
Experimental study of internal gravity waves generated by

supercritical topography

H. P. Zhang, B. King and Harry L. Swinney

Center for Nonlinear Dynamics and Department of Physics,

The University of Texas at Austin, Austin, Texas 78712, USA

Abstract

Oscillatory tides flowing over rough topography on the ocean floor generate internal gravity

waves, which are a major source of ocean mixing. Linear inviscid theory can describe waves

generated by gentle topography with slopes that are less steep than the propagation angle of the

internal waves; such topography is termed subcritical. However, a clear physical picture of internal

waves generated by topography with slopes steeper than the angle of internal waves (supercritical

topography) is lacking. In this paper we present an experimental study at Reynolds number

∼ O(100) of internal gravity waves generated by a circular cylinder that oscillates horizontally at

a frequency Ω. Fundamental waves of frequency Ω emanate from locations on the cylinder where

the topographic slope equals the slope of internal waves. For small oscillating amplitude A (weak

forcing), our experimental results compare well with predictions of the viscous linear theory of

Hurley and Keady (1997). The width of the wave beams is determined by competition between

forcing and viscous smoothing, and hydrodynamic screening of the steep part of the topography

extends the cylinder’s horizontal length scale. Beyond the weak forcing regime, harmonic waves of

frequency nΩ (with integer n > 1 and nΩ < N, where N is the buoyancy frequency) are generated

by nonlinear interaction involving the overlapping fundamental waves and direct forcing of the

cylinder. For moderate forcing we find that the intensity of the fundamental and second harmonic

waves scales linearly and quadratically with A, respectively.
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I. INTRODUCTION

Away from shallow, well-mixed surface regions, most of the ocean is stratified by salinity

and temperature [1, 2]. In the deep ocean, internal gravity waves are created by oscillatory

tides flowing over bottom topography such as underwater mountains and ridges [1, 3]. This

can be easily appreciated in a reference frame moving with the tides; the bottom topography

then acts like an oscillating wavemaker which generates waves. These tide-generated internal

gravity waves, also called internal tides, are believed to one of the major sources of deep-

ocean mixing, which is one of the least understood, yet crucial, aspects of ocean circulation

models [1, 5, 6]. Therefore, a considerable effort is now underway to understand better the

processes involved in internal gravity wave generation, propagation, and dissipation [1, 3].

In a uniformly stratified nonrotating fluid, internal gravity waves propagate obliquely

with an angle μ with respect to the horizontal, where [4]

tanμ =

r
Ω2

N2 −Ω2 , (1)

Ω is the wave frequency, and N is the buoyancy frequency. Bottom topography can be

characterized as supercritical or subcritical according to the "criticality parameter," ε =

Sm/ tanμ, where Sm is the maximal topographic slope. The topography is supercritical

(subcritical) when ε > 1 (ε < 1). Another nondimensional parameter [3] related to spatial

scales is the "excursion parameter," β = A/l, which is the ratio of forcing amplitude of the

wavemaker, A = u◦/Ω (where u◦ is the maximal oscillating velocity), to the horizontal scale

of the topography l.

The internal gravity wave generation problem is difficult to treat analytically in general

because both the governing hydrodynamic equations and the boundary condition on the

topography are nonlinear. However, the problem is greatly simplified for gentle subcritical

topography, for which inviscid theory [3, 7, 8] predicts wave fields with small spatial gradients

and smooth variation over the scale of the topography. Small spatial gradients means that

both the viscous (ν∇2u) and nonlinear (u ·∇)u terms are small. However, as the steepness
of the topography increases, wave fields and their spatial gradients grow large along the

wave characteristics, which are are lines that are in the wave propagation direction and

tangent to the topographic surface. The fields and gradients eventually diverge for waves

generated by supercritical topography, ε > 1, where the assumptions of linear and inviscid
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flow fail [10, 11, 16]. The unphysical divergent wave fields for supercritical topography are

a consequence of the inviscid assumption. Hurley and Keady [9] presented an approximate

viscous linear theory of internal gravity waves generated by an oscillating circular cylinder in

a viscous fluid. The topographic slope of the top and bottom halves of a cylinder ranges from

0 to ∞; thus it is supercritical for internal gravity waves propagating in any direction. The
Hurley-Keady theory shows that the viscous term can smooth large gradients and prevent

the wave fields from diverging. No theoretical analysis has been done for the full nonlinear

equations, but strong nonlinear effects have been reported in nonlinear numerical studies of

supercritical topography [21—23].

The inviscid assumption fails for supercritical topography also because of the free-slip

boundary condition, which assumes the topographic surface is a streamline of the flow.

Studies of lee wave generation have shown that steep topography in a strongly stratified fluid

usually blocks some upstream fluid and causes flow to separate from the topographic surface;

hence the free-slip boundary condition is invalidated [24, 25]. The failure of the inviscid

assumption is quantified by a nondimensional number L =NH/u∗, whereH is the maximum

height of topography and u∗ is a typical flow velocity. The lee wave studies have shown that

when L is larger than a critical number between 0.5 and 1, strong stratification greatly

inhibits vertical motion, blocking a fluid particle from rising over the topography [24, 25].

We present here a laboratory experiment designed to study viscous and nonlinear effects

for internal gravity waves generated by an oscillating cylinder (with small excursion parame-

ter, β ¿ 1) in a non-rotating stratified fluid (with constant buoyancy frequency N). Several

previous studies used an oscillating circular cylinder to excite internal gravity waves [12—15].

Those studies examined the structure of the propagating waves in the far field; details of

flow-topography interaction in the near field were not studied. Further, the studies used

small cylinders, resulting in small Reynolds number, Re = u◦D/ν ∼ O(10), where ν is the

kinematic viscosity and D the cylinder diameter. The present experiment examines both

near and far fields for Re ∼ O(100). Our velocity field measurements reveal that for weak

forcing, the flow is essentially linear, and the observations, including blocking (since L > 1),

are in good accord with the viscous theory of Hurley and Keady [9]. Beyond the weak

forcing regime, nonlinear interactions generate harmonics nΩ for integer n such that n > 1

and nΩ < N .

The paper is organized as follows. Section II reviews the linear viscous theory of Hurley
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and Keady, and Section III describes the experimental system. Sections IV and V present re-

sults from the weak and moderate forcing regimes, respectively. Oceanographic implications

of our results are discussed in Section V.

II. THEORY

Hurley and Keady [9] proposed an approximate viscous solution for internal gravity waves

generated by a circular cylinder (radius r) oscillating horizontally u = u◦ exp(iΩt) in a

Boussinesq fluid with uniform stratification (N = constant). The coordinate system in the

laboratory frame has the x-axis horizontal and the y-axis vertical, and the origin is at the

center of the cylinder’s equilibrium position. Internal waves propagate in a direction defined

by the dispersion relation, Eq. (1), and form an X pattern. We define two beam coordinate

frames, S+Oσ+ and S−Oσ−, where each has one axis (S+ or S−) directed along the wave

beam and the other axis (σ+ or σ−) perpendicular to the wave beam (Fig. 1). The coordinate

frames are related by

σ+ = x sin(μ)− y cos(μ), s+ = x cos(μ) + y sin(μ), (2)

σ− = x sin(μ) + y cos(μ), s− = −x cos(μ) + y sin(μ). (3)

Assuming the wave structure is uniform along the length of the cylinder and the fluid

is incompressible, the two-dimensional wave motion is described by the stream function

Ψ(x, y, t) = ψ(x, y)exp(−iΩt). Once ψ(x, y) is determined, the horizontal (u) and vertical
(v) components of the velocity field are given by

u(x, y, t) = −∂ψ(x, y)
∂y

exp(−iΩt), v(x, y, t) =
∂ψ(x, y)

∂x
exp(−iΩt). (4)

The vorticity field,

ω(x, y, t) = 52Ψ(x, y, t),

has only one component in our essentially two-dimensional flow, and the wave amplitude of

vorticity field is defined as

ω◦(x, y) = 5
2ψ(x, y).
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FIG. 1: Coordinate frames. The laboratory frame is xOy with y-axis vertical. Internal gravity

waves propagate along the directions of the wave characteristics, shown by dashed lines. The wave

characteristics and the cylinder surface coincide at the critical locations. The two beam frames are

S+Oσ+ and S−Oσ−.

The Navier—Stokes and continuity equations are linearized and simplified to give a single

fourth order partial differential equation in ψ(x, y):

η2
∂2ψ(x, y)

∂x2
− ∂2ψ(x, y)

∂y2
+
iν

Ω
54 ψ(x, y) = 0, (5)

where

η2 = N2/Ω2 − 1.

The no-slip boundary condition is assumed on the cylinder surface, whose spatial position

does not change in the limit of β → 0,

ψ(x, y)|cylinder = −u◦y. (6)

If viscosity is neglected, Eq. (5) becomes

η2
∂2ψ(x, y)

∂x2
− ∂2ψ(x, y)

∂y2
= 0, (7)

which can be solved exactly together with the boundary condition, Eq. (6), to obtain the

exact inviscid solution,

ψin(x, y) = ψin+ (σ+) + ψin− (σ−)

and

ψin+ (σ+) = rα+

(
σ+
r
−
µ
σ2+
r2
− 1
¶1/2)

(8)
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ψin− (σ−) = rα−

(
σ−
r
−
µ
σ2−
r2
− 1
¶1/2)

where α+ and α− are:

α+ =
1

2
[+u◦ cos(μ)− iu◦ sin(μ)] , (9)

α− =
1

2
[−u◦ cos(μ) + iu◦ sin(μ)] . (10)

A major problem with the inviscid solution is that the velocity field, calculated by Eqs. (4)

and (8), diverges on the wave characteristics, σ+ = ±r and σ− = ±r. This divergence on

wave characteristics is common in inviscid theories and simulations for supercritical topog-

raphy [10, 11, 16, 17].

Based on the inviscid solution, Hurley and Keady [9] proposed an approximate viscous

solution under the boundary-layer approximation, which assumes that across-beam varia-

tions are more significant than along-beam variations. The viscous solution is also expressed

in the beam frames:

ψ(x, y) = ψ+(σ+, s+) + ψ−(σ−, s−)

where

ψ+(σ+, s+) = ∓iα+r
Z ∞

0

J1(K)

K
exp(∓K3λ

s+
r
± iK

σ+
r
)dK, ± s+ > 0 (11)

ψ−(σ−, s−) = ±iα−r

Z ∞

0

J1(K)

K
exp(∓K3λ

s−
r
∓ iK

σ−
r
)dK, ± s− > 0 (12)

where J1(K) is the Bessel function of the first kind, and the parameter

λ =
ν

2r2Ωη
,

measures the strength of viscous effects. λ is small in our experiments, e.g., λ = 7.5× 10−4

for r = 2.54 cm, Ω = 0.38 rad/s, Ω/N = 0.34 and ν = 0.01 cm2/s. The small λ ensures that

the variations along the beam direction are much smaller than across the beam direction in

most regions, i.e., the boundary-layer approximation is consistent with the solution [9].

Focusing on the waves in the first and third quadrant, Eq. (11), we see that the viscous

solution depends on two nondimensional coordinates, the along-beam direction,

∆ = λ
s+
r
=

µ
ν

2Ωη

¶
s+
r3
, (13)

and the cross-beam direction,

w =
σ+
r
.
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Since ∆ ∝ 1/r3 while ∆ varies linearly with s+, we can explore the dependence on ∆ more

efficiently by changing r than changing s+.

The solutions (11) and (12) are symmetric and guarantee that the vertical velocity on the

x axis is always zero. We use the boundary layer approximation and calculate the velocity

component only along the beam direction; however, taking into account much smaller cross-

beam velocity would not change the conclusions. The along-beam velocities are:

V+(σ+, s+) = +α+

Z ∞

0

J1(K) exp(∓K3λ
s+
r
± iK

σ+
r
)dK, ± s+ > 0 (14)

V−(σ−, s−) = −α+
Z ∞

0

J1(K) exp(∓K3λ
s−
r
∓ iK

σ−
r
)dK, ± s− > 0 (15)

where we have used α+ = −α−, as seen from Eqs. (9) and (10). For an arbitrary point

on the x axis (x∗, 0), we have coordinates in the beam frames σ∗
+ = σ∗

− = x∗ sinμ and

s∗+ = −s∗− = x∗ cosμ. Equations (14) and (15) give V+(σ∗
+, s

∗
+) = −V−(σ∗

−, s
∗
−); therefore,

V (x∗, 0) = V+(σ
∗
+, s

∗
+)cs+ + V−(σ

∗
−, s

∗
−)cs− = 2V+(σ∗

+, s
∗
+) cos(μ)bx

has only horizontal components. This symmetric property justifies the relevance of the

theory to the oceanic conditions, where the boundary consists of both mountains and flat

sea floor. Figure 2 illustrates the generation of internal gravity waves by a semicircular

mountain on a flat sea floor. Because the oscillatory boundary layer on a flat surface is thin,

δ ∼ (ν/ω)1/2[29, 30], the no-slip boundary condition on the sea floor can be approximated
by free-slip one, which is automatically satisfied in the theory. Therefore, Eqs. (11) and

(12) describe internal gravity waves for y > 0 that satisfy the boundary conditions both on

the surface of the semicircular mountain and on the ocean floor.

III. EXPERIMENTAL SET-UP

The experiments are performed in a 95 cm wide, 45 cm thick, and 60 cm high glass tank,

as illustrated in Fig. 3. Blocksom-filter matting (from www.aquaticeco.com) on the tank

walls greatly reduces wave reflections at the boundaries. A circular cylinder is immersed in

the tank and oscillated horizontally under computer control. Four different cylinder sizes

are used: r = 0.95, 1.59, 2.54, and 3.81 cm. The tank is filled with an uniformly stratified

sugar solution using a “double bucket” system [18]. The buoyancy frequency (N = 1.1 rad/s
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FIG. 2: Internal gravity waves generated by a semi-circular mountain (white line) on the sea floor

(black lines). The mountain is centered at (0, 0) and the sea floor is at y = 0. The wave fields are

calculated from the viscous theory of Hurley and Keady, with r = 5 m, N/2π = 0.5 cycles/hour

and Ω/2π = 0.35 cycles/hour. The vorticity and velocity fields are represented by colorcoding and

vectors respectively.

FIG. 3: Front view of experimental system showing the oscillating cylinder, which generates internal

waves. Velocities are measured in the visualization window. Wave reflections at the boundaries

are greatly reduced by Blocksom-filter matting on the tank walls.

in all experiments) is determined by withdrawing small amounts of fluid at different heights

and measuring the density with an Anton Paar density meter.

A two-dimensional Particle Image Velocimetry (PIV) system is used to measure the

velocity field in a 30 cm × 30 cm visualization window (Fig. 3). Images are obtained using

a CCD camera with a resolution of 1004 x 1004 pixels and a 10-bit dynamic range. The

laser beam is spread by a cylindrical lens into a light sheet approximately 0.5 mm thick in
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the visualization window. The fluid is seeded with TiO2 particles, which are denser than the

sugar-water solution, but the sedimentation (with speed ∼ 1 cm/hour) is negligible during
a velocity measurement. Images are analyzed using the CIV velocity image correlation

algorithm [26], which determines the displacement of particles in a small region by cross

correlating a pair of consecutive images. We obtain a velocity field on a 100× 100 grid with

a rms error less than 5%. The time separation between image pairs is typically 1/20 of the

wave period; 20 velocity fields are obtained per wave period. In the moderate and strong

forcing regime, Fourier decompositions of time series of u(x, y, t) and ω(x, y, t) are used to

separate the contributions from the fundamental and harmonics (see Section V.B). Because

of the symmetry between waves in different quadrants, we obtain maximal spatial resolution

by measuring only the lower-left quadrant.

IV. WEAK FORCING REGIME

In the weak forcing regime (excursion parameter β = A/r ¿ 1), the strength of the

superharmonic waves is much less than the fundamental waves. We compare our observations

in this regime with the viscous theory of Hurley and Keady [9].

A. Near field

We examine first the flow near the cylinder, where ∆ = (ν/2Ωη)s+/r
3 < 3.5× 10−4. The

measured velocity and vorticity fields compare well with theory, as Fig. 4 illustrates; note

that the theory does not involve any fit parameter. Internal gravity waves, shown by the

vorticity band, emanate from critical locations on the cylinder and propagate at an angle

determined by the dispersion relation, Eq. (1). The fluid in the region between the waves

and the cylinder surface has horizontal velocity nearly the same as the cylinder. A similar

blocking of flow occurs at other moments of the oscillating cycle (cf. Sections IV.B and

V.B). This blocking effect is expected to be generic property of any supercritical topography

oscillating with small excursion parameter β. The L number introduced in the introduction

can be rewritten as

L =
NH

u◦
=

NH

Ωl

µ
1

β

¶
. (16)
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Since the forcing frequency Ω and topographic height H are usually the same order as

N and l, respectively, if β ¿ 1, then L À 1; hence stratification dominates kinematic

effects, and blocking is strong. To test this idea, we oscillated a vertical flat plate with

the other experimental parameters the same as used in Fig. 4. The vertical plate can

be approximated by an ellipse with a very large aspect ratio, which has large supercritical

topographic slope everywhere except at the two ends, where the critical locations are located.

The instantaneous velocity and vorticity fields, shown in Fig. 5, are very similar to those

in Fig. 4 (a) and (b): waves emanate from the critical locations and fluid is blocked in the

region bounded by the plate and the waves.

B. Bimodal region

Just beyond the near field, two distinct waves are observed in the same quadrant, as

shown in Fig. 6, which was obtained for the same experimental conditions as in Fig. 4 but

in a larger visualization window. The observed bimodal wave profile is in good accord with

the viscous theory of Hurley and Keady [9].

In the bimodal regime, the wave amplitude peaks on the wave characteristics and the

beam width, defined by the vorticity bands, is about 1 cm (full width at half maximum), 25%

of the cylinder radius. This is very different from the prediction of inviscid theories [10, 11,

16], where the beam width is infinitesimally small. In the experiment and the viscous theory,

the viscous term, ν∇2u, smooths large gradients and prevents wave fields from diverging.

Therefore, for waves generated by supercritical topography, it is a competition between the

viscous smoothing effect and the forcing, not the actual dimension of the topography that

determines the beam width. This is different from the case of subcritical topography, where

the beam width is directly related to the dimension of the topography.

C. The bi-to-unimodal transition

The cross-beam profile (Eqs. 11 and 12) depends on the nondimensional along-beam

coordinate ∆. For small ∆ the profile is bimodal, but at ∆ ' 10−2 the two parallel nearby

beams merge due to viscous smoothing and the profile develops a single maximum. Beam

profiles in the bimodal, transition, and unimodal regimes are shown in Fig. 7. Viscous
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FIG. 4: (Color online) (a) and (b), velocity (arrows) and vorticity (color bar) fields in near field,

respectively, from experiment and theory [9] at the instant when the oscillating cylinder passes the

equilibrium position from right to left. (c) and (d), vorticity ω and horizontal velocity u profiles

along x = 6.2 cm (vertical black lines in (a) and (b)); the solid lines are from theory and the points

are from experiment. Inside the cylinder (white semi-circle) the velocity is set to the cylinder

velocity and the vorticity is set to zero. Parameter values: buoyancy frequency N = 1.1 rad/s,

wave frequency Ω = 0.44 rad/s, cylinder radius r = 3.81 cm, and cylinder oscillation amplitude

A = 0.19 cm.

damping leads to decreasing nondimensional wave amplitude with increasing nondimensional

along-beam coordinate ∆.

The good correspondence between experiment and theory in Figs. 4, 6 and 7 indicates

that the boundary layer approximation used in the theory is valid in our experiment and

may be used to derive results for other topographic shapes. The small discrepancy between

theory and experiment in Figs. 4 and 6 likely arises from the weak second harmonic waves,

which for the experimental conditions are about one-tenth as strong as the fundamental
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FIG. 5: (Color online) Instantaneous velocity and vorticity fields generated by a horizontally

oscillating vertical plate (7.9 cm × 20 cm × 0.5 cm) at the instant when the plate passes the

equilibrium position from the left to the right. The plate surface is shown by a white line. The

parameter values are the same as in Fig. 4, and the velocity and vorticity fields are represented in

the same way as in that figure.

waves; the harmonics are not included in the theory.

V. BEYOND THE WEAK FORCING REGIME

Beyond the weak forcing regime, superharmonic waves, not predicted by the linear theory

of Hurley and Keady [9], become strong. In a experiment with a forcing amplitude twice as

large as in Fig. 6, both the fundamental and the second harmonic can be seen (Fig. 8(a)).

Our choice of Ω/N = 0.4 allows no harmonics higher than the second to be generated. The

measured fields decomposed by Fourier analysis into fundamental and the second harmonic

components are shown in Fig. 8(b) and (c).

A. Generation mechanism of the second harmonic waves

Tabaei et al. [20] have shown that, because the phase velocity is perpendicular to particle

motion u, the nonlinear term, (u ·∇)u, is small for any freely-propagating internal wave
beams of single frequencyΩ in a stratified fluid with constantN and weak viscosity. However,

nonlinear effects leading to superharmonic waves can be strong in the overlapping region of

wave beams [20]. Superharmonic waves have been observed in numerical simulations of the
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FIG. 6: (Color online) velocity (arrows) and vorticity (color bar) fields in bimodal region from (a)

experiment and (b) theory[9] at the instant when the oscillating cylinder passes its equilibrium

position from right to left. The field of view is larger than in Fig. 4, but the parameter values and

the representation of the fields are the same. (c) and (d), vorticity and horizontal velocity profiles

along the black lines, S+ = −14.2 cm in the beam frame.

nonlinear equations [21—23] and in laboratory experiments [27, 28], where superharmonic

waves were generated by interactions between incoming and reflected waves near a planar

boundary.

In our experiments, second harmonic waves emanate from two regions where the funda-

mental waves overlap, which are centered roughly at (−10 cm, 0 cm) and (0 cm, −6 cm) in
the laboratory frame. However, these two regions are not far enough away from the cylinder

to be free of its direct influence. For example, the left region at (−10, 0), though far from
the actual cylinder surface, is at the edge of the blocked fluid. Therefore, the generation of

harmonics for our experimental conditions involves both the fundamental waves and direct

forcing from the cylinder.
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FIG. 7: (Color online) Transion from bimodal to unimodal cross-beam profiles of nondimentioanal

vorticity amplitude, ω◦r/u◦, as a function of the nondimentional cross-beam coordinate σ+/r in

the beam frame S+Oσ+ (experiment, open circles; theory[9], lines). The unimodal, transitional,

and bimodal profiles correspond to nondimensional along-beam coordinate ∆ = λs+r values of

5.4 × 10−3, 1.7 × 10−2 and 5.3 × 10−2, respectively. Experimental results are open circles and

theoretical predictions are lines. Parameter values: bimodal, r = 2.54 cm and S+ = 7r; transition,

r = 1.59 cm and S+ = 9r; unimodal, r = 0.95 cm and S+ = 10r (in each case Ω = 0.38 rad/s and

N = 1.1 rad/s)

The group velocity of the second harmonic waves, shown by Cg in Fig. 8(c), indicates

that energy radiates outward from the generation regions. However, these generation sites

are different from the oscillating physical wavemaker, and harmonics are not generated in an

X-pattern corresponding to the four possible directions defined by the dispersion relation.

For example, only two second harmonic waves propagating to the left emanate from the

overlapping region at (−10, 0) (Fig. 8(a)). This observation agrees with the prediction of
the superharmonic generation from pure wave-wave interaction (see Fig. 7(e) in [20]).

B. Structure of the waves

We measure the cross-beam profiles of the vorticity amplitude ω◦ and the instantaneous

vorticity field ω along the black lines (S+ = −10.5 cm in the beam frame) in Fig. 8(b) and

(c) to study the structure of the waves. The cross-beam profile of the vorticity amplitude ω◦
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FIG. 8: (Color online) Decomposition of (a) the total vorticity and velocity fields into (b) funda-

mental (0.44 rad/s) and (c) the second harmonic (0.88 rad/s) components, at the instant when the

cylinder moves past its equilibrium position from the left to the right. The velocity and vorticity

fields are represented in the same way as in Fig. 4. The cross-beam profiles along the black lines

in (b) and (c) are shown in Figs 9 and 10. Note the different velocity and vorticity scales in (a,b)

and (c). Parameter values: N = 1.1 rad/s, Ω = 0.44 rad/s, r = 3.81 cm and A = 0.38 cm.

of the fundamental wave is compared in Fig. 9(a) with the linear viscous theory of Hurley

and Keady. Despite the presence of a strong second harmonic, the theory agrees with the

measurements surprisingly well, differing only in the tail region. However, the harmonic

causes a temporal phase change: the measured vorticity field profile agrees with the theory

only when the theoretical prediction is forwarded in time by ∆t1 = 0.22T , where T = 2π/Ω

is the period of the fundamental wave (see Fig. 9(b)).

The cross-beam profiles of the fundamental and second harmonic waves are compared in

Fig. 10. The vorticity profile of the second harmonic wave, multiplied by 3, matches the

profile of the vorticity amplitude of the fundamental wave, as Fig. 9(a) shows. Further, the

instantaneous vorticity field for the second harmonic, if multiplied by 3 and forwarded in

time by ∆t2 = 0.3T , matches the fundamental wave, as shown in Fig. 9(b). We conclude

that the second harmonic wave differs from the fundamental only by its strength and a

temporal phase factor.
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FIG. 9: (Color online) Comparison of the fundamental wave from experiment (black points) with

theory (solid curves): cross-beam profiles of (a) the vorticity amplitude and (b) the vorticity field,

determined at S+ = −10.5 cm in the beam frame (i.e., along the black lines in Fig. 8(b)). The

origin of cross-beam σ axis is shifted to be at the peak of the profiles of the vorticity amplitude,

and the new axis is denoted as σ∗. In (b) the profile is forwarded in time by ∆t1 = 0.22T (see

text).

FIG. 10: (Color online) Comparison of the cross-beam profiles of the fundamental (black circles),

second harmonic (blue triangles), and the second harmonic multiplied by 3 (red triangles): (a)

vorticity amplitude and (b) instantaneous vorticity field, measured along the black lines in Fig. 8.

The second harmonic multiplied by 3 matches the fundamental, where in (b) the second harmonic

has also been shifted in time by ∆t2 = 0.3T .

16



FIG. 11: (Color online) The strength of the fundmental and second harmonic waves, ω◦(σ∗ =

0, S+ = 10.5) (see text), as a function of the forcing, β = A/r. At intermediate forcing levels the

fundamental depends linearly on β, while the second harmonic has a quadratic dependence.

C. Forcing amplitude dependence

The strength of both fundamental and the second harmonic waves depends strongly on the

forcing amplitude. We choose the maximal value of the vorticity amplitude in the cross-beam

profiles at S+ = −10.5 cm, which are shown in Fig. 9 (a) and Fig. 10 (a) for fundamental
and harmonic waves with excursion parameter β = 0.1, to represent the strength of waves.

The chosen values, ω∗
◦ = ω◦(σ∗ = 0, S+ = −10.5 cm), are then plotted as a function of β

in Fig. 11. For β < 0.15, the strengths of the fundamental and the second harmonic waves

scale linearly and quadratically with β, respectively, which suggests that the generation of

harmonics may be explained by a weakly nonlinear theory. Both scaling laws, also reported

in [12], saturate for β > 0.15, where many frequency components are excited around the

cylinder. We have tried other quantities, such as average vorticity amplitude along center

lines, to represent the strength of waves. Since the spatial structures of wave amplitudes have

weak dependence on β, similar results are obtained as using ω∗
◦ = ω◦(σ∗ = 0, S+ = −10.5

cm).
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VI. DISCUSSION AND CONCLUSIONS

Our experiments reveal a clear physical picture of internal gravity waves generated by

supercritical topography. In the weak forcing regime, linear dynamics dominates and only

fundamental waves of Ω are observed. The fundamental waves are generated by direct

flow-topography interaction and emanate from the critical locations. The width of the

wave beam is determined by competition between the forcing and viscous smoothing. A

significant amount of fluid is blocked upstream by the topography as a consequence of the

strong stratification and the no-slip boundary condition. The experimental results in the

weak forcing regime compare well with the predictions from the viscous linear theory of

Hurley and Keady[9]. Beyond the weak forcing regime, superharmonic waves of frequency

nΩ (for integer n such that n > 1 and nΩ < N) are generated by nonlinear interaction

of overlapping fundamental waves and direct forcing of the cylinder. The intensities of the

fundamental and the second harmonic scale linearly and quadratically, respectively, with

forcing amplitude for moderate forcing.

The blocking phenomenon, observed in Figs. 4 and 5, is expected to be generic for any

supercritical topography, as reasoned in Section IV.A. The blocked fluid hydrodynamically

screens the steep part of the topography, increases the horizontal length scale, and makes the

topography less "supercritical". This screening effect and the observation that the critical

locations are the strongest wave generation sites on the topography lead us to conjecture that

the properties of the internal gravity waves are mainly determined by the local topographic

properties such as the radius of curvature at the critical locations.

The strong superharmonic waves in our experiments with β < 1 invalidates the common

assumption that a small excursion parameter β < 1 justifies the linearization of the dy-

namical equations in analyses of internal wave generation [3, 8—10, 16]. This assumption is

based on Bell’s classic work [7], where superharmonic waves are generated by the advection

of the boundary conditions only when the excursion parameter is large, β > 1. However, the

dynamical equations in Bell’s work are linearized, which means that Bell’s work takes into

account only the nonlinearity arising from the boundary condition, not from the dynamical

equations. Our experiment, together with other work [21—23], demonstrates the necessity

of taking into account the nonlinearity from wave-wave interaction; the full nonlinear dy-

namical equations should be used to model internal gravity waves generated by supercritical

18



topography. One implication of using nonlinear dynamical equations is that internal gravity

waves generated by different tidal components, such as the lunar semi-diurnal tide M2 and

the diurnal tide M1, are not independent and should not be linearly superposed. Therefore,

theoretical analyses with a single driving frequency [8—10, 16] are not directly applicable to

the oceanic environment, where many tidal components exist.
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