij] represents the weight of edge/connection between node i and j.

3  Genetic algorithms

To solve the partitioning problem we have implemented 2 types of genetic algorithms- simple genetic algorithm
SGA and its heuristic versions, advanced BMDA algorithm and used the BOA program. For all of them the
following ordinary string/chromosome encoding  is used:

Genotype Meaning
Trisection 0  0  0  1  1  1  2  2  2
Bisection 1  1  0   0  1  0  1  0  0

Gene value /Assembly number

0  1  2  3  4  5  6  7  8 Locus/Node number

Table 1. The ordinary string encoding for  bisection and trisection of hypergraph.

The gene value represents the assembly number, the index of locus specifies the node number. The efficiency of
the BMDA and BOA algorithm  is determined  by the level of gene dependency. That is why it is useful to
express the cost function using the string encoding. For the simplest case of 2 - way partitioning/bisection of a
simple graph G(V,E,W) we derived on the binary string X=(x0 , x1 ,.., xn-1) the following quadratic cost function:
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where the coefficient wij=1 in case the net/edge exists between node i and j, else wij=0. In case of m-way
partitioning of a single graph the function is not binary because the string is alphabetic:
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In case of m-way partitioning of hypergraphs the useful term for cost is quite complex and is beyond the scope
of this paper.

3.1   Simple genetic algorithm

We have implemented a simple genetic algorithm SGA described in [Gol86] using the well known GaLib library
[Gal94]. The fitness function is based on the cost L: Fitness = 1/(L+1). The selection scheme is roulette wheel
with the linear-scaled fitness. Offspring are generated by the one-point crossover operator. To implement



mutation the values of several genes are changed to any of the possible allele values (flip mutator). The genetic
operators described do not guarantee the equal size of all assemblies. After crossover or mutation completion,
strings should be balanced/normalized randomly to keep  equal or predefined number of  different alleles. In the
replacement  stage the principle of elitism is  used. We designed also SGAN version with advanced/positive 
normalization of string contributed  to cost decrease. To improve the convergence speed of the optimization
process for  more complex problems a heuristic procedure was added to the SGA algorithm to get a hybrid
genetic algorithm SGAH. It is based on the reconfiguration of  some offspring in the current population using the 
pairwise interchange of genes with cost decrement. The procedure is activated seldom only during an epoch He
formed by a number of generations. It is possible to set the intensity Hi and the range Hr of the reconfiguration.

3.2  UMDA and BMDA algorithm

The following methods are based on probability theory and statistics. They use statistical information contained
in the set of selected parents to detect gene dependencies. The estimated probability model is used to generate
new promising solutions according to this distribution. Generally, UMDA, BMDA and BOA belong to an EDA
class of algorithm (Estimation of Distribution Algorithm) [Mue98], which can be described as follows:

Generate initial population of size N (randomly);
While termination criteria is false do
begin

Select parent population P of M individuals according to a selection method (M≤N);
Estimate the distribution of the selected parents;
Generate new offspring (according to the estimated model);
Replace some individuals in current population by generated offspring;

end
UMDA [ Pel98 ] (Univariate Marginal Distribution Algorithm) assumes that genes are mutually independent.
Let us denote a chromosome length by n. For each gene position i∈{0..n-1} and each possible value of this gene
xi∈{0,1}, the univariate marginal frequency pi(xi) is defined as the frequency of strings that have xi on i-th
position in the parent population P: Nxnxp iiii )()( = , where ni(xi) is a number of appearances of the allele xi

on i-th position. Each new individual X = (x0 ,x1,...,xn-1 ) is generated by UMDA according  to the distribution
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so the value of i-th gene is set to value a with the probability equal to pi(a). UMDA is able to cover linear
problems only.
BMDA [ Pel98], [Oce99 ] (Bivariate Marginal Distribution Algorithm) is an extension of UMDA. In addition,
the pair dependencies are allowed. The bivariate marginal frequency pi,j(xi,xj) is defined as the frequency of
individuals in parent population P, that have values xi and xj on positions i and j at the same time:

Nxxnxxp jijijiji ),(),( ,, = . Conditional probability of occurrence of the value xi on i-th position in the case of
occurrence of xj on j-th position is determined
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We extended  the  concept of UMDA and  BMDA for  the  alphabet encoding, so that xi∈ {0,…,ri-1} and
xj∈{0,…,rj-1}.  For each pair of positions i, j the count of each combination of values can be summarized into
following contingency table:

xi\xj 0 1 … 1−jr Σ 

0 )0,0(, jin )1,0(, jin … )1,0(, −jji rn )0(in

1 )0,1(, jin )1,1(, jin … )1,1(, −jji rn )1(in

… … … … … …

1−ir )0,1(, −iji rn )1,1(, −iji rn … )1,1(, −− jiji rrn )1( −ii rn

 Σ )0(jn )1(jn … )1( −jj rn N 



Gene dependencies are discovered by Pearson’s chi-square statistics [Pel98], we use the following form of
equation [Oce99]: 
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This metric is symmetrical, 2
,

2
, ijji ΧΧ = , so for each couple of positions it has to be computed only once. Genes

are considered to be independent if the result does not meet certain threshold.  For example binary genes are
independent for 95% if 84.32

, <jiΧ .
The dependency information is used to build up the acyclic dependency graph, which can be seen as the set of
trees. The root nodes correspond to the positions where the values are generated using the univariate distribution,
the values of positions connected to already generated positions in the graph are subsequently generated using
the conditional probability. After chromosome generation the balancing procedure is used.

We have also implemented the following (non-symmetrical) metric giving as good results as Pearson’s statistics:
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This equation  is derived from K2 metrics used in BOA algorithm discussed in the next chapter.

3.3  BOA program

BOA [PGC98] (Bayesian Optimization Algorithm) uses Bayesian network to encode the structure of a problem.
It is an analogy of BMDA dependency graph, but the higher order gene dependencies can be covered too. For
each  variable Xi a set of variables

iXΠ is defined it depends on, so the distribution of individuals is encoded as
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Generally, the existence of directed edge from Xj to Xi in the network implies the belonging of the variable Xj to
the set

iXΠ . To reduce the space of networks, number of incoming edges into each node is  limited to k.

The Bayesian Dirichlet (BD) metric is used to measure the quality of the network [PGC98]. A special case of 
BD metric, so-called K2 metric, is used when no prior information about the problem is available. Actually, the
equation (8) is derived from K2 metrics for k=1 and alphabet encoding. It determines the relative metric
improvement for one edge addition.

In the shared implementation of BOA [Pel99] a simple greedy algorithm is used to search for a good network. In
each step the best edge is added. By the term ‘best edge’ we mean the edge giving the highest K2 metric for the
network B’ that can be constructed from the actual network B by adding this edge. It must also keep the network
acyclic and meet the limit of incoming edges.
After network construction new instances are generated using the univariate and conditional probability in a
similar way as for BMDA algorithm.

4  Experimental results

Numerous experiments were done to demonstrate the behaviour and the efficiency of the individual algorithms.
The two types of graph structures are used:

1. Regular graphs RLXB with grid structure [Schw98], where the notion X specifies the number of nodes, B
specifies the existence of bottle-neck in the graph structure; the global optimum is known. As an example a
bisection of graph RL64B is represented in Fig.2a  having a 2-edge bottle-neck  in the dashed cut line. The
regular graphs with bottleneck appear to be a proper test benchmark with many local optima.

2. Hypergraphs representing real circuits labelled by ICX [Schw86]. The global optima is not  known. The
structure of circuits can be characterized as a random logic. The hypergraph IC67 consists of 67 nodes and
134 edges/nets, the IC151 consists of 151 nodes and  286 edges/nets.
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Fig.2   Regular graph RL36B.

The main experimental results are listed in Table 2. In case of
regular graphs (see part A) the items in  the table represent the
average  number of fitness for 5 successful runs with different
initial random population. The parameters of the algorithms are set
to the minimal possible values to get global  optimum in all 5 
runs. In case of  graphs IC67 and IC151 (see part B)  trials are
focused on the goal to get a local minimum; the number of fitness
evaluations is limited. The BOA and BMDA algorithms perform
well, the SGA and SGAN converge slowly, the SGAH is the best
of all algorithms.          .                             

Graphs m
[assemblies]

A. Average number of evaluations
to get global optimum L

Global
optimum

L
SGAH SGAN SGA BMDA BOA k=3

RL36B 2 7115 1970 60942 5650 4242 2
RL36B 4 42812 3161 421827 28055 - 8
RL36B 6 65255 12133 1214150 293000 - 14
RL48B 2 4580 12850 *177933 20700 6036 2
RL48B 4 21375 138500 - 250320 - 8
RL64B 2 14900 8200 808571 64500 7905 2
RL64B 4 69830 306800 - 283200 - 10
RL100B 2 127825 105275 - 680000 19550 2

B. Cost/Average number of evaluations

IC67 2 36/4050 41/22950 45/37900 41/15290 40/12375 unknown
IC67 4 69/16530 86/42460 103/39780 72/25850 - unknown
IC151 2 58/19990 73/44220 110/46500 66/25465 67/22000 unknown
IC151 4 126/40760 218/43550 256/41510 208/26895 - unknown

Tab.2. Experimental results for SGA variants, BMDA and BOA algorithms.

In Fig.2 a comparison of BOA and BMDA algorithms is done for the case of bisection of graphs RL36B, RL48B
and RL64B.  The BOA algorithm for k=3 performs very well. In a) part  the dependency of the minimal
population size on the problem size and in b) part the dependency of number of fitness evaluations on the
problem size are shown.
In Fig.3a the performance of BMDA, BOA for k=3, SGA and SGAH is presented for the bisection of graphs
mentioned above and  for RL100B graph. It is evident  that the BOA algorithm gains on all the algorithms used
for bisection. BMDA converges much slower namely for RL100B graph. The SGAH algorithm is good enough,
better than BMDA and worse than BOA. The SGA algorithm performs very purely with great number of fitness
evaluations; in case of graph RL100B the global optimum was not reached during five independent trials. In case
of graph RL48B the global optimum was reached only in three of five trials (the item in Table 2 was signed by
asterisk).
In Fig.3b the results of multi-way partitioning of graph RL36B are presented for m=2,4 and 6. The SGAN

algorithm with positive normalization performs quite well, the SGA performs purely. BMDA and SGAH
algorithms perform good enough for quadrisection but for 6-way partition the number of fitness evaluations
rapidly increases. The relatively good results are due to the small size graph used for partitioning. The multi-way
partitioning for m>4 seems to be a hard problem for great size of problems.
During all the experiments the following range of parameters was used: for BOA and BMDA the 50% truncation
selection (a subset of population for estimation of distribution), for BOA the parameter k=1-5 of Bayesian
network. In case of  SGA and SGAN algorithms the crossover rate Rc=0.5, mutation rate Rm=0.05 is used. In
case of SGAH algorithm crossover rate Rc=0.5, mutation rate Rm=0.01- 0.05, He=5 -10, Hi = 10-30, Hr = 10-30
is used.
Generally, for SGA variants, the problems with proper setting of various heuristic parameters to prevent the
premature convergence occur.
In case of partitioning of the hypergraphs IC67, IC151 (see Table 2, part B), the population size is set to a
minimum value  N=550 for BOA and BMDA as well; the number of evaluations is limited to 27500. For SGAH



algorithm Rm= 0.01, He=5, Hi = 20, Hr = 20, for SGA and SGAN Rm= 0.05, Rc= 0.5; the population size N=100,
the number of evaluations is limited to 50000 for all  the SGA variants.

Bisection of graphs RL36B, RL48B, RL64B
using BMDA and BOA for various k 
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Fig2 a) The minimum size of population found to reach the global optimum for regular graphs RL36B, RL48B,
RL64B, b) Number of fitness evaluations for bisection of regular graphs RL36B, RL48B, RL64B to reach the
global optimum. The range of used population size was 500-3000 for BMDA and 430-3200 for BOA.
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1000

10000

100000

1000000

30 50 70 90 110
size of the problem

nu
m

be
ro

ff
itn

es
s

ev
al

ua
tio

ns

BMDA

BOA k=3

SGAH

SGA

Multi-w ay partitioning of graph RL36B
for m=2, 4, 6

1000

10000

100000

1000000

10000000

0 2 4 6 8
m - number of partitions

nu
m

be
ro

ff
itn

es
s

ev
al

ua
tio

ns

SGAH

SGAN

BMDA

SGA

a)                                                                                          b)
Fig.3  a) Number of fitness evaluations for bisection of regular graphs RL36B, RL48B, RL64B, RL100B to
reach the global optimum, using algorithms SGA, SGAH, BMDA and BOA for k=3,. The range of used
population size was 200-700 for SGA, 100-200 for SGAH, 500-20000 for BMDA(3000 for RL36B) and 535-
850 for BOA,     b) Number of fitness evaluation as a function of number of assemblies m for graph RL36B, (for
Y axis log-scaling is used).



5    Conclusions

The paper describes shortly three types of genetic algorithms. The first one (SGA) is based on the schemata
theory, the second one (BMDA) on an estimation of the distribution of promising solution, the last one BOA
uses the extra techniques to  model data by Bayesian network.
We have focused on the implementation of  SGA and BMDA version of genetic algorithm and adaptation of
BOA program with the aim to compare their performance and efficiency.  From the experiments  it is evident
that for  bisection of regular test graphs  the best performance offers the BOA algorithm with small amount of
evaluations and size dependency. BMDA algorithm works well on  the bisection of graphs up to 64 nodes; for
RL100B graphs the number of evaluations increases dramatically. The SGA algorithm performs very purely, the
number of evaluations is very high and  it failed for the RL100B graph. The SGAH version with heuristics seems
to be a good tool but it is very sensitive on setting various parameters and it often gets stuck in local optima. The
bad performance of SGA seems to be caused by phenomenon of  building block disruption.
The multi-way partitioning is a hard problem for all the algorithms. The BMDA algorithm works well enough
but only for relatively small problems. The SGAN with positive normalization of partitions works best of all but
for small problem and with the tendency to get stuck in local optima.
Our  contribution can be seen in the extension of BMDA algorithm to the finite alphabet encoding of
chromosomes to be able to solve the task of multi-way partitioning  graphs. We have also proved  the efficiency
of the modified BMDA algorithm using the same heuristic procedure as in the SGAH algorithm. The
performance of this version of BMDA is very similar to the original one. We have also implemented the
modified K2 metric for BMDA instead of Pearson’s statistics without remarkable influence.
The future  work will be focused namely on an exploration of the BOA version with finite alphabet encoding  for
multiple partitioning graphs and placement problem. Other activities will be directed towards the usage of EDA
algorithms with problem knowledge.
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