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Abstract— A novel curvature-basedsteering control law
is intr oduced to produce the obstacle avoidance behavior
for unicycle type robots traveling (flying) at constant speed.
Differ ent methodsof curvature estimation fr om noisy range
data are explored and compared via experiments. Perfor-
mance of the obstacle avoidance algorithm is investigated
thr ough simulations and experiments.

I . INTRODUCTION

In an unknown environment,a moving robot hasto be
ableto avoid collision in orderto survive.Currently, when
a map is not provided, there are two major categories
of obstacleavoidancealgorithmsand control laws. The
first category is potentialfunction(or navigationfunction)
basedalgorithmsasintroducedin [7], [10], [12] andvari-
ousotherpapers.A robot follows thegradientvectorfield
generatedby some artificial potential function assigned
to the workspace.Detectionof new obstacleswill cause
a recalculationof the potential function. This approach
is computationallyefficient and easyto implement.Fur-
thermore,with appropriatedynamicmodel,the algorithm
producesan explicit control law for the robot. But it has
two drawbacks.First, the potential function will almost
certainly have critical points other than the goal. Hence
the robot might be trapped near such a critical point.
Second,the path of the robot may be hard to compute
and predict becauseof the complexity of the potential
functions.The secondcategory of algorithmsis basedon
local path planning, a typical caseis the “bug” family
originating from the work of Lumelsky andStepanov[8],
where a robot is instructed to follow boundarycurves
of obstacles.It is proved that by following the boundary
curvesof the obstaclesand leaving the boundarywhena
certainconditionis satisfied,a robotis guaranteedto reach
thegoal.Someinterestingresultson theoptimalityaspects
of local path planning is addressedin [13]. The path-
planning algorithms always producewell-defined paths.
However, it doesnot tell the robot how to follow sucha
path. One has to solve the inversedynamicsproblemto

find anapplicablecontrol law. This processis difficult and
a solution is not guaranteed.

Becauseit is verydifficult to avoid theunwantedcritical
points of the navigation functions,a recentdevelopment
in this category is to keepthe robot moving at a constant
speedwith steeringcontrol. With the constantspeedas-
sumption,sucha control law hasa gyroscopicnature[16].
The authorsof [14], [15] and[18] give empiricalwaysto
designsucha vectorfield. However, the methodsarestill
in theirpreliminarystagesandareonly appliedto a limited
numberof specialcases.In [11], the authorsproposeda
navigationsteeringlaw with obstaclestreatedvia potential
functionson the spaceof steeringangles.This paperhas
inspiredthegroupledby Warrento investigatethesteering
behavior of humanbeingsin a non-staticenvironment[3].
Someof the latestinterestingresultsarepublishedin [4].
This approachis promisingwhentheobstacleis relatively
small comparedto the apertureof the rangesensors.

In a two dimensionalspace,the boundarycurvesof the
obstaclesprovide cuesfor the designof steeringvector
fields. An orientedboundarycurve is determinedby its
curvaturefunctionin thecanonicalFrenet-Serretframe[9]
if oneknows the positionof onepoint on the curve. The
curvaturefunction can be measuredfrom the rangedata
obtainedby sensorssuch as sonaror laser rangefinder
(ladar).By using suchcurvaturemeasurements,we have
given a systematicway to producegyroscopicsteering
vectorfieldswhich guaranteeavoiding obstaclesandreach
of thegoal.Themathematicalresultsarepresentedin [17].
We take advantageof new developmentsin shapetheory
[19] and formation control [6]. The essenceis that we
not only producea justifiablecontrol law, but alsopredict
well-definedpathsfor the robot.

Theperformanceof our control laws dependson curva-
tureestimatesobtainedby a robot asa resultof analyzing
its sensoryinformation. Becauseof the derivative nature
of curvature, even when a high accuracy range sensor
such as a laser rangefinder is employed, the curvature
estimatesstill contain significant noise. Therefore,it is



important for us to study all possibleways of getting
smoothcurvatureestimatesandcomparethe performance
of different methods.We testedtwo appealingmethods.
The first is proposedand analyzedin [2] for biological
data,where the classicalcurvatureestimateis employed
with an abundantset of empirical rules to improve the
accuracy. The secondmethodis examinedin [1], where
a geometriccurvatureestimateis established.We madea
slight extensionto this methodto improve its accuracy.
The performanceof thesetwo methodsarecomparedvia
experiments.

Our algorithmsareimplementedon a PioneerII mobile
robot with laserrangefinder. The feedbackcontrol law is
implementedin theform of anMDLe atom[5]. Wecarried
out a seriesof experimentsto testthe performanceof the
obstacleavoidanceandboundaryfollowing ability of the
control law. Selectedresultsarepresentedin sectionIV.

I I . CURVATURE-BASED CONTROL LAWS FOR

OBSTACLE AVOIDANCE

The controlled motion of a unicycle type robot is
modeledas:

ẋ � vcos � θ �
ẏ � vsin � θ �
θ̇ � u � (1)

where � x � y ���	� 2 is the location of the robot in the
planeand θ determinesits headinganglein a laboratory
coordinate system. The control v is speed and u the
steeringcontrol. This model is a good approximationof
the planarmotion of a variety of aerialor groundrobots.
As in the caseof unmannedaerial vehicles,one often
prefers to set v as a constantand only control u. We
make the assumption that v is always set to unit speed.
Therefore,our goal is to designa control law for u to
achieve obstacleavoidance.

We notethatunderthe unit speedassumption,equation
(1) canbeviewedasrepresentingthemotionof a charged
particle in a magneticfield of strengthproportionalto u.

A. Introduction to the control law

Robotsare usually equippedwith rangesensors,typi-
cally sonaror laserrangefinder. Usually, rangesensorsare
ableto scana conecenteredaroundthe headingdirection
of the robot.We assumewe have sufficiently many sensor
rays. When a sensorray detectsan obstacle,i.e. the ray
intersectsthe (oriented)boundarycurve of the obstacle,
then the tangentvector and the plane curvature [9] at
the point of intersectioncanbe estimatedby the methods
of sectionIII. Let α denotethe anglemeasuredcounter-
clockwise from the headingdirection of the robot to a
selectedsensorray. If this ray detectsa point on the
boundarycurve of the obstacle,thenwe denoteby φα the

anglemadeby thevectortangentto theboundarycurve at
that point, with respectto the laboratoryframe. Further,
we let rα be the correspondingrangemeasurementand
κα be the curvatureof the boundarycurve at the detected
point.Whenα � 0, all measurementsareassociatedto the
centralray of the sensor(laserrangefinder).

In [17], we showed that a robot not only can avoid
an obstaclebut also can follow the boundarycurve of
thatobstacleby utilizing measurementsobtainedfrom two
sensorrays, one at α � 0, the other at α ��
 π � 2. One
of the technicaldetails is that, when either of the sensor
rays fails to detecta boundarycurve (say due to being
out of range),thenwe simply assignφα � θ , κα � 0 and
rα � rmax whenα � 0 andrα � rc whenα �	
 π � 2, where
rmax is the maximal rangefor a sensorray and rc is the
desiredproximity to the detectedboundarycurve during
wall-following. We could interpret theseassignmentsas
determiningvirtual boundarycurveswith tangentvectors
alignedto theheadingdirectionof therobot.Thesevirtual
boundarycurves have zero curvatureat the virtual point
of intersectionat distancermax or rc as the casemay be.

The control laws derived from [17] are basedon a
control Lyapunov function

V � 4sin2 � θ 
 φ0

4
�� 4sin2 � φ0 
 φ � π

2

4
�� g � r � π

2
��� (2)

wherewe define

g � z ��� z

0
f � σ � dσ � (3)

In this equation,the function f ����� is definedasa smooth
function satisfying

f � z ��� 0 when z � rc

f � z ��� 0 when 0 � z � rc

f � z ��� 0 when z � rc � (4)

An exampleis f � z ����� z 
 rc � 3 andg � z ��� 1
4 � z 
 rc � 4.

The intuition behindthe useof this particularfunction
V is that if a feedbackcontrol law is such that V̇ � 0
alongclosedloop trajectories,thena boundaryfollowing
behavior would result as the limiting behavior (motion
state) correspondingto θ � φ0 � φ � π

2
and r � π

2
� rc.

Detailsof thecorrespondingmathematicalargumentswill
appearin [17]. In the settingof finite rangesensors,the
role of initial condition is important.

We note that in the control Lyapunov function, the
quantities � θ 
 φ0 � , � φ0 
 φ � π

2
� and r � π

2
are independent

of the choiceof laboratoryframe.They canbe measured
in a coordinateframe attachedto the robot. Therefore
the function V and the derived control law u are also
independentof the choiceof laboratoryframe.



B. Simulation results

Our control law is first testedin simulationsin Matlab
and we show resultsas in Figure 1, 2 and 3. In every
simulationwe assigna oneobstacleenvironment.Thefirst
obstaclehasan elliptical boundary. The secondobstacle
hasa convex polygonalboundaryandthe third hasa non-
convex polygonal boundary. In all three casesthe robot
successfullyavoidstheobstaclesandfollows theboundary
curves.
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Fig. 1. Matlab simulationof following the boundaryof an elliptical
obstacle.The robot is instructedto keepunit distancefrom the obstacle
boundaryto its right.
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Fig. 2. Matlab simulationof following the boundaryof a polygonal
obstacle.The robot is instructed to keep 0.5 unit distancefrom the
obstacleboundaryto its right.

I I I . CURVATURE ESTIMATION FROM LADAR

MEASUREMENTS

Becausecurvature is important to our obstacleavoid-
ancecontrol law, obtaining an accurateestimateof cur-
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Fig. 3. Matlab simulation of following the boundaryof a polygonal
obstacle.The robot is instructed to keep 0.5 unit distancefrom the
obstacleboundaryto its right. In all threefiguresthe robot is initially
headingon a collision coursetowardsthe obstacle.

vatureis fundamental.However, curvatureestimationin-
volvesthe computationof derivatives.Suchprocessesare
prone to noise and small measurementerrors. Filtering
andaveragingtechniquesneedto be applied.

We usea SICK LMS-200 laserrangefinder to obtain
rangemeasurements.The range-findertakesa 180 degree
scanin the horizontalplane,measuringdistancewith an
angularresolutionof one degree.The range-finderhasa
rangeof 10m with relative error typically lessthan0� 8%.
Notice that even suchsmall relative error will still cause
significant inaccuracy in the curvature estimatesin the
absenseof filtering or averaging.

A. Curvature estimates

If a regularplanecurve is parameterizedas ��� t � where
t is not necessarilythe arc-length,then the curvaturecan
be calculatedusing the definition

�
κ � t � � � ˙� � t ��! ¨� � t �

˙�"� t � 3 � (5)

(Recall that plane curvature is signed.)However, since
this calculation requiresthe computationof the second
derivative, it is sensitive to noise.

If the curve is parameterizedby its arc-lengththen the
curvatureis

�
κ � s � � � dT � s �

ds
� dθ

ds
(6)

whereθ denotethe direction of the tangentvector T � s � .
Therefore,an estimateof the curvatureis obtainedby

�
κ � s � � � δθ

δ s
(7)



Let Pn � w, Pn, Pn# w denotethreepointson a regularcurve.
Then

δθ � arccos � � Pn# w 
 Pn � Pn 
 Pn � w �
Pn# w 
 Pn Pn 
 Pn � w

� (8)

and
δ s � Pn# w 
 Pn � w (9)

wherew is a positive integercalledthe window size.This
estimatesis referredastheclassicalcurvatureestimateand
is usedin [2].

Another estimateof curvature is proposedin [1] as
follows. Let a � Pn 
 Pn � w , b � Pn# w 
 Pn ,c �

Pn# w 
 Pn � w ands �$� a  b  c �%� 2. We draw theunique
circle passingall threepoints. By applying Heron’s for-
mula, the curvatureof sucha circle is

�
κ � s � � � 4

s � s 
 a �&� s 
 b �'� s 
 c �
abc

� (10)

In [1], it is proved that κ is a good estimateof κ when
thedifference� a 
 b � is sufficiently small.We refer to this
estimatesas the geometricestimateof curvature.

B. Noise reduction methods and comparasion

Both the classicaland the geometricestimateof cur-
vature are sensitive to noise in the rangedata. In order
to reduceestimationerror, a straightforward approachis
to apply a Gaussianfilter to the position data,or use a
running averageon the position data and the curvature
estimates.The improvementsdependtoo much on one’s
experienceand the environment.Therefore,this classof
methodsis difficult to systemize.

In [2], various techniquesusedto filter curvatureand
torsion dataobtainedfrom three-dimensionaltrajectories
of microorganismsare investigated.Empirically, the au-
thors noticed that the ratio between the noise in the
position at a point and the distancebetweenpoints can
be interpretedas the signal-to-noiseratio. In order to
improve this ratio, one can increasethe window size
when calculatingδθ and δ s. However, the window size
cannotbearbitrarily large,otherwisetheestimatebecomes
severely biased. Therefore, one has to deal with the
trade-off betweenthe signal-noiseratio andthe resolution
by varying the window size. Becausethey are mainly
concernedwith off-line analysisof collected biological
data,this trade-off is not too difficult to handle.However,
it becomesmuch more tricky when real-time estimates
have to be obtainedfor steering.

Meanwhile,the authorsof [1] alsonoticedthata larger
window sizeoughtto beused.But they useafixedwindow
sizewith the geometricestimate.Here,we make a slight
extensionby usingan averagedcurvatureestimateacross
varying window size.For example,

κ̄ � n ��� 1
3

9

∑
w( 7

κ � Pn � w � Pn � Pn# w � (11)

where, with slight abuse of notation, κ � Pn � w � Pn � Pn# w �
denotesthe geometricestimateof curvature obtainedat
the nth point with window size w.

Thesedifferentestimatesarecomparedexperimentally.
We usea ladar to measurethe curvatureof two objects.
Oneis afile cabinetwhichhasflat sidesandsharpcorners,
anotheris a trash-canwith nearcylinderical shape.Table
1 shows the averagedRMS errorusingdifferentestimates
on filtered or unfiltereddata.We noticedthat usinglarger
window size eliminatesthe needfor Gaussianfiltering.
Figure 4 and5 plots the geometricestimateswith regard
to the scanningangles.

AveragedRMS Error of CurvatureEstimates
Estimates Window Size Trash-can Cabinet
Geometric 1-3 15.47 13.47
Estimates 4-6 1.72 4.29
(Unfiltered) 7-9 0.71 3.43
Geometric 1-3 5.12 7.74
Estimates 4-6 1.23 4.40
(Filtered) 7-9 0.58 3.56
Classical 1 14.52 15.75
Estimates 5 1.87 5.46
(Unfiltered) 8 0.79 4.51
Classical 1 6.44 10.35
Estimates 5 0.79 5.53
(Filtered) 8 0.80 4.73

Table1
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Fig. 4. The geometriccurvature estimatesover varying window size
7 ) 9 of a cabinetwith sharpcorners.Thex-axis representsthescanning
anglesof the ladar. The thinner dotted line is the zero curvature line.
One can seeclearly that the sharpangleof the cabinetcauseda spike
in the curvatureestimates.

IV. EXPERIMENTAL RESULTS ON ROBOT EQUIPPED

WITH MDLe

After testing and verifying different estimatesin ob-
taining the curvature estimates,we decided to use the
geometricestimatewith varying window size 7 
 9 to
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Fig. 5. The geometriccurvature estimatesover varying window size
7 ) 9 of a nearcylinderical trash-can.The x-axis representsthe scanning
anglesof the ladar. The thinner dotted line is the averagedconstant
curvatureline. Onecanseethat the trash-canis not a perfectcylinder.

processonline range data. The estimationalgorithm is
implementedasa moduleof the Motion DescriptionLan-
guagesystemusedto control a PioneerII robot equipped
with a laserrangefinder. The control law is implemented
asan MDLe atom[5].

We testedtheobstacleavoidancecontrol law in thecor-
ridor of A.V. Williams building at Universityof Maryland.
Suchan environmenthasstraightside-walls with closed
doors.The resultsareshown in Figure6 and7.
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Fig. 6. The pathof the robot in a hallway with closeddoors.The unit
for both the x-axis and the y-axis is meter. The thicker line on the left
is the path.The thinner line on the right is the sidewall detectedby the
robot. Due to odometeryerror, the wall doesnot appearas a perfect
straightline. Also, it is hard to tell wherethe doorsare.

We then took the robot outsidethe building and tested
our algorithm along a curved garden wall nearby the
building. The resultsareshown in Figure8 and9.
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Fig. 7. The curvatureof the sidewall measuredby the robot. The unit
for the x-axis is meterandthe unit for the y-axis is rad/meter. The data
is still noisy but averagednearzero.It is easyto tell that thereare four
doors on the sidewall becauseof the spike pairs causedby the door
jambs.
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Fig. 8. Thepathof the robot following a curvedgardenwall. Theunits
for both the x-axis andthe y-axis is meter. The thicker line on the left is
the path.The thinnerline on the right is the gardenwall detectedby the
robot.The small humpis causedby a pair of legs of someonesitting on
the wall.

V. SUMMARY AND FUTURE WORK

In this paper the simulation and experimentalresults
for one of the curvature-basednavigation control laws
developed in [17] are presented.The results indicate
that such curvature-basedcontrol laws are practical and
produceexpectedbehaviors. However, in order to deal
with thecomplexity of theenvironmentsonehasto devote
more effort in solving problemssuch as the estimation
of curvature from noisy range data. We will continue
our experimentson other control laws in [17] that have
been theoretically justified. At the sametime, we will
continueto investigatethe techniquesrequiredto improve
the performanceof this classof control laws in practice.
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Fig. 9. The curvatureof the gardenwall measuredby the robot. The
unit for the x-axis is meterand the unit for the y-axis is rad/meter.
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