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Abstract. We report an experimental study of the surface flow and the creeping
flow of glass spheres on a heap. We characterize the dynamics of the flow with
particle tracking velocimetry and dynamic light scattering measurements. We
observe a creeping flow with a dynamics which slows down exponentially with
the depth. The characteristic distance for the decay is one bead diameter. A
striking observation is that the exponential decay for the mean velocity holds
over more than six orders of magnitude.
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1. Introduction

Surface flows of granular materials are a common case of granular flow in which only
a shallow layer of particles flows on a fixed bed of the same particles [1]. Such flows
may occur in many different practical situations, such as the transport of sediment in
rivers or flows on a heap. Although a considerable effort has been made in order to
understand them [1], the behavior of such flows is far from being fully understood. At
a first look at a surface flow, we may distinguish a rapidly flowing phase moving on a
static bed of granular material. However, a more careful investigation shows that the bed
is not strictly static, but also flows with a mean velocity which may be several orders of
magnitude smaller than the surface flow. The comprehension of such ‘creeping flow’, and
its connection with the surface flow, are still debated topics. We propose in this paper to
have a look at the mean velocity profile of the creeping flow under a heap of glass spheres.
The velocity profile is measured with two complementary techniques. For the surface
flow and the relatively rapid creeping flow, the mean velocity is extracted from particle
tacking velocimetry measurements. More deeply under the surface, we used a dynamic
light scattering measurement which gives access to the shear rate. With the combination
of the two techniques, we were able to measure the variations of the velocity over nine
orders of magnitude.
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In section 2 we recall different experimental results on the measurement of creeping
flow. In section 3, we describe our experimental set-up. The experimental results are
discussed in section 4. The analysis of the experimental data of dynamic light scattering
is given in section 5. Finally, in section 6 we report the velocity profiles as measured with
the two complementary techniques.

2. Creeping flows

The aim of the present experimental work is to obtain information on creeping flow. For
this, we will combine two complementary techniques, particle tracking velocimetry, and
dynamic light scattering. Before dealing with the details of the experiments, we first
recall some published experimental results on creeping flows. The pioneering work on
creeping flow below surface flow is due to Komatsu et al [2]. They studied the creeping
flow of millimetric spheres, sand and seed flowing on a two-dimensional hopper. The
velocity profiles for different flow rates and particles types were obtained by snapshots
of the pile with different shutter speeds. The mean velocity profiles were found to vary
quite linearly with the depth in a rapidly flowing zone, and the thickness of the flowing
zone was found to depend on the flows rate, from 5 to 15 diameters d of particles in
the experiment. Under the rapidly flowing zone, the velocity decays exponentially with
the depth, with a characteristic length ξ independent of the flows rate, and ranging from
≈1.35 diameters for spheres, to ≈0.6 diameters for sand. Taberlet et al [3] also observed
the same kind of creeping flow below the rapidly flowing zone for glass spheres flowing
on a superstable granular heap, but did not report an analysis of the velocity decay. The
same kind of creeping flow was also reported in rotating drum geometry. Bonamy et al
[4] reported an experiment on the flow of steel beads of diameter d in a rotating drum
at low Froude number. They measured the velocity profile for steady surface flows with
particle tracking velocimetry, and distinguished a flowing layer and a ‘static phase’ where
creeping motion takes place. The velocity decay inside the static phase was found to
decay exponentially, with a characteristic decay ξ ≈ 2.5d. They also noticed that neither
this characteristic length nor the velocity gradient depends on the drum rotating velocity,
the effect of velocity being only an increase of the thickness of the flowing layer. Socie
et al [6] reported experiments on painted millimetric spherical glass spheres in a rotating
drum, and reported similar behavior with an exponential decay of the velocity with a
characteristic decay ξ ≈ 3.4d. Orphe et al [7] reported an experiment on the steady flow
of millimetric steel and brass spheres in a rotating drum. They reported also a linear
velocity profile and a creeping zone with an exponential decay of the mean velocity, with
a characteristic decay ξ = 1.1 ± 0.2d. They also measured the variation of the root
mean square (rms) velocity in the same zone, and showed that the fluctuations also decay
exponentially, with a characteristic length ξrms = 1.7 ± 0.3d. Courrech du Pont et al [8]
reported on the velocity profiles during avalanches of millimetric spherical glass beads in
a rotating drum experiment. They showed that also in unsteady flows, the creeping flows
decay exponentially, with a characteristic length ξ = 3 ± 1d. Finally, Mueth et al [9]
reported an experiment on the flow of spherical and non-spherical seeds in a cylindrical
Couette geometry. They measured the dependence of the mean azimuthal velocity with
respect to the radial distance. They show that the mean velocity decays over a typical
distance which was of the order of the diameter of a grain. A noticeable difference from
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Figure 1. The heap geometry with the coordinate system and the parameters.

the other reported experiments is that the decay law appears to be a Gaussian law. This
difference has been attributed to the geometry of the experiment [2]. All the results are
summarized in table 1.

3. Experiments

3.1. Flow geometry

The heap geometry that we studied is schematically shown in figure 1. It is a super stable
heap [10] between two parallel plates. The plates are square and their size L is 400 mm.
They are made of 6 mm thick floated glass and are separated with the use of spacers of a
width W = 5 mm.

We study the flow of spherical soda-lime glass beads from ‘Marteau & Lemarié’
company. The experiments reported here were done with beads of diameter d in the
range 0.4–0.6 mm. Small dust was removed by sieving. We will use the mean value
d = 0.5 mm for the following discussions. Observations of the beads with a microscope
show that a few per cent of the beads are broken beads or have a shape which is clearly
elliptical. Experiments not presented here have been also performed with beads of mean
diameters d = 0.2 mm and d = 0.3 mm with very similar results for the velocity profiles
measured both with particle tracking velocimetry and dynamic light scattering. However,
possibly due to the drift of hygrometry and the important presence of dust particles
despite careful sieving, the results are not fully reproducible over time. Moreover, small
beads have a slight tendency to segregate at the interface between the rapid flow and the
creeping flow. Since dynamic light scattering must be averaged over a time relatively long
compared to the time during which segregation seems to occurs, this may introduce a
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Table 1. Summary of some experiments on creeping flows. d is the diameter for
spherical particles.

Authors Geometry Material
Velocity range
(m s−1)

Decay length/
diameter ξ/d

Komatsu [2] Heap Alumina spheres,
sand, seed

10−2–10−6 1

Bonamy [4] Rotating drum Steel beads 10−1–10−3 2.5
Jain [5] Rotating drum Steel and glass

spheres
10−1–10−3 1 − 2

Socie [6] Rotating drum Painted
spherical glass

10−2–10−4 4.9

Orpe [7] Rotating drum Steel and
brass spheres

10−1–10−2 1.1 ± 0.2

Courrech du Pont [8] Rotating drum
(non-stationary)

Glass spheres 10−1–10−3 3 ± 1

Mueth [9] Couette cell Seed 10−1–10−4 Gaussian decay
This work Heap Glass spheres 10−2–10−9 1 ± 0.2

systematic error. The flow of granular material is driven continuously at a constant flow
rate Q with a system of a double funnel. We present here an experiment with a flow rate
Q = 30 ± 1 g s−1, and the results are similar for a smaller rate. After a few seconds of
transient regime, the mean slope βm of the heap attains a constant value βm = 45 ± 2◦

and the flow appears stationary.

3.2. Particle tracking velocimetry

The velocities in the rapid flow zone and in the beginning of the creeping zone are measured
with the analysis of images of the flow. For this, the flow is lit with a white spot and
specular reflections are imaged with a fast camera Photron APX RS at a resolution of
1024× 1024 pixels and at frame rates of 100 00, 1500 and 50 image s−1 and with a Nikon
D200 camera with a resolution 3872× 2592 pixels and a frame rate of 0.2 image s−1. The
beads have a size of about 30 pixels and their trajectories are defined using a tracking
program. The only beads that can be tracked are the one close to the sidewalls. The
computation of the velocity vectors requires first processing images in order to improve
the quality, then determining the center of the beads. Velocities are then computed as
the difference between the positions of the beads between successive images. In order to
obtain the mean velocity, we average the velocity of the grains of a slice of a thickness
Δz = 0.35 mm and of length Δx = 22 mm, and on a sequence of a few thousand
images. Variations of the intensity of the light source produce small variations in the
gray level of each pixel. This noise limits the precision of our measurement, i.e. the
smallest displacement that can be detected. In order to determine this precision, the
positions of grains in an immobile sample are tracked. The displacements measured are
then considered to be displacement artifacts due to spot light variations. We then estimate
that the minimum average velocity that we can detect is ≈1/(200δt) mm s−1, where δt is
the interval in seconds between two successive images.

doi:10.1088/1742-5468/2008/03/P03009 5

http://dx.doi.org/10.1088/1742-5468/2008/03/P03009


J.S
tat.M

ech.
(2008)

P
03009

Experimental study of a creeping granular flow at very low velocity

Figure 2. Schematic drawing of the dynamic light scattering set-up.

3.3. Dynamic light scattering

The dynamics of the creeping flow is also investigated with a dynamic light scattering
experiment. A sketch of the experiment is shown in figure 2. The granular medium is
illuminated with a laser (Quantum Coherent, vacuum wavelength λ0 = 0.532 μm). The
light is then scattered, and the image of the surface is projected on an iris diaphragm.
The scattered light is then collected with a Panasonic camera which acquires images at
a frame rate of 20 image s−1. The size of the speckle spot is typically 3 pixels. Because
experimental data need to be averaged over a long experimental run, we only acquire
N = 2456 pixels on the camera. It has been checked that restricting the acquisition
to such a number of pixels does not introduce a significant noise on the estimate of the
correlation function of the scattered intensity. The scattered intensity I(t, p), where t is
the acquisition time and p is the index of the pixel, is then measured. The normalized
correlation function of the scattered light is defined as [12, 11]

gI(τ) =
〈I(t, p)I(t + τ, p)〉t,p
〈I(t, p)〉t,p〈I(t, p)〉t+τ,p

− 1 (1)

where τ is the lag time and 〈·〉t,p means an average over the times t and the acquired pixels
p. For an accurate determination of (1) the correlation of the dark noise of the camera
has been subtracted following a procedure given elsewhere [13]. The total acquisition
time for each experiment is 20 min, and the first three minutes of every acquisition have
been dropped in order to be in a stationary state. Indeed, it appears that deeply in the
flow, a typical time of one minute is needed in order to obtain stationary dynamics. The
minimum lag time is fixed by the frame rate, i.e. 50 ms. The maximum attainable lag
time is fixed by the coherence of the laser. In order to estimate this time, we measured
the temporal correlation of the light scattered by a granular medium at rest. From this
measurement, we estimate that the decorrelation due to laser fluctuation is not relevant
if the lag time is smaller than ∼60 s.

For practical reasons, the velocities and the dynamic light scattering are measured
roughly 10 cm before the exit of the heap. The flow seems well established and stationary
everywhere, expect in the first and the last centimeter of the heap. The origin for the
vertical axis z = 0 is arbitrarily located and marked. This origin is the same for the
particle tracking velocimetry and the light scattering experiments. In practice, this origin
coincides roughly with the maximum of the ballistic trajectories of the grains.
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Figure 3. Mean velocity profile determined from particle tracking velocimetry
measurements. Symbols are experimental measurements at different acquisition
rates �: 100 00 i/s, � : 1500 i/s, �: 50 i/s and ◦: 0.2 i/s. (a) is a linear plot. The
line corresponds to a constant shear rate γ̇a = 130 s−1. (b) is a logarithmic plot.
The solid line is a exponential decay Vx ∝ exp(−z/ξ) with a characteristic length
ξ = 1.1d.

4. Experimental results

4.1. Particle tracking velocimetry

The velocity of the flowing layer and in the creeping flow determined from the particle
tracking velocimetry is plotted on figure 3. The velocities of the grains in the top layers
between z = 0 and 1 mm are not measured. In this zone, the motions of the grains are
clearly ballistic, and difficult to obtain with our particle tracking parameters. As shown in
figure 3(a), in the dense flow zone, the velocity is first quite constant and decays roughly
linearly up to z/d ≈ 14, and then decreases more slowly. Such velocity profiles are very
typical of what is commonly measured for dense surface flow [7, 10]. We define an average
shear rate γ̇a as the mean slope of the curve Vx versus z in the region where the variations
of the velocity Vx with the depth z are linear. We estimate γ̇a = 130 ± 10 s−1. This
value may be compared with the measurement of Orpe et al [7]. Those authors show that
the shear rate is related to the slope of the surface according to the phenomenological
equation [14]

γ̇c =

[
g sin(βm − βs)

cd cos(βs)

]1/2

(2)

where g is the acceleration due to gravity, βm is the mean slope of the heap, βs the repose
angle of the heap, and c is a numerical constant of order unity. Taking βm = 45◦, βs = 24◦,
and c = 0.56 [7] leads to γ̇a = 117 s−1, in reasonable agreement with our observation.

We observe in figure 3(b) that, at smaller velocity, a very different behavior occurs.
The velocity decays exponentially as

Vx ∝ exp(−z/ξ) (3)
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Figure 4. Normalized correlation function of the scattered intensity as a
function of the lag time τ . Different symbols correspond to different experiments
performed at different depths z: (◦) 16 mm, (�) 17 mm, (�) 18 mm, (�) 19 mm,
(�) 20 mm and (�) 21 mm.

with the characteristic length for this exponential decay being ξ = 1.0 ± 0.1d. The decay
law for the velocity as a function of the depth, and the value of the characteristic decay
ξ, are in agreement with the previously reported studies recalled in section 2.

4.2. Dynamic light scattering

Figure 4 shows the correlation functions of the scattered intensity GI . They are measured
for different depths ranging between 16 and 21 mm below the free surfaces. The typical
error on the localization of the laser spot with respect to the mark indicating the z = 0 level
is roughly ≈0.3 mm. Different experiments have been performed on different days with the
same flow rate in order to check the reproducibility of the results. For every experiment,
the correlation decays smoothly with the lag time τ . The rate of the relaxation depends
strongly on the depth, and the dynamics is slowed down by four orders of magnitude
between the extreme measurements separated in depth by a distance of 5 mm.

The different curves representing the correlation functions collapse on a master curve
if the lag time is rescaled by a characteristic time τ0. We take arbitrary τ0 = 1 s for
experiments performed at z = 18 mm. The figure 5 shows the effect of this scaling. The
variation of the characteristic time τ0 as a function of the depth z is plotted in the inset
of figure 5. The variation of the characteristic time τ0 is found to follow an exponential
law over the full range of experimental data:

τ0 ∝ exp(z/ξ′) (4)

where ξ′ = 1.1 ± 0.1d is the characteristic length for the slowing down of the dynamics.
The decay of the dynamics of the light scattering data occurs with the same exponential
law and the same characteristic length as the decay of the velocity measured with
particle tracking velocimetry higher in the flow. This strongly suggests that dynamic
light scattering data could be interpreted with the hypothesis that the mean velocity of
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Figure 5. Normalized correlation function of the scattered intensity as a function
of the rescaled lag time τ/τ0. The symbols are the same as for figure 4. Inset:
variation of the time τ0 as a function of the depth. The dotted line is an
exponential fit τ0 ∝ exp z/ξ′ with ξ′ = 1.1d.

the grains decays with the same exponential law over the full range of depth within the
creeping flow.

5. Modeling of dynamic light scattering data

5.1. Dynamic light scattering and shear flow

The relationship between the dynamics of particles within a disordered medium and the
fluctuations of the scattered light is a very classical problem which has been addressed
in various experimental configurations. The dynamics of the multiple scattered light of
colloidal particles submitted to a stationary shear flow has been investigated by different
authors [20]–[23]. The results have been extended to the shearing of emulsions [15] and to
the deformations of a granular medium [25]. In dynamic light scattering experiments,
when the scattered electric fields are Gaussian distributed, the intensity correlation
function is related to the intensity autocorrelation function by the Siegert relation [16]:

gI(τ) = 1 + |gE(τ)|2 (5)

where gE(τ) = 〈E(t)E∗(t+τ)〉/〈|E(t)|〉2 is the correlation function of the scattered electric
field E. Within the weak scattering limit (kl � 1, where k is the wavenumber, and l
the scattering mean free path), and in the multiply scattering limit (L � l, L being
the typical size of the cell), the intensity of the light can be described by the diffusion
approximation [17]. The autocorrelation function is then given by [18, 19]

gE(τ) =

∫
P (s)〈exp[jΔφs(τ)]〉ds (6)

where P (s) is the fraction of the total scattered intensity which is scattered in a path of
length s. Δφs(τ) is the phase difference of the electric field between time t and time t+ τ
associated with a given multiple scattering path of length s, and information about the
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dynamics of the system is contained in this quantity. The average 〈·〉 in (6) represents
an average over all possible paths of all possible orientations for a photon propagating in
the sample. It can be shown [20]–[23] that for a stationary shear flow the average of the
fluctuation of phase variation 〈exp[jΔφs(τ)]〉 may be expressed as

〈exp[jΔφs(τ)]〉 = exp[−2(s/l∗)(τ/τs)
2] (7)

where l∗ is the transport mean free path. The characteristic time for the decay is

τs =

√
30

k0l∗Γ̇
(8)

where k0 = 2π/λ0 and Γ̇ is a combination of the component of the strain rate tensor
e2

ij = (1/2)(∂iVj + ∂jVi):

Γ̇ =

√
2
∑
i,j

e2
ij . (9)

In (9), e2
ij represents an average of e2

ij over the local density of photons inside the
sample. This simply says that the more a zone in the sample is lit, the more important is
its contribution to the scattered field [20]–[22].

The meaning of (7)–(9) may be easily understood. The decorrelation of the scattered
electric field or intensity depends on the variation of the length of the optical paths,
and those variations come from the deformations of the material. The decays of the
correlation functions for sheared colloidal particles [21]–[23] and emulsions [15] are found
to be in agreement with (7)–(9).

In this description, the decay of the autocorrelation function is only sensitive to the
deformation of the material, and not to a translation without deformation. However, a
single translation of the granular material will induce a translation of the speckle pattern,
and then a loss of correlation of the scattered light. If we consider a translation of the
granular material at a velocity V , the speckle pattern moves at the same velocity. With a
speckle spot size lc, we may expect a loss of correlation on a timescale τt ≈ lc/V . Taking
Γ̇ ∼ V/ξ with ξ ∼ 500 μm, l∗ ∼ 1.2 mm (see section 5.2), lc ≈ 3 pixels ≈ 40 μm, we
obtain τs/τt ∼ 5 × 10−3. So translation without deformation induces a loss of correlation
on a timescale at least two orders of magnitude larger than the decorrelation induced by
the shearing of the granular material.

5.2. Constant shear rate modeling

In the preceding expressions (7)–(9), the characteristic time τs varies as the inverse of the
average strain rate Γ̇, and then as the inverse of the velocity field components Vi. It follows
that if all the components of the velocity field are divided by an arbitrary factor λ, the
characteristic time τs is multiplied by a factor λ, and hence the characteristic timescales
for the variations of gE and gI . So, the exponential variations of τ0 given by (4) may be
interpreted if we assume that the component of the velocity field decreases with depth as

Vi ∝ exp(−z/ξ′) (10)

where ξ′ = 1.1 ± 0.1d.

doi:10.1088/1742-5468/2008/03/P03009 10
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It should be stressed that this result does not depend on a particular choice for the
distribution function P (s) of the optical path length.

It follows from the comparison between (3) and (10) and from the comparison
between the values for the characteristic length ξ and ξ′ that light scattering data may be
interpreted with the assumption that the velocity field varies as

Vx(x, y, z) = V0 exp(−z/ξ′). (11)

Expression (11) is surely a crude description of the velocity field. First, the velocity
is expected to depend on the distance from the glass plates. Indeed it has been shown
numerically [3] and experimentally [8] that the velocity field inside the gap is close to a
plug flow, with a variation ∂yVx ∼ d/6 near the surfaces. However, those variations are

negligible compared to ∂xVx ∼ d in the estimate of the mean strain rate Γ̇ given by (9).
Other effects that are not taken into account in (11) are possible fluctuations of the mean
velocities or rotations of the beads if they are not strictly spherical. If such motions are
present, they should induce fluctuations on the path lengths, and then participate in the
loss of correlation of the scattered intensity.

With the simple velocity field given by (11), we have

Γ̇ 
 Vo

ξ′
exp(−z/ξ′). (12)

In the derivation of (12), we suppose that the strain rate tensor components e2
ij are

constant everywhere on the lit zone. We will relax this hypothesis later. The distribution
of path length P (s) depends on the geometry for the illumination. In the backscattering
geometry on a half space, the path distribution P (s) may be calculated and then gE and
gI (5) [24]:

gI(τ) 

∣∣∣∣exp

(
−γ

√
1
5
k0l

∗Γ̇τ

)∣∣∣∣
2

(13)

where γ 
 2.0 is a numerical factor.
The correlation function corresponding to (13) is calculated and compared to

experimental data in figure 6. We used the value l∗ = 1.22 ± 0.24 mm that we
obtained from measurements of the optical transmissivity of the beads. The value for
the mean stain rate Γ̇ simply shifts the timescale on a logarithmic plot. We represent (13)
for a mean strain rate Γ̇ = 2.2 × 10−4/τ0. Although the form of the variation is in
rough agreement with experimental observations, equation (13) shows a decrease sharper
than the experimental variations. The main limitation of this simple model is easy to
understand. The extension of the zone from which the light is backscattered is of the
order of l∗ ≈ 2d. There are then photons which explore zones where the mean strain
rate is lower or greater than the average mean strain rate. It follows that we expect a
broad distribution of the timescales for the decay of the correlation function and then a
stretching of the decay compared to a simple exponential decay. Moreover, the geometry
for our experiment is a slab of granular material and not an half plane. This should
presumably change the distribution of path length P (s) and then the functional form for
gI compared to a simple exponential decay.

doi:10.1088/1742-5468/2008/03/P03009 11

http://dx.doi.org/10.1088/1742-5468/2008/03/P03009


J.S
tat.M

ech.
(2008)

P
03009

Experimental study of a creeping granular flow at very low velocity

Figure 6. Normalized correlation function of the scattered intensity as a function
of the rescaled lag time τ/τ0. The symbols are the same as for figure 4. Dotted
line: correlation function gI from (13) for a mean strain rate Γ̇ = 2.2 × 10−4/τ0.
Plain line: correlation function gI obtained from the ray tracing model with an
exponentially varying strain rate, the mean strain rate being Γ̇ = 2.2 × 10−4/τ0

at the center of the beam.

5.3. Exponential shear rate

In order to take into account the geometry effects and the non-homogeneous shear in
the flow, we need to model more carefully the paths followed by the photons within the
granular material. Since the beads are large compared to the laser wavelength, we use
the framework of geometrical optics in order to determine the distribution of path length
for photons propagating through the glass sphere packing [25]. We first notice that in
the geometrical optics approximation, the transport mean free path l∗ for a random close
packing of monodisperse glass spheres in air is found to be l∗ ≈ 3.32d. For a mean
diameter d = 500 μm, we then expect l∗ ≈ 1.66 mm, in reasonable agreement with the
measured value l∗ = 1.22 ± 0.24 mm. This indicates that treating light propagation
with geometrical optics is a quite safe approximation. A plausible explanation for the
difference may come from the fact that the granular medium is composed of grains which
are neither perfectly spherical nor monodisperse, but we do not take such refinements
into account in our model. The correlation function of the scattering electric field gE(τ)
is then calculated as

gE(τ) =

∑M
m=1 exp(jΔΦ(m)(τ)) exp(−s(m)/la)∑M

m=1 exp(−s(m)/la)
. (14)

In (14) the summation is performed over the geometrical rays computed from the
geometrical optics ray, m being the number of the ray, and M the total number of rays.
ΔΦ(m)(τ) is the phase shift for the ray m with a delay time τ . The length of the ray
m is s(m), and the factor exp(−s(m)/la) takes into account absorption into the medium,
i.e., large loops into the granular material are more attenuated than short loops. The
absorption length may be extracted from transmissivity measurement [26, 27], and we
found la = 24 ± 5 mm. The phase shift ΔΦ(m)(τ) is calculated from the deformation of
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Figure 7. (a) Geometry for the generation of the path for photons in the
geometrical optic framework. (b) Schematic drawing of the variation of a segment
of the ray when beads are moved from position 1 (plain spheres) to position 2
(dotted spheres).

the segment of the ray which joins spheres. Let lν be a segment of the ray which joins two
spheres as shown in figure 7(b). When the extremities of the ray move with a velocity
field V(r), over a duration τ , the variation of the length lν is

Δlν 
 τ
∑
i,j

(
∂Vi

∂xj

)
lνi l

ν
j

lν
(15)

where
∑

i,j means a summation over x, y, z for i and j. The phase shift is the computed
as

ΔΦ(m)(τ) = k0

∑
ν

Δlν (16)

where the summation is taken over all segments ν of the ray number m. From (14) to (16),
we are able to calculate gI(τ) for a velocity field Vx(x, y, z) = V0 exp(−z/ξ′). The result
and comparison to the experimental data are shown as the plain line on (figure 6). The
number of rays M for this estimate is M = 60 000, and we take ξ′ = 1.1d and the velocity
at the center of the beam V0 = 2.2 × 10−4 ξ′/τ0. The differences with the more simple
exponential model given by (13) are quite small. With the same strain rate at the center
of the beam, the dynamics is a little bit slower with the optical geometric model compared
to the simple exponential decay. This may be understood by the fact that in our slice
geometry with absorption the path lengths should be shorter than for an unbounded plane
geometry without absorption. The spreading of the timescale for the decay reflects the
distribution of strain rate in the lit zone of the creeping flow.

6. Summary of experimental results

The modeling of dynamic light scattering developed in section 5 allows us to have access
to the mean velocity. We now compare this determination with the measurement done
with the particle tracking velocimetry measurement. Figure 8 is a semi-logarithmic
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Figure 8. Summary of the measurement of the velocity. Open symbols are
velocity measured from particle tracking velocimetry with a fast camera and solid
symbols are the velocity determined from dynamic light scattering experiments.
The line is an exponential law Vx ∝ exp(−z/ξ) with ξ = 1.05d.

plot of the velocity determined by both particle tracking velocimetry and dynamic light
scattering. We may clearly see in this figure than the velocities determined with the two
different techniques are well matched and overlapped. A careful look at the profiles shows
that there is a slight shift of ≈0.8d between the two exponential velocity profiles, the
velocity determined with dynamic light scattering being slightly greater than the velocity
determined by particle tracking velocimetry in the zone where they are determined by
the two techniques. A possible explanation could be rotational motions of beads or
the fluctuating part of the velocity of the beads. Finally we see that the exponential
decrease on the velocity field in the creeping flow is indeed verified on the full scale of the
measurement, i.e. is valid for 15ξ and more than six decades in velocity.

7. Conclusions

The study of the generic behaviors of granular flows are important for the developments
of granular hydrodynamics. The creeping flows which occur below surface flow clearly
have a very generic behavior. They occur, as we recalled in section 2, in many different
experimental situations. The measure of the fluctuating part of the scattered electric field
allows us to obtain information about the motion of the grains at very small velocity. We
showed that those experimental observations are in full agreement with the hypothesis of
a velocity which decreases exponentially with depth. It is quite fascinating to see that
this characteristic decay for the dynamics of the flows persists as long it is possible to
measure it. This strongly extends the generality of creeping flow in granular media.
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