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The wake of polygon cylinders with the side number N = 2 ∼ ∞ is systematically
studied based on fluid force, hot-wire, Particle Image Velocimetry and flow visualisation
measurements. Each cylinder is examined for two orientations, with a flat surface or a
corner leading and facing normally to the free stream. The Reynolds number Re is 1.0×
104 ∼ 1.0×105, based on the longitudinally projected cylinder width. The time-averaged
drag coefficient CD and fluctuating lift coefficient on these cylinders are documented,
along with the characteristic properties including the Strouhal number St, flow separation
point and angle θs, wake width, and critical Reynolds number Rec at which the transition
from laminar to turbulence occurs. It is found that once N exceeds 12, Rec depends on
the difference between the inner diameter (tangent to the faces) and the outer diameter
(connecting corners) of a polygon, the relationship being approximately given by the
dependence of Rec on the height of roughness elements for a circular cylinder. It is
further found that CD vs ξ or St vs ξ for all the tested cases collapses onto a single
curve, where the angle ξ is the corrected θs associated with the laterally widest point of
the polygon and the separation point. Finally, the empirical correlation between CD and
St is discussed.

Key words: polygon cylinders, drag coefficient, Strouhal number

1. Introduction

Flow around bluff-bodies has attracted extensive research for more than 200 years,
especially since the discovery of Kármán vortex streets. A vast number of researches
have been focused on flow around stationary circular and rectangular/square cylinders;
see Williamson (1996); Matsumoto (1999); Thompson et al. (2001); Mills et al. (2003);
Zdravkovich (1997) among others. In addition to the important governing parameter
Reynolds number Re, special attentions were usually paid to the Strouhal number St,
drag coefficient CD and fluctuating lift coefficient C′

L, which are closely associated with
the vortex shedding dynamics.
Roshko (1955) discovered for the first time that, as CD increases, St decreases and

this relation is particularly pronounced after the boundary layer transition (hereafter the
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transition). He also found that the vortex shedding frequency is related to the wake width
(distance between the free streamlines separating the wake and the distorted potential
outer flow, denoted as Dw), instead of the physical width of the bluff body (D) and
proposed a wake Strouhal number StR (also called the universal Strouhal number), viz.

StR =
fsDw

Us
, (1.1)

where fs is the vortex shedding frequency, Us is the free stream velocity outside the
boundary layer at the separation point, which is also the velocity at which the shed
vortices are swept downstream. Gerrard (1966) proposed another Strouhal number, viz.

StG = fwlf/U∞, (1.2)

where fw is the fundamental wake frequency, lf is the vortex formation length and U∞ is
the free-stream velocity. He also discussed the importance of the diffusion length, which
is the transverse thickness of the shear layer at the end of the vortex formation region.
Williamson (1988) proposed a relation between the universal St and Re for laminar vor-
tex shedding from a circular cylinder, and Ponta (2006) further discussed the influence of
the shear layer thickness on this relation. Norberg (2003) summarised previous measure-
ment methods and conducted new measurements of C′

L. He suggested a mathematical
relation between C′

L and Re, and pointed out a fundamental change in the mode of vor-
tex shedding (high- and low-quality mode of turbulent shedding, respectively) before the
subcritical regime (5.0× 103 . Re . 8.0× 103), where Re ≡ U∞D/ν (ν is the kinematic
viscosity).
Since the work of Roshko (1955), a number of researchers have tried to establish more

accurate or robust relations between CD and St. For example, Hoerner (1965) proposed
an empirical relation 0.21 = C0.75

D St applicable for Re > 103 and for two-dimensional
bodies like flat plates, aerofoils and cylinders. Bearman (1967) showed that the product
CDSt only depends on

√

1− (Cp)b, where (Cp)b is the base pressure coefficient. Yeung

(2010) also established a relation between CDSt and
√

1− (Cp)b from data of an in-
clined flat plate, a rectangular section, a circular cylinder and a 90o wedge. Based on
the conservation of mass, momentum and energy, Ahlborn et al. (2002) proposed a phe-
nomenological model for the vortex-shedding process behind cylindrical bodies. They
obtained a relation between St, Re, CD and geometric wake parameters through the
definition of a universal St based on the size of an individual shed vortex. Alam & Zhou
(2008) conducted a theoretical analysis based on the conservation of the averaged kinetic
energy given no energy exchange between the bluff body and its support. They showed
on the basis of experimental data reported in the literature as well as theirs that the
product CDSt is approximately a constant, which is almost independent on the shape of
a bluff body, its angle of attack and Re.
Polygon cross-sectional slender cylinders with a finite number of sides N > 3 are

commonly seen in engineering problems, e.g. skyscrapers, floating tunnels, prototype
supporting frames in wind tunnel tests. Similar to a circular cylinder (N = ∞), flow
around a polygon cylinder is characterised by the instability of the boundary layer,
laminar-turbulent transition, separation, unsteady vortex shedding etc. Unfortunately, in
contrast to the vast number of papers published on the circular cylinder wake, there has
been little attention in the literature paid to the fluid dynamics of the polygon cylinder
with N > 4 in cross flow, and the relative data are scarce. Whenever an engineering
problem related to the polygon cylinder is encountered, a usual approach is to use the
data of circular or square cylinders, which are well documented, as approximations. In
some circumstances, however, such an approach can be very risky since fluid dynamics
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associated with a polygon cylinder can be significantly different from that involving a
circular or a square cylinder even under the same flow conditions, as will be demonstrated
in this work.
Among the relatively limited number of research on the polygon cylinder wake, Tian

& Li (2007) investigated a polygon cylinder of N = 24 (N24 in abbreviation, so for
other polygons hereafter) in a low speed wind tunnel to seek a low drag solution for
their prototype supporting frames. They found a much lower critical Reynolds number
(≈ 1.0×105) and 40% drag deduction with a low level fluctuation compared to a circular
cylinder case under similar flow conditions. Bosch & Guterres (2001) tested a N8 tapered
cylinder in their wind tunnel at Re ≈ 3.0× 103 ∼ 2.0× 104 and found that the drag for
the face orientation is lower than that for the corner orientation, and the degree of taper
has a significant effect on the aerodynamic performance. Skews (1991, 1998) found that
the polygon cylinder, whose ends were not fixed, with N < 8 may undergo a spontaneous
rotation, producing a larger lift than a circular cylinder at a similar rotation condition.
Srigrarom & Koh (2008) conducted flow visualisation and phase-locked Particle Image
Velocimetry (PIV) measurements on an equilateral triangular cylinder and found that,
at certain uniform incoming flow velocities, the cylinder can oscillate persistently after
an initial perturbation. Deniz & Staubli (1997) performed force and flow visualisation
measurements for transversely oscillating rectangular and octagonal profiles and found
that the mechanisms leading to an energy transfer from the fluid to the structures are
associated with the phase shift of the fluctuating lift forces with respect to the body
oscillation.
There have been attempts to simulate numerically the flow around a polygon cylinder.

Tian & Wu (2009) calculated the flow field around the two-dimensional polygon cylinders
at the corner orientation condition for even Ns and Re < 200. They found through con-
formal mapping that, for the inviscid flow cases, the global pressure difference along the
surface is inversely proportional to N that is sufficiently large. For the viscous flow cases,
however, they derived the relation between the first critical Re and N, and found that
this Re decreases as N increases. Khaledi & Andersson (2011) investigated numerically
flow after a hexagonal cylinder for both corner- and face-oriented cases up to Re = 103

and found that vortex shedding frequency is higher in the latter case, which is opposite
to the earlier findings for the square cylinders (e.g. Vickery 1966). The numerical works
mentioned are inevitably limited to Re lower than that typically seen in engineering
applications.
To the best of the authors’ knowledge, there has been no systematic experimental

investigation on the wake of a polygon cylinder for N > 5, especially for pentagonal and
septilateral cylinders. This work aims to address this issue by measuring CD, C′

L and St
and determining their dependence on N, along with the major flow characteristics, for
different polygon orientations (corner or face).

2. Experimental details

Experiments were conducted in an open-loop low-speed wind tunnel, which has a
square test section of 0.5m×0.5m×2m. The wind speed is 2 ∼ 40m/s in the test section,
and the turbulence intensity ǫ is no more than 0.5% for the range of speeds presently
concerned. A schematic diagram of the side view of the section is shown in figure 1, where
the coordinate system (x, y, z) is defined. The tested model is installed vertically along the
z-axis. The lower end of the model is mounted with a three-component force measurement
transducer Kistler 9317B, which is connected to a four-channel signal amplifier Kistler
5073A and a data collection A/D board NI6221. The upper end is pin-supported on a
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Figure 1. Schematic of the experimental set up.

pre-load bolt, which acts to eliminate the flow-induced cylinder vibration. Two circular-
shaped end plates of Ø150mm, typically 6× the longitudinally projected width D (see
figure 2 for definition) of the test model, are attached near the two ends of the cylinder to
eliminate the three-dimensional effects from the cylinder end and the possible influence
from the wind tunnel walls. The gap between the end plates and the cylinder surface is
1mm. The purpose of the end plate will be further elaborated at the end of this section.

The tested models include a flat plate (N = 2), the polygon cylinders of N = 3 ∼ 8,
12, 16, and a circular cylinder (N = ∞). Two principal orientations with respect to the
incoming flow are examined for each of the polygon cylinders, i.e. the face orientation,
where one flat surface of the polygon faces normally to the incoming flow (denoted by
NF), and the corner orientation, where the polygon is rotated so that one corner of it
faces the incoming flow (denoted by NC), as shown in figure 2, where the orientation of
the flat plate is also given. When placed in parallel with incoming flow, the flat plate is
not considered as a bluff body and therefore is not tested. For most of the test cases,
D = 25mm, resulting in a blockage ratio φ ≈ 5%. Larger D, up to 50mm, is also used
for some cases to obtain the data of a larger Re, which will be discussed later. All the
cylinders are made from aluminium with a length L = 460mm (420mm between the end
plates) and an aspect ratio L/D = 16.8 for D = 25mm.

Load cells Kistler 9317B and Kistler 5073A are used to measure the time-averaged drag
coefficient CD and the fluctuating (rms) lift coefficient C′

L. The resolution of the trans-
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Figure 2. Cross-sectional shapes, orientations (with respect to the incoming flow) and notations
of the 18 tested polygon cylinders (2 6 N 6 16) and the definition of the streamwisely projected
width D. In notation/abbreviation NF and NC, N is the polygon side number and F and C
stand for orientations with a polygon flat surface and a corner, respectively, leading and facing
normally to the incoming flow.

ducer is sufficiently high for our purpose (Alam & Zhou 2007). The force measurement
signal is sampled at 5kHz, which is about 12 times the highest fs from the cylinders.
The sampling duration for each test is 5sec. The Strouhal number St = fsD/U∞ is also
extracted from the force signal. The agreement of the measured cylinder oscillation fre-
quency and fs is confirmed by a simultaneous hot-film measurement at 2.5D downstream
of the cylinders at the mid-span location (figure not shown).
Figure 3 presents a comparison between the presently measured CD and St for the

circular cylinder and 4F cases and those reported in the literature. Evidently, for the
examined Re range, CD of the circular cylinder agrees well with Tropea et al. (2007), and
so does that of 4F with White (2001). The maximum deviation is about 5%. Agreement
in St is also quite good between the present and previously reported data; the departure
is no more than 2% over the entire Re range examined.
The flow field is measured both qualitatively and quantitatively at a frame rate of 4 Hz

by a LaVision PIV system, which consists of an Imager ProX camera with 2048×2048
pixel CCD size and a low speed duo-head Nd:YAG laser. The field of view (FOV) of
camera is typically 125mm×125mm. Flow is seeded by smoke generated from vegetable oil
with a droplet size around 1µm in diameter. The smoke generator is located between six
honeycomb meshes in the settling chamber of the wind tunnel, so that the smoke particles
can be well mixed with air and form homogeneous smoke streaks. The PIV images are
processed by DaVis 7.2 with final interrogation window (IW) size 32pixel×32pixel and
50% overlap which gives a spatial resolution of 1.95mm based on the IW size. For each
test case, 100 velocity fields are acquired. Note that turbulence quantities are not of
interest in this work. Smoke streak images are also used for flow visualisation after an
appropriate increase of the laser power and the smoke particle density.
All experiments were conducted under room conditions. The Re range is 1.0× 104 ∼

6.0× 104. All the data presented in this paper for Re 6 6.0× 104 are from the cylinders
of D = 25mm. Cylinders of D = 50mm are used for some cases in order to extend the Re
range to the order of 105. The Re for the PIV measurements are fixed at 1 × 104. Each
testing case is measured more than three times to ensure repeatability.



6 Xu, Zhang, Gan, Li & Zhou

⨯ ⨯

Figure 3. Dependence of CD (a) and St (b) on Re for the case of 4F and the circular cylinder,
as compared to the data available in the literatures. Results are obtained from an average of
seven repeated measurements.

West & Apelt (1982) found that the effect of φ, if less than 6%, is minor on CD and
negligible on St. They suggested that a correction is needed if φ > 6%. The correction
factor is a function of φ and CD may decrease by 3% ∼ 5% after applying the correction.
No correction is applied presently since CD and St obtained from larger D cylinders are
found to be consistent with their counterparts from the cylinders of small D.
It is worth pointing out that it is impossible to eliminate completely the three-dimensional

end effects on the flow even if the end plates are installed and L/D is kept large (Norberg
1994). Nevertheless, we have observed a considerable influence on the aerodynamic load-
ing on the circular cylinder when the end plates are removed: the CD drops by 20% and
St by 10%, which is in agreement with previous reports by e.g. Cowdrey (1962), Gerich
& Echelmann (1982) and Szepessy & Bearman (1992). Norberg (1994) also pointed out
that for 1.0 × 104 < Re < 4.0 × 104, L/D should be no-less than 25 to ensure good
two-dimensionality. However, the agreement of the present results to the previous ones
shown in figure 3 indicates that the present L/D = 16.8 is acceptable.

3. Results

3.1. The effect of Re on CD and St

The dependence of CD and St on Re has been well documented for the polygon cylinders
of N 6 4 and N = ∞. This work will be focused on the polygon cylinders of N > 4, for
which the information on CD and St is scarce in the literature. Table 1 lists the presently
measured CD and St at Re = 1.0×104. The data for N 6 4 and N = ∞ are also included
for the purpose of comparison. There is in general a reasonable agreement between the
present data and those in Tropea et al. (2007). There is a significant discrepancy in CD

and St for the case of 3C, marked by #. This is because the cross-sectional shape of
the cylinder in Tropea et al. (2007) is a 90o wedge, different from the present equilateral
triangle. The present St for 2F is lower than that in Tropea et al. (2007), marked by an
asterisk, but is closer to that (0.13) reported in Blevins (1990).
Figure 4 shows how CD and St change as Re varies from 1.0 × 104 to 5.8 × 104, for

all polygon cylinders at both principal orientations, including the flat plate (2F) and
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Case
Present Tropea et al. (2007)

Re = 1.0 × 104 Re ≈ 104

CD St CD St
2F 2.250 0.143 2.0 0.16∗

3C 1.179 0.200 1.6# 0.18#

3F 2.086 0.127 2.0# 0.14#

4C 1.628 0.167 1.6 0.15
4F 2.100 0.132 2.1 0.13
5C 1.627 0.140 / /
5F 1.146 0.202 / /
6C 1.866 0.138 / /
6F 1.375 0.178 / /
7C 1.228 0.169 / /
7F 1.663 0.155 / /
8C 0.950 0.195 / /
8F 1.566 0.148 / /
12C 1.220 0.183 / /
12F 1.366 0.174 / /
16C 1.050 0.185 / /
16F 1.292 0.186 / /
Cir 1.105 0.205 1.2 0.21

Table 1. The present CD and St values obtained at Re = 1.0× 104. Also included are the
reported data in Tropea et al. (2007).

the circular cylinder. The CD of the N12 and N16 cylinders declines rather rapidly from
Re ≈ 3.0 × 104 to 4.0 × 104 and meanwhile the corresponding St rises sharply. The
observation points to a boundary transition from laminar to turbulent state. The effect
of the transition on the changes of CD and St can differ significantly when the cylinder
changes its orientation. For example, CD decreases by 25% and St increases by 15% from
Re ≈ 2.4× 104 to 3.0× 104 for the 12C orientation, but the changes contract to 15% and
5%, respectively, for the 12F orientation. Furthermore, the Re at which the transition
starts to take place also varies from one orientation to the other. It can be inferred that
the flow characteristics can be very different between the two orientations. On the other
hand, CD and St for N 6 8 cylinders vary little, within ±8% and ±4%, respectively, over
the entire Re range, suggesting no change of the boundary layer state.

Figure 5 (a) summarises the variation in the critical Reynolds number Rec, at which
the boundary layer transition from laminar to turbulent state occurs, with increasing
N for the NC cases. The N24 case from Tian & Li (2007) and the circular cylinder
case (N = ∞) from White (2001) are also included. The Rec is defined at the middle
of the rapidly falling CD region in figure 4 (a). The CD values before and after the
transition, i.e. CD−sub and CD−sup, are also presented for each case. The NF cases are
not shown since the transition effect on 12F is not very strong. Clearly, both Rec and
∆CD = (CD–sub − CD–sup) rise with increasing N. The dependence of Rec on N may be
used to estimate Rec for the polygons that are not measured presently. For instance, the
Rec of the 20C case is predicted to be about 7.0× 104.

Given an adequately large N, the corners of a polygon cylinder may be considered
to be wedge-shaped roughness elements evenly distributed on the surface of a circular
cylinder with a radius Ri. Denoting the distance between one corner and the polygon
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⨯ ⨯

Figure 4. Dependence of CD and St on Re for both principal orientations. (a) CD for NC; (b)
CD for NF; (c) St for NC; (d)St for NF; the cases for the flat plate and the circular cylinder are
also included, denoted as 2F and Cir, respectively, in (b) and (d).

centroid as Ro, the roughness height ε can be written as:

ε

D
=

Ro −Ri

D
≈ 1− cos (π/N)

2
. (3.1)

In an attempt to understand the positive correlation between Rec and N shown in figure 5
(a), Rec is plotted against ε/D in (b). One may recognise that the variation in Rec
against ε/D for large N polygon cylinders agrees reasonably well both qualitatively and
quantitatively with its counterpart for the rough-surfaced circular cylinders. It may be
inferred that, given an adequately large N, Rec of the polygon cylinder may be estimated
from that of the rough-surfaced circular cylinder, subjected to a small uncertainty. Güven
et al. (1980) observed that larger roughness elements on the surface of a circular cylinder
gave rise to a thicker and more retarded boundary layer. As a result, the transition to
turbulence occurred at lower Re. As the roughness elements diminished in size, the drop
in CD from subcritical to supercritical regime became more pronounced. The result shown
in figure 5, i.e. increasing Rec and ∆CD with larger N or smaller ε/D, is fully consistent
with their observation. The result further points to an analogy between polygon cylinders
of large N and roughened circular cylinders.



Flow around polygon cylinders 9

�

⨯

⨯

Figure 5. (a) Dependence of the critical Reynolds number Rec (•), CD−sub (◦) and CD−sup on
the polygon side number N, for N > 12 for the corner orientation. (b) Dependence of Rec on
the roughness height ε/D; ◦: polygons, �: circular cylinders with roughness elements.

Note that figure 5 (b) includes only the cases of N > 12. For N 6 8, the corner
number of the polygon is so few that (Ro −Ri) becomes relatively large compared to
the characteristic dimension Ri of the polygon and cannot be approximated as roughness
elements any more. Therefore, the analogy between the polygon corners and roughness
elements is no longer valid.

3.2. Dependence on N of CD, St and C′

L

Figure 6 presents the dependence on N of the measured CD and St for both orientations of
the polygons at Re = 2.0×104 and 5.0×104, which correspond to the flow before and after
the transition, respectively, of the N12 and N16 polygons. One may note that at small N
the CD or St values differ greatly between the two orientations. However, this difference
diminishes as N becomes large, regardless of the orientation. While CD in general tends
to decline with increasing N, St rises. There is another interesting observation, that is, the
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NF and NC data points (CD and St) appear forming a distorted Cartesian mesh pattern,
as highlighted by the solid and dashed lines. It is worthwhile conducting an analysis of
the mesh pattern, which can be of practical importance, i.e. predicting CD and St for
the polygon cylinders not measured presently. Four solid lines can be identified for each
Re, viz.
(a) I1, N= 2n+ 1; C oriented for odd n; F oriented for even n
(b) II1, N= 2n; C oriented for even n; F oriented for odd n
(c) I2, N= 2n+ 1; F oriented for odd n; C oriented for even n
(d) II2, N= 2n; F oriented for even n; C oriented for odd n

On each of the four solid lines, the F- and C- orientated data points are separated by each
other, provided that the untested cases (e.g. N = 9, 10), which can be estimated from the
available data, are also included. The estimation of the untested cases will be explained
below. There are actually more dashed lines than those marked in figure 6. For example,
2F -3F -4F can also form one. Unlike the solid lines, the data points along each of the
dashed lines are either uniformly F or uniformly C orientation. This particular pattern
is essentially connected to the geometry of the polygons near the lateral maximum width
points (the top and the bottom point) and the position of the flow separation point if
the transition takes place (N = 12, 16), which will be discussed in § 3.4.
The pattern shown in figure 6 can be used to predict approximately CD and St for

the cases that are not tested in the current experiment. For instance, based on the
characteristics of the solid lines listed from item (a) to item (d) above, it can be predicted
from figure 6 (b) that case 10C should be on the solid line II2 and can be determined at
the intersection of II2 and N = 10. Connecting points 7C, 8C and 10C smoothly forms a
new dashed line as shown in figure 6 (b), which displays a similar trend to the other two
dashed lines. The intersection of this newly constructed dashed line and N = 9 gives the
position of 9C. Obviously, curve II2, if extrapolated, passes almost precisely point 9C.
As a result, CD of 9C at Re = 5.0 × 104 is estimated to be 1.25 and CD of 10C to be
1.40, with a caveat of a small uncertainty. Following the same procedure, we may also
estimate from figure 6(d) that St of 9C ≈ 0.170 and St of 10C ≈ 0.165 at Re = 5.0×104.
It is more difficult to predict CD and St for polygons of N > 16, which requires an

extrapolation of the known data. However, it is possible to predict a general trend of CD

and St for the tested Re range. Recall that circular cylinders can be treated as N = ∞.
Figure 5 can be used to estimate the Rec of large N polygons. Given N = 18, Rec is
found to be approximately 5.0 × 104 and a larger N indicates an even higher Rec. We
may thus deduce that the flow at Re = 2.0 × 104 (figure 6 a and c) is in the subcritical
regime, implying that the two points between N = 16 and ∞ can be connected smoothly,
as shown in figure 6 (a) and (c).
At Re = 5.0 × 104 (figure 6 b and d), however, the variation in CD and St is more

complicated once the transition has taken place for the polygon of large N, say N = 18.
There are two turning points in each CD and St line, as marked by + symbols in figure 6
(b) and (d). As Rec is defined at the middle of a transitional Re range, typically over
Rec−1.0×104 ∼ Rec+1.0×104. As such, the transition is likely to start at Re ≈ 4.0×104

for N = 18 polygon. Thus CD and St for N = 18 polygon should follow the trend of N12
and N16 polygons where the transition occurs, as indicated by the symbol + at N = 18 in
figure 6 (b) and (d). Note that Rec is even higher for N > 18. For example, as estimated
in figure 5, Rec ≈ 6.0 × 104 for N = 19. Therefore, at Re = 5.0 × 104, the N19 cylinder
is less likely to be in the transition, which implies that St would drop and CD would
increase markedly, compared to their counterparts at N = 18. Moreover, as N increases,
CD and St will asymptotically approach their counterparts of the circular cylinder and
their values will vary little because the subcritical flow condition remains unchanged
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Figure 6. Dependence of CD (a-b) and St (c-d) on the polygon side number N for Re < Rec
(a, c) and Re > Rec (b, d). The transition occurs at N = 12, 16. Data points 9C and 10C in
(b) are two examples of the predicted results. The dash-dot lines denote the indicative trend for
the polygons of large N. The data points of 2F in (a) and (b) are from Tropea et al. (2007) and
from Blevins (1990) in (c) and (d). The two + symbols in each (b) and (d) indicate the turning
points of the indicative trend lines from N = 16 to the circular cylinder.

when N → ∞. Therefore, another turning point + at N = 19 is predicted, which is
connected smoothly to the value of N = ∞ in figure 6 (b) and (d).

Figure 7 presents the dependence of the fluctuating lift coefficient C′

L on N. In order
to avoid the influence of the synchronisation between vortex shedding and the natural
frequency of the cylinder, the C′

L measurement is limited to U∞ at which fs < 80Hz. The
data at Re = 1.6 × 104 are illustrated. A number of observations can be made. Firstly,
the present C′

L on the circular cylinder agrees very well with Norberg (2003), which
provides a validation for our measurements. Secondly, for either orientation, C′

L rises
rapidly first with increasing N, reaching the maximum at 4F and 6C, respectively, and
then drops quickly before approaching the value of N = ∞. Finally, C′

L varies greatly
from one orientation to the other for N < 7 but becomes identical to each other for
N > 12, implying that C′

L becomes independent of the cylinder orientation for large
N. The result is consistent with the proposed analogy between the polygon cylinder of
N > 12 and the roughened circular cylinder.
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⨯

⨯

Figure 7. Dependence of the lift coefficient C′

L on N. Note that the data of the circular cylin-
der from Norberg (2003) is also included, which collapses almost completely with the present
measurement.

3.3. Wake characteristics

In this section, a number of wake characteristic length scales are extracted from the
time-averaged velocity fields obtained from the PIV data. The length scales are further
used to define the wake Strouhal number and the wake drag coefficient.

Figure 8 uses the 5C case to illustrate the definitions of wake length scales, where
asterisks denote normalisations by D and/or U∞. One important quantity is the flow

separation angle θs, which is defined as the angle between U∞ and U
∗

sp, where U
∗

sp is the
tangential velocity at the separation point along the separation streamline. For the 5C
case, the two angles θo (the separation point location) and θs are related by:

θs = π − (θo + ϕ/2) = π/2 + π/N− θo, (3.2)

where ϕ = (N− 2)π/N. The general relation of θs to the geometry and the orientation is
not so straightforward. Note that the separation angle is defined differently from Tropea
et al. (2007), where θo is defined as the separation angle. The reason for this different
definition and a more detailed discussion of θs will be given in § 3.4. The marked stream-
lines pass through the separation points, which are also the free streamlines closest to
the centreline. The reversed flow zone, defined by U

∗

x = 0, is marked by the streamline
passing through the wake stagnation point located at x∗

R downstream of the polygon

centroid O. The maximum wake width D∗

w is measured at x∗

w downstream of O. U
∗

w is
the tangential velocity at the maximum wake width point (x∗

w ,y
∗

w) along the streamline
through the separation point.

Figure 9 presents the dependences of x∗

R, D
∗

w, x
∗

w on N, which are quite similar to
each other. Not surprisingly, x∗

R ≈ 2x∗

w. Different orientations result in a difference in
x∗

R, D
∗

w or x∗

w, especially for 4 6 N 6 8. Even though the blockage ratios are the same
for all the cylinders, a different degree in bluffness may also have an impact on the back
pressure, the separation shear layers and hence the structure of the wake (Roshko 1955).
For N > 12, D∗

w remains roughly constant and is almost the same as that in the circular
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Figure 8. Definitions of various characteristic length and velocity scales in the dimensionless
form for polygon cylinder wake. Asterisks denote normalisations by D and/or U∞. Note that
the free streamlines and reversed flow zone are drawn based on the PIV data obtained at
Re = 1.0× 104. The bottom streamline uses the mirror image of the top one due to the shadow
of the cylinder (laser illumination comes from above).

(a) (b)

Figure 9. The dimensionless characteristic length scales (x∗

R, D
∗

w, x
∗

w, defined in figure 8) as
functions of N, at Re = 1.0× 104.

cylinder wake, but the streamwise length scales x∗

R and x∗

w are both significantly smaller.
Note that Re in figure 9 is well below Rec.

Based on the momentum equation, the drag on a bluff body can be calculated from
its wake parameters (length and velocity scales) and independently on the geometry of
the bluff body itself (Antonia & Rajagopalan 1990). Roshko (1955) proposed that there
exists a universal similarity for the vortex shedding patterns and the wake structures
among differently shaped bluff bodies. Once (Cp)b is determined, StR in equation 1.1 is
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found to be

StR =

(

1− u

U∞

)(

Dw

l

)

(

1
√

1− (Cp)b

)

≈ 0.15 ∼ 0.17, (3.3)

where l is the longitudinal vortex spacing, and u is the convection velocity of the vortices.
Williamson & Brown (1998) proposed a corrected universal Strouhal number StW, viz.

StW =

(

fsD

U∞

)

U∞

Us

(

1 +
2δ

D

)

≈ 0.176, (3.4)

where δ is the characteristic shear layer thickness. Ahlborn et al. (2002) suggested another
correction:

StA = βSt =

(

Dv

D

)

St, (3.5)

whereDv is the equivalent diameter of the shed vortices. The resultant universal Strouhal
number from different corrections vary quite significantly, which is partly due to the ways
of determining Dw and Us.
The use of the above mentioned universal Strouhal number reduces and sometimes

eliminates the direct influence of the bluff body geometries, though inevitably involving
more quantities to be measured with more uncertainties and measurement error. For
simplicity, we replace only the length scale by D∗

w and define alternative C+
D and St+,

i.e.

C+
D = CD/D∗

w, (3.6)

St+ = StD∗

w =
fsDw

U∞

, (3.7)

The dependences of C+
D and St+ on N are presented in figure 10, along with those of CD

and St. The distorted Cartesian pattern observed in figure 6 disappears for both C+
D and

St+; rather, the data points are much less scattered. The C+
D data occur about 1.0 and St+

near 0.21 ∼ 0.23, except for N 6 4. It seems plausible that using the wake scales does
have potential in getting the data collapsed and in establishing a possible correlation
between C+

D and St+ (a correlation, if any, seems to be rather weak from figure 10).
Nevertheless, some data points still display a relatively large scatter, especially at small
N. Note that involving the wake characteristics implies additional measurements to be
conducted. It would be desirable to establish a direct correlation between CD and St.
We will propose a new scaling factor in § 3.5, which proves to work well for polygon
cylinders.

3.4. Flow separation angle

In the context of a polygon cylinder, the flow separation angle θs is in fact the angle
between the particular polygon side upstream of the separation point and the incoming
flow direction, that is, this angle may be directly determined from the separation point θo,
if known. The location of θo and hence θs can be fairly accurately found out by carefully
examining the flow visualisation images, as illustrated in figure 11. The separation point
of the polygon cylinders including the 2F case all occurs at one of the corners (above
the wake centerline), except perhaps very large N such as the circular cylinder. The
determined θo and θs at Re = 1.0× 104 are indicated schematically in figure 12. The θs
for the circular cylinder is the angle between the incoming flow direction and the tangent
line at the separation point. Note that, in cases of 5F and also 8C, flow separates first at
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Figure 10. Dependence of the universal C+
D and St+, as compared to CD and St, on N.

Re = 1.0 × 104.

CiCir 2F

3C 3F 4C 4F

5C 5F 6C 6F

7C 7F 8C 8F

12C 12F 16C 16F

Figure 11. Smoke streak flow visualisation images for all the testing cases at Re = 1.0× 104.

corner A before reattaching to the polygon surface edge AB, and then separates again
at B. Therefore, corner B is taken as the separation point.

It has been well established that CD of the circular cylinder depends on the position
of the separation point. For Re < Rec, the laminar boundary layer separates fairly early,
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U∞

A

B

A

B

Figure 12. Schematic diagrams indicating the location of the separation point above the
centreline, marked by a circle, and the separation angle θs, marked by ∡, as determined at
Re = 1.0 × 104.

at θo ≈ 79◦ and θs ≈ 11◦. For Re > Rec, the transition occurs in the boundary layers
and the flow separation is postponed, resulting in a lower CD.
For the polygons of N 6 4, θo is fixed and independent of Re. CD changes little with

Re.
For the polygons of 5 6 N 6 8, θo is also fixed. To facilitate discussions, denote the

point at the maximum lateral width as To and take the front one if two corners correspond
to the maximum width position, as is the case for 6C, 8F, 12F and 16F (figure 12). Use
T1 and WSP to represent the corner upstream of To and the windward stagnation point
on the centerline, respectively. Four scenarios have been observed:
(a) Flow separates at To and there is no corner between To and WSP, as the cases for

5C, 6C and N 6 4, which are associated with the dashed line 3C -5C in figure 6;
(b) Flow separates at To and there is one corner between To and WSP (6F, 7F, 8F );
(c) Flow separates at T1 and the boundary layer reattaches and separates again right

before To (5F, 8C);
(d) Flow separates at T1 but does not reattach (7C).
For N > 12, the wake pattern is similar to that behind the circular cylinder, where

the transition may have a pronounced effect on the flow. Nevertheless at Re < Rec,
the separation point is fixed at one corner. A few examples of flow around the polygon
cylinders of N > 12 at Re = 5.0 × 104 when the transition occurs (refer to figure 4) are
shown in figure 13 .
The dependence of θs on N shows again a distorted Cartesian mesh pattern (not shown)

similar to figure 6, which suggests a relation between CD and θs. As a matter of fact,
θs and CD fall approximately on a linear correlation for most of the cases, as shown in
figure 14. There are only a few cases that deviate from this linear correlation. It is found
that the separation point occurs at To (see figures 11 and 12) for all the cases reasonably
following the linear correlation. For 7F and 8C cases, To is actually the separation point
of the reattached flow which initially separated at T1. For these two cases, the flow is
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Figure 13. Smoke streak flow visualisation for (a) 12C, (b) 12F , (c) 16C and (d) 16F when
the transition occurs. Re = 5.0 × 104. The arrows indicate the approximate mean separation
point, since instantaneously the separation point oscillates from one instant to the next.

�

Figure 14. Correlation between CD and θs at Re = 1.0× 104.

more sensitive to Re and the data (θs, CD) deviate from the linear relation in figure 14.
The other three data points which deviate further correspond to the cases 7C, 12C and
16C, when the flow separates at T1 without reattachment. In the cases showing large
deviation to the linear relation, the lateral distance between the two separation points
(above and below the centreline) is not the same as the characteristic length scale D.

In order to account for such deviations, we propose to define a new angle ξ associated
with the point To, between two directions:

(a) the direction from T1 to To and the incoming flow direction in the absence of the
transition;
(b) the direction from To to TP (the point where the transition occurs) and the incom-

ing flow direction when the transition occurs (if TP is downstream of To, ξ is negative);
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�

Figure 15. Dependence of the angle ξ on N, based on equation 3.8, in the absence of the
transition.

(c) the tangent line at the separation point and the incoming flow direction for the
circular cylinder case.
Thus defined ξ is underpinned by two observations: (1) in the absence of the transition,

CD depends only on N and the orientation, not on Re; (2) To essentially defines the entire
wind-ward surface, which effectively describes the degree of bluffness for a regular polygon
of any N. In the absence of the transition, ξ can be mathematically written, in unit of
degree, as:

ξ =
180

π
×























π

2
−
(

p− 1

2

)(

2π

N

)

, p =

⌈

N− 2

4

⌉

, NC cases;

π

2
− (q − 1)

(

2π

N

)

, q =

⌈

N

4

⌉

, NF cases,

(3.8)

where ⌈⌉ denotes the nearest larger integer. Note that ξ is calculated based on To above
the centreline, which is not always the separation point. Therefore, ξ is sometimes differ-
ent from θs. Figure 15 presents the results calculated from equation 3.8, which displays
a distorted Cartesian pattern similar to that in figure 6 (a); see the dashed lines. When
Re > Rec, for N = 12 and N = 16 cases, ξ depends also on Re and no analytical solution
can be obtained simply on the geometry and orientation. The true value of ξ when the
transition occurs can be measured from experiments. It is worth mentioning that beyond
Rec, the separation point is no longer fixed at a particular point; rather it oscillates
around a mean location, which is determined from the average of the 100 smoke streak
images.
Figure 16 (a) presents the dependence of CD on ξ, which shows clearly that CD and

ξ are almost linearly related for the circular cylinder in the absence of the transition
and the polygons of N 6 8. The data may be least-square-fitted to the following straight
lines:

CD = 0.0128ξ + 0.9, for Re = (2.0 ∼ 10.0)× 104. (3.9)

Figure 16 (b) combines three Re cases and both NC and NF orientations. The data for
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Figure 16. Dependence on ξ of (a) CD at Re = 5.0×104; (b) CD at Re = 2.0×, 5.0×, 10.0×104;
(c) St at Re = 5.0 × 104; (d) St at Re = 2.0×, 5.0×, 10.0 × 104. The dashed lines are the least-
-square-fitted to the data of the circular cylinder and N 6 8 in (b) and (d), where no transition
takes place. The data obtained in the wake of a circular cylinder at Re = 40.0 × 104 from
Wieselsberger (1921) and Bearman (1969) are also included for comparison. The left-pointing
arrows in (a) and (c) illustrate the effects of the transition on the estimate of ξ, that is, ξ changes
from the black colour symbol to the red once the transition occurs.

Re = 1.0× 104 were obtained in the wake of the polygons of D = 50mm. Evidently, the
linear relation remains valid for all the data. The empirical correlation equation 3.9 does
not take the effect of Re into account, that is, ξ remains the same for a given polygon in
the subcritical regime and so does CD. In fact, CD for most polygons subtly decreases
as Re increases, which could be considered in equation 3.9 by including a Re-related
correction factor. However, this correlation term is found to be very small compared to
the ξ term, essentially within the uncertainty of equation 3.9. For example, CD reduces
by ≈ 10% as Re changes from 2.0 × 104 to 1.0 × 105. Therefore, the Re correction is
dropped.
Figure 16 (a) also reflects the importance of determining the true ξ for the case when

the transition takes place, as indicated by the left-pointing arrows. Apparently, if ξ in
the subcritical regime is used for that in the critical regime, the data points will deviate
further from the fitting curve. Taking the N = 16 polygon for example, the transition
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incurs a change in ξ from 11.25◦ to −11.25◦ for 16C and from 22.5◦ to −22.5◦ for
16F. Once the correct ξ is used, the corresponding CD collapses onto the fitting curves
reasonably well, as illustrated in figure 16 (b), that is, equation 3.9 may also apply to
cases in the critical regime, as long as the correct ξ is used. This implies that equation 3.9
can be used to predict the true separation point location and the separation angle for
polygons given the flow regime.
The data from Wieselsberger (1921) for a circular cylinder in the critical flow regime

(Re = 4.0 × 105) is also included for comparison, which deviates significantly from the
fitting curve. This is not unexpected since the Re of the data is beyond the Re range
over which the correlation is obtained.
The St data corresponding to CD shown in figure 16 (a-b) are presented in figure 16

(c-d). It is obvious that the St−ξ correlation is not quite linear and the data are least-
square-fitted to a second-order polynomial, viz.

St = 7× 10−6ξ2 − 0.00174ξ + 0.222, for Re = (2.0 ∼ 10.0)× 104. (3.10)

As shown in figure 16 (c), the data collapse quite well onto this fitting curve when the
correct ξ is used. Compared to CD, the variation in St with Re is even smaller, within
±4%. Thus the Re correction factor is also not necessary.
Equations 3.9 and 3.10 may be used to estimate CD and St of the untested cases.

Take 10C case for example. In the subcritical regime, ξ(10C) can be calculated from
equation 3.8 to be 36◦. By substituting ξ(10C) into equations 3.9 and 3.10, we obtain
CD(10C) ≈ 1.36 and St(10C) ≈ 0.168, which agree very well with the predictions in § 3.2
(figure 6).

3.5. Relation between CD and St

The empirical relations of equations 3.9 and 3.10 could be combined to connect directly
CD and St, although additional uncertainties may be induced as some data deviate from
the fitting curves more than the others. As such, we fit, based on the least squares
technique, all the data from the measurements directly to the correlation form proposed
by Hoerner (1965), viz.

ζ = C0.6
D St, (3.11)

where ζ is a constant. Figure 17 indicates that ζ = 0.2 appears to be the best fit to
all the tested polygons and the Re range (1.0 × 104 ∼ 6.0 × 104). The upper and lower
envelopes, given by ζ = 0.22 and 0.18 enclose most of the data points except 2F , 3C
and some 4C data which occur above the upper envelope. A common feature for 2F and
3C polygons is the lack of leeward body volume or after-body, leading to a higher back
pressure coefficient and hence a larger CD ·St value (Bearman 1967). Using equation 3.11
to calculate CD from St or vice versa yields a maximum error of about ±10%. This error
may be further reduced by fine tuning the ζ value. For example, letting ζ to be 0.23 will
enclose most of the 2F and 3C data inside the envelopes.
A number of empirical CD ∼ St relations proposed by previous researchers are also

plotted in figure 17 for the purpose of comparison, i.e.

0.21 = C0.75
D St, Hoerner (1965) (3.12)

k = 211/2π
CDSt

CD + 1
, Ahlborn et al. (2002) (3.13)

0.23 = CDSt, Alam & Zhou (2008), (3.14)

where k is an energy parameter which varies in general with different bluffbody shapes.
Almost all the present data including the two envelopes (ζ = 0.22, 0.18) fall between the



Flow around polygon cylinders 21

�

�

�

�

Ahlborn et al. (2002)

Figure 17. Empirical relation between St and CD for all the cases tested at
Re = (1.0 ∼ 6.0) × 104. ζ = C0.6

D St = 0.2 is the fitting curve based on the least squares
technique, with ζ = 0.22 and 0.18 corresponding to the upper and the lower envelopes, respec-
tively. Correlations by Hoerner (1965), Ahlborn et al. (2002) and Alam & Zhou (2008) are also
included for the purpose of comparison.

two curves corresponding to k = 12 and 16, respectively, of equation 3.13. Equation 3.12
does not seem to represent the present data very well for CD < 1. Equation 3.14 exhibits
a deviation from the data for CD < 1 and CD > 2 because this equation is derived based
on the assumption of energy conservation in spite of inevitable energy exchange between
the cylinder and the supporting frames in actual experiments.
It is worth making a comparison between presently proposed equation 3.11 and equa-

tions 3.12 ∼ 3.14 based on a collection of data in the literature. Take N = 4 and N = ∞
for example to estimate St from CD and vice versa. The results are given in figure 18.
In figure 18 (a) the CD data of a circular cylinder summarised in Tropea et al. (2007) is
used to calculate the corresponding St from equations 3.12 ∼ 3.14. In view of the data
distribution for a circular cylinder in figure 17, the ζ value in equation 3.11 is chosen to
be 0.21 to represent the best CD on the circular cylinder in figure 18 (a). The k value
in equation 3.13 is chosen to be 14.5, which gives the best fit. Note that Ahlborn et al.

(2002) suggested k = 12.7, which produces a larger deviation to the experimental data.
Equation 3.11, albeit obtained from the data over a limited Re range, gives the best fit
to the experimental data from Tropea et al. (2007) for a wider Re range and is even
in agreement with the data of Re > Rec. Comparing to equation 3.12, equation 3.11
is equally good for Re < Rec but better for Re > Rec. Equation 3.14 displays a large
deviation for 103 < Re < 104 and equation 3.13 agrees well with the experimental data
for the entire Re range presented, similarly to equation 3.11.
Figure 18 (b) presents the CD data for the N = 4 polygon, calculated based on equa-

tions 3.11 to 3.14, from St summarised in Blevins (1990). Comparison is further made
between the calculated CD values and those reported in the literature. The ζ value in
3.11 is chosen to be 0.19. In equation 3.13, k is set to be 12, which leads to a better fit
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(a)

(b)

Figure 18. Evaluation of various St ∼ CD relations (equation 3.11 to 3.14): (a) St calculated
from CD on a circular cylinder summarised in Tropea et al. (2007); (b) CD calculated from St
on a square cylinder summarised in Blevins (1990). Experimental data from Okajima (1982),
White (2001) and Alam & Zhou (2008) are included for the purpose of comparison.

to the data than k = 11.5 proposed in Ahlborn et al. (2002). The CD data calculated
from equation 3.11 agree qualitatively with the available experimental data in Okajima
(1982) for Re < 1.0 × 103, but increase from 1.9 to 2.2 for 1.0 × 104 < Re < 1.0 × 105,
exceeding the experimental data reported in White (2001), with the largest deviation up
to 10%. Assessment cannot be made for other Re ranges due to a lack of experimental
data. The prediction from equation 3.12 is quite similar to that from equation 3.11.
Table 2 summarises CD and St, reported in the literature, for the two-dimensional

bodies of various cross-sectional geometry or irregular bluff bodies. The ζ value is calcu-
lated based on CD and St from equation 3.11. While most bluff bodies fall in between
the envelopes (0.18 6 ζ 6 0.22), ζ tends to be small for more streamline-shaped bodies.
For example, the rectangular cylinder with an aspect ratio 2:1 corresponds to ζ = 0.11,
smaller than 0.24, with an aspect ratio of 1:2. Table 2 and also figure 18 indicate that ζ
is independent of Re for cylinders with mild bluffness, at least for the Re range examined
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Prototype Re CD St ζ Data source

Rectangular cylinder (2:1)

≈ 104

1.80 0.080 0.11

Tropea et al. (2007)

Rectangular cylinder (1:2) 2.40 0.140 0.24
Semi-circular cylinder (CW) 1.20 0.210 0.23
Semi-circular cylinder (FW) 1.70 0.160 0.22

Half tube (CW) 1.20 0.210 0.23
Half tube (CL) 2.30 0.130 0.21

The Great Belt East Bridge
2× 106 0.60 0.220 0.16

Schewe & Larsen (1998)
5× 104 0.68 0.180 0.14

Square cylinder

2600

2.00 0.128 0.19

Alam & Zhou (2008)
RC square cylinder (r/d = 0.157) 1.70 0.150 0.21
RC square cylinder (r/d = 0.236) 1.45 0.180 0.22
RC square cylinder (r/d = 0.157) 1.20 0.210 0.23

CC square cylinder c/d = 0.100
6× 104

1.23 0.150 0.17
Yamagishi et al. (2010)

CC square cylinder c/d = 0.167 1.60 0.155 0.21

Table 2. The CD and St values of various irregular polygon cylinders reported in the literature
and their correlation coefficient ζ calculated from equation 3.11. In the table, CW, FW and CL
denote the windward-facing curved surface, the windward-facing flat surface and the leeward–
facing curved surface, respectively; RC and CC represent the rounded corner and the chamfered
corner, respectively; r, d and c are the abbreviations for the radius of the rounded corner, the
side length of the square cylinder and the size of the chamfered corner, respectively.

presently. Furthermore, the experimental data (not shown) confirm that ζ changes in the
range of 0.20± 0.02 as the angle of attack of the polygon cylinder varying between the
corner and the face orientations at Re = 5.0× 104.
Figure 17 indicates that St and CD are inversely related. This can be demonstrated

analytically.
Assuming that the vortices shed from the cylinders are two-dimensional and can be

approximately described by the Lamb-Oseen vortex model (Saffman 1995), the azimuthal
velocity uθ of an isolated vortex can be written as:

uθ(rs, t) =
Γo

2πrs

[

1− exp

(

− r2s
4νt

)]

, (3.15)

where t is time (
√
4νt is the characteristic vortex size), Γo is the vortex strength and rs

is the radius to the vortex centre. The kinetic energy of the flow field associated with an
isolated Lamb-Oseen vortex may be written as:

KE =

∫

∞

0

ρπrsu
2
θdrs

= ρ
Γ2
o

4π

∫

∞

0

1

rs

[

1− 2exp

(

− r2s
4νt

)

+ exp

(

−2r2s
4νt

)]

dr, (3.16)

where ρ is the fluid density. From the energy budget point of view, one pair of vortices
form over one period of vortex shedding, which produces a drag force FD, i.e. KE =
FDU∞τ , where τ = D/U∞ is the characteristic time scale of vortex shedding. Defining
a dimensionless circulation K = Γo/πU∞D and writing the integral in equation 3.16 as
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η(t), CD is then related to St as:

CD = πK2Stη(t). (3.17)

The formation of a vortex is the roll-up of a shear layer, and vortex shedding occurs when
fluid engulfed in carrying vorticity with opposite signs cuts off further the entrainment
of circulation (Gerrard 1966). Taking the average velocity in the boundary layer to be
U∞/2 and δ to be the characteristic boundary layer thickness, consider a shear layer with
vorticity ω ∼ U∞/δ rolling-up over time τ . Then

K ∼ 1

πDU∞

(

U∞

δ

)

(δτU∞/2) =

(

1

2π

)

St−1. (3.18)

Note that, depending on the degree of bluffness and hence the wake width, only a fraction
of the circulation contributes to the vortex formation (Bearman 1984). Equation 3.18 then
needs to be revised such that

K ∼ 1

πDU∞

(

U∞

δ

)

(δτU∞/2) f (D∗

w) =
f (D∗

w)

2π
St−1, (3.19)

The Re effect may be reflected in D∗

w. Substituting equation 3.19 into 3.17 yields

CD =
1

4πSt
f (D∗

w) η(t). (3.20)

The integrand of η(t) is bounded over rs ∈ [0,∞) and the integral η(t) is not very sensitive
to t. Therefore, η(t) is a weak function of the characteristic vortex size

√
4νt. Taking a

realistic vortex size to be in the order of D/2, η is typically around 7.0. Substituting the
known numerical values into f , we may finally obtain

CD = f (D∗

w) St
−1. (3.21)

As the empirical correlation 3.11 agrees well with the present experimental data, we
may infer f (D∗

w) ∼ ζC−0.4
D . Note that CD is an increasing function of D∗

w, that is, CD

increases with larger D∗

w. Using the D∗

w data at Re = 1.0 × 104 shown in figure 9 and
the corresponding CD, we may find D∗

w ∼ C0.8
D . Therefore, f (D∗

w) ∼ (D∗

w)
−1/2.

4. Concluding remarks

The aerodynamic characteristics of polygon cylinders (N = 2, 3 ∼ 8, 12, 16, ∞) are
systematically studied over a Re range of 1.0 × 104 ∼ 1.0 × 105, based on the three-
dimensional force transducer, smoke flow visualisation and PIV measurements. Both
corner and face orientations of the polygon cylinders are examined. Following conclusions
may be drawn out of this work.
It has been found that CD, C′

L and St all vary with N as well as with the polygon
orientation. The dependence of CD on N exhibits a distorted Cartesian pattern (figure 6
a-b). So does that of St on N (figure 6 c-d). This pattern may be used to predict CD

and St for untested polygons, e.g. N = 9 ∼ 11. In general, CD, C′

L and St all depend
on the polygon orientation. This dependence however contracts with increasing N. While
C′

L becomes independent of the polygon orientation for N > 12, CD and St may differ,
albeit very slightly, from one polygon orientation to the other. The characteristic length
scales of the wake, such as the wake width and the length of the reversed flow region,
and their dependence on N are also documented.
The present flow visualisation data (figure 11) shows unequivocally that, given poly-

gons of N 6 8, the flow separation point is fixed at the corner of the maximum width
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point To. As such, CD and St change little, essentially independently of Re (see also
figure 4). In a few cases, e.g. 5F and 7C, although separating at corner T1, upstream of
To, the flow reattaches near To, again resulting in CD and St that are independent of Re.
The cylinders of N12 and N16 undergo the transition at Rec ≈ 2.4×104 and ≈ 3.4×104,
respectively; correspondingly, CD drops substantially, accompanied by a large increase
in St. Once the transition takes place, the flow separation is postponed, allowing more
recovery in pressure; the energised boundary layer due to the transition enhances the
shear layer instability, causing relatively small-scale vortices to be generated at higher
frequencies.

One of the most important findings of this study is the corrected flow separation angle
ξ, which has essentially taken the separation-reattachment phenomenon into account.
This angle is uniquely dependent on the orientation and N of the polygon in the sub-
critical regime (figure 15), i.e. Re < Rec. More importantly, the dependence of CD or
St, which is greatly scattered if plotted against N (figure 6) or other parameters, on ξ
collapses onto a single curve as shown in figure 16, even under the circumstance of the
transition, implying that ξ is a scaling factor for both CD and St. The correlation be-
tween CD and ξ is even linear. This finding allows us to predict the CD and St of the
polygon cylinder from ξ from a careful flow visualisation experiment, without the need
for the force transducer of high dynamic response or hotwires. The linear correlation
between ξ and CD is perhaps not surprising. Ahlborn et al. (2002) showed that CD is
linearly proportional to tan θ, where θ is the angle between the transverse velocity and
the streamwise velocity of vortices separated from the cylinder. Yeung (2009) found a
linear relation between CD and (Cp)b for some bluff bodies such as cones and spheres.
The definition of ξ is essentially related to θ and (Cp)b on the polygon; once the transi-
tion takes place, ξ characterises uniquely the location of the flow separation point. If the
direction of Us (see § 3.3, related to the geometry of the polygon) is considered, θs and
hence (Cp)b can be inferred from ξ.

It has been found that Rec rises for larger N given N > 12 (figure 5 a). An analogy, in
terms of Rec, between the polygons of N > 12) and the rough surface circular cylinders is
proposed. The corners of these polygons act like the roughness elements, with a height ε
calculated by equation 3.1, evenly distributed on the surface of a smooth circular cylinder.
The dependence of Rec on ε/D follows well both qualitatively and quantitatively the
dependence of Rec on the relative roughness of a roughened circular cylinder (figure 5).
As a result, Rec for the untested polygons of large N may be predicted from the well
documented Rec of the rough surface circular cylinder. However, for N < 12, the size
and number of ‘the roughness elements’ become relatively large and small, respectively,
and the corners cannot be treated as roughness elements anymore and the analogy is no
longer valid.

The one-to-one correlation between CD and ξ and that between St and ξ imply a
relation between CD and St. A new empirical correlation is proposed, i.e. ζ = C0.6

D St,
and the best fit to the present experimental data as well as those in the literature is
ζ = 0.20. When ζ = 0.22 and ζ = 0.18, the corresponding curves form two envelopes
that enclose most of the available experimental data points. This relationship is found
to be valid not only for the polygon cylinders but also the bluff bodies of irregular cross-
section over Re = 50 ∼ 106.

Finally, we have demonstrated analytically that CD and St are inversely related, as
shown by the experimental data in figure 17.
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