Experimental Study of Geoneutrinos with KamLAND

- 1. Geoneutrino Physics with KamLAND
- 2. The KamLAND Detector and Data Analysis
- 3. KamLAND Result and Discussion

Sanshiro Enomoto, for the KamLAND Collaboration Research Center for Neutrino Science, Tohoku University

Neutrino Science 2005 - Neutrino Geophysics -, Univ. of Hawaii at Manoa, December 14-16 2005

KamLAND Experiment

- observes low energy anti-neutrinos at the Kamioka Mine, Hida, Japan
- consists of 1000ton Liquid Scintillator, surrounded by 1845 PMT's

discriminative sensitivity to antineutrinos →avoids overwhelming solar neutrino background

KamLAND Location

<u>Geological Setting</u>

- Boundary of Continent and Ocean
- Island Arc (Orogenic)
- '*Hida*' Metamorphic Zone
- Zn, Pb, limestone mine (skarn)
- Surrounded by Gneiss Rocks

Geoneutrino Flux Integration

$$F_{U/Th} = A \cdot \int_{Earth} \frac{\rho_{U/Th}(\vec{r})}{4\pi |\vec{r} - \vec{r}_{KamLAND}|^2} P(\vec{v}_e \to \vec{v}_e) dV$$

Expected Neutrino Spectrum at KamLAND

•408ton $\rm CH_2$ (5m radius volume), 714 days, 69% efficiency •Oscillation parameters from KamLAND 2nd Result

Where Neutrinos Come From?

Assuming uniform crustal composition (no local variation),

KamLAND

<u>Local Geology Study 1 - Geological Map</u>

- Japan Geological Map, published from Geological Survey of Japan (199
- classifies the surface geology into 165 geologic groups.

Local Geology Study 2 - Geochemical Analysis

<u>Togashi et.al. (2000)</u>

(Geochemistry Geophysics Geosystems, volume 1 number 27)

- classifies surface geology into 37 groups
- collects 166 rock samples to cover rock varieties and abundances

Surface U/Th Distribution Models

Effect of Local Geology

- Assuming surface exposed geology extends to 5km depth,
- Calculates <u>possible variation</u> in geoneutrino flux

Composition Model of Each Geological Group	U-series [1/10 ³² H/yr]	Th-series [1/10 ³² H/yr]
Global Average Represented Composition	4.8	0.96
Group Average Represented Composition	3.8	0.97
Neighbor-Sample Represented Composition	4.6	0.83
Whole Earth	30.1	6.7

- \bullet Range of variation is about 4 %
- If 'surface' is simply extended to whole upper crust, we get
- vertical information is crucial

Comparison with Other Sites

Neutrino Detection Method

$$E_{\text{threshold}} = 1.8 \text{ MeV}$$

 $E_{\text{prompt}} = E_{v_e} - 0.8 \text{ MeV}$
 $E_{\text{delayed}} = 2.2 \text{ MeV}$

KamLAND Detector Design

LS Purification and Radioactive Impurity

measurable only by KamLAND itself !

KamLAND Event: Low Energy Event

KamLAND Event: Cosmic Muon Event

Vertex Reconstruction

Determined from PMT hit timing

Visible Energy (light yield) Estimation

Determined from total PMT hit charge, with corrections of

- light attenuation, balloon / rope shadowing
- PMT angle, quantum efficiency, discriminator threshold

Detector Activity (Singles Spectrum)

Event Selection

- Fiducial Volume
 - selects 500 cm radius from center
 - removes 120 cm radius from vertical axis
- Muon Spallation Cut (⁹Li etc)
 - 2sec full volume veto following showering muons
 - 2sec 3m-cylindrical veto following non-showering muons
- Coincidence Event Selection
 - Distance : 0 < Δ R < 100cm
 - Interval : 0.5 μ sec < Δ T < 1000 μ sec
 - Delayed Signal Energy: 1.8 MeV < $\rm E_{delayed}$ < 2.6 MeV

Selected Candidates Summary

- Livetime: 749.14 days
- # of protons: 3.459x10³¹

Backgrounds Overview

- Neutrinos
 - Reactor : 80.4 ± 7.2
 - Spent Fuel (Ru, Ce, St) : 1.9 ± 0.2
- Accidental Coincidence : 2.4 ± 0.0077
- Correlated Signals
 - Muon spallation products (9Li, ...): 0.30 \pm 0.047
 - Fast neutron (from outside): < 0.1
 - Cascade decay (Bi-Po, ...)
 - Spontaneous Fission (²³⁸U, ...)
 - Neutron Emitter (210 T1, ...)
 - (α , n) Reaction, (γ , n) Reaction
 - Deuteron disintegration by solar neutrinos
 - Atmospheric neutrino interaction with $^{12}\mathrm{C}$

<u>(α, n) Reaction Background Overview</u>

²¹⁰Po decay rate: 21.1 Bq 1.50×10^9 decays/livetime

<u>Uncertainties:</u>

Energy scale uncertainty Vertex bias at low-energy

region

²¹⁰Po decay rate non-equibrilum \Rightarrow 14% systematic error

<u>(α,n) Reaction: Proton Scattering and Visible Energy</u>

- no direct measurement available for proton quenching factor
- Birks constant uncertainty (calculation requires lots of details)

Calculated (α, n) Reaction Spectrum 63.99 neutrons expected 100000 MC events generated Uncertainties: 48.98 proton quenching factor 80 56.50 1.50 5.99 (α, n) angular 60 distribution 40 \Rightarrow 10% horizontal error 20 Energy (positron scale) [MeV]

Summary of Backgrounds

- Neutrinos
 - Reactor: 80.4±7.2
 Spent Fuel : 1.9±0.2
- Cosmic Muon Induced
 - Fast neutron (from outside): < 0.1
 - Spallation products (^{9}Li):

 0.30 ± 0.047

- Radioactive Impurity
 - Accidental coincidence
 - Cascade decay
 - Spontaneous fission
 - (α ,n) reaction
 - (γ ,n) reaction

Expected Spectrum

KamLAND Observation

Event Rate Analysis

- observed: 152
- backgrounds: 127.4 ±13.3 (syst.)
- excess: 24.6 \pm 17.9
- systematic error: 5.0% (mainly FV; <u>large correlation</u> with backgroun

Unbinned Spectrum Shape Analysis

- 90% confidence interval: 4.5 to 54.2
 99% C.L. upper limit: 70.7
- $N_{geo} = 0$ excluded at 95.3%(1.99 σ)

Comparison with Earth Model Prediction

KamLAND result is consistent with Earth model predictions
99%C.L. limit is outside of Earth model constraints

- (α, n) background study improvements
 Better cross section data now available
 - Proton quenching will be measured
 - Alpha-source calibration being considered
- Further LS purification
 - Removes radioactive impurities at $10^{4} {}^{\sim} 10^{6}$
 - Reduces backgrounds, increases efficiency

<u>New (α , n) Cross Section Data</u>

New measurement by Harissopulos et al. (2005) 22 $\,\mu\,{\rm g/cm^2}$ Carbon target with $99\pm2\%$ $^{13}{\rm C}$ enrichment

Proton Quenching Factor Measurement

Mono-energetic neutron beam from OKTAVIAN at Osaka University

LS distillation for the KamLAND solar phase

Removes radioactive impurities at $10^{4}\ensuremath{^{\circ}10^{6}}$

Current Achievement

 $(4.5\pm0.5)\times10^{-4}$ Reduction of Pb

KamLAND Prospect After Purification

- \bullet Error is reduced from 54% to 28%
- Significance : 99.96%
- Error is dominated by reactor neutrino statistics

KamLAND Future Prospect

<u>Summary</u>

- KamLAND achieved the first experimental study of neutrinos
- 749 days exposure of KamLAND results
 - ✓ 90% Confidence Interval: 4.5 to 54.2
 - ✓ 99% C.L. upper limit: 70.7
 - \checkmark Consistent with predictions by Earth models

• A number of improvements are in progress