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0	ratio of total temperature to standard day temr, ature
Ill

D diffusion Factor
a	solidity, ratio. of chord to,blade spacing )

suction surface incidence angle, angle between inlet a'	loss coefficient

air direction and line tangent to blade suction our- OP
	total loss parameter -

face at the leading edge, deg SUBWRIPTS

Koo angle between a line tangent to blade suction surface ad	adiabatic

and merldional direction, deg id	Ideal

M Mach number le	leading edge {

P total pressure, N/em2
.

to	trailing edge

p static pressure, N/cm2 p	tangential direction

r spanwise radius In meridional plane, cm 1	instrument station upstream of rotor

T total temperature, K 2	calculation station downstream of rotor

W mass flow, kg/sac 3	instrument station down9tream of stator

V air velocity, m/sec SUPERSCRIPT

air angle, angle between air velocity and meri- r	relative to blade
dional direction, deg

RIC
relative meridional flow angle based on cone angle,

INTRODUCTION

deg The attainment of improved cycle efficiency for ad-

y ratio of specific heats, 1.40 vanced gas turbine engines requires Increased pressure ra-

d ratio of pressure to standard day pressure tiq"tfor the core compressor. During the past few years

NAL:^.;Lewis has been conducting an extensive research
1 efficiency rprq ',,gym on axial flow compressors with highrressure ratio

transonic stages. As a part of this program, four single-

stage compressors, that are representative of the inlet

stage of a multistage core compressor, were designed and

evaluated experimentally.

The stage designs feature two levels of rotor aspect ra=

^, do (1 . 19 and 1„$3) and two levels of pressure ratio (1.82u
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and 2.05), The aerodynamic designs as well as the com-
parisons of overall performance data for the four stages

are given in reference 1. This paper presents a more de-

tailed investigation of the flow phenomena for the four sta-

ges utilizing selected blade element parameters. Compar-

1»ons of blade element parameters are presented for the

two different aspect ratio configurations at each of the de-

alp pressure ratio levels. Blade loading levels (diffusion

factors) are compared for the near-stall conditions at all

speeds tested, Comparisons are made of loss and diffu,

lion factors (D-factors) over the operating range of Inci-

dence angles at several spar locations. The axial distribu-

tions of rotor tip static pressure are presented for three

flow conditions at design speed for all four stages,

APP^AATUS AND PROCEDURE

'lest Facility
The compressor stages were tested in the Lewis Re-

search Center single stage compressor test facility, which
is described iii detail In reference 2. ,, A schematic diagram

of the facility Is shown In figure 1. Atmospheric air enters

the facility at an inlet located on th 'goof of the building and

flows through the flow-measuring orifice and Into the ple-

num chamber upstream of the test stage. The air then

passes through the experimental compressor stage into the

collector a id is exhausted ,lo the atmosp'nerlc exhaust Sys-

tem. The rolor is driven by a variable-speed electric mo-

tor through a gearbox.

Test Compressors

The detailed aerodynamic and in 	designs of

the compressors used in this investigation are presented in

reference 1 and thus only a brief description will be pre-

sented herein. The basic designs feature two levels of
stage pressure ratio, two levels of rotor aspect ratio, and

two levels of stator aspect ratio. The designs are summa-

rized in table I. Stages 35 and 36, having a design pres-

sure ratio of 1.82 were designed for rofr;r blade aspect ra-

tios of 1 . 19 and 1. 63, respectively, Similarly, stages 37

and 38, having a design pressure ratio of 2 . 05, also had

rotor blade aspect ratios of 1.19 and 1. 63, respectively..

Stator vane aspect ratios were 1. 2, 6 and 178. All of the

rotor and stator blades have multiple circular are airfoils.

Careful positioning of the blade rows allowed all four sta-

ges to be tested with the same flow path geometry (fig. 2).

The design specific flow (100. y /sec%m2) and rotor tip

speed (455.0 m/sec) were."-the same for all four stages.

These are relatively high values of mass flow and tip speed
for core type stages.

Test Procedure
The stage survey data were taF. }si over a range of flows

for speeds from 50 to 100 percent of design speed. For

each flow, data were recorded at nine radial positions up-

stream (station 1) and downstream (station 3) of the test

stage. 'At station 3, the Instrumentation was also circum-
forentiatly traversed to nine positions across the stator

gap. The axial locatlonwof the survey stations are shown

In figure 2, The survey measurements consisted of total

pressure, static pressure, total temperature, and flow

angle. Flow was measured with a thin plate orifice. A

more complete description of the survey instrumentation

and test procedure Is given in reference 1.
The estimated errors in the data, based on inherent

accuracies of the instrumentation and recording system,

are as follows:

Tlo : kg/sec . . . . .... .. ... ... .. . . . +0.3

Rotuiive speed, rpm ................. +30

Flow angle, deg ; .. . ... . . .. . . . .	. . . +1.0
Temperature, K ... ... . .. +0.6

Itotor7^nlet (station 1) total pressure, N/em2 .... Q.03
Rotor-inlet (station 1) static pressure, N/cm 2.... +0.03

Stator-outlet (station 3) total pressure, N/cm 2 .. . +0.17
Stator-outlet (station 3) static pressure, N/cm 2 . . . +0.10

Calculation Procedure,,

Because of the close spacing between the rotor and

stator, no instrumentation could be used at station 2 (see
fig. 2). The values of press ure;== camperature, and flow
angld=at this station were obtained as follows: At each ra-
dial survey ,position, total pressure and total temperature

were transited along design streamline from station 3.

The circumferentially mass-averaged total temperatures

from station 3 were used as the total temperatures at sta-

tion 2. The arithmetic mean of the three highest total

pressure values from the circumferential distributions at

station 3 were used as the total pressures at station 2. The

radial distributions of static pressure and flow angle were

calculated based on continuity of mass flow and radialeyui-

librium. Measured airflow and rotative speed/f ere inputs.
Design values of streamline curvature and blockages were

also used In the calculations.

All data are corrected to standard day conditions based

on the rotor inlet conditions. Overall total pressure ratios
and total temperature ratios are based on an energy

age of the pressures and temperatures obtained from the

calibrated survey Instrumentation. Blade element dataL

translated along design, streamlines to the blade leading and
trailing edges. Details of the calculation procedure are
given in reference 1.

RESULTS AND DISCUSSION

An assessment of the effects of blade aspect ratio is

made by comparing, some of the basic flow phenomenon for

the two aspect ratio configurations for each level of design

pressure ratio. The overall performance comparisons are

presented to show the 1, erall effects of blade aspect ratio

on the performance characteristics. Radial distributions of

performance parameters are compared for the peak effi-

ciency conditions at design speed to show how the difference
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gas aru compared for the near-stall conditions oser the on-

tire speed range, This comparison to made In an attempt

to determine which blade row Is controlling the flow range

and to assess the effects of blade aspect ratio o"lade

loadinglimits. Blade element performance comparisons are

made to assess the effects of blade aspect ratio on typical

blade element parameters over a range of flow conditions.
Axial distribution of rotor,tip static pressures are pre-

sented at design speed to z4,Wbas the effect of blade aspect

ratio on end wall flow conditions when shocks are present.

Overall Performance Comparisons

The effects of aspect ratio on overall performance are

presented in figure 3. For both design pressure ratio lov-

els, the overall rotor and stage performances for the lower

aspect ratio configurations are substantially better than

those for the higher aspect ratio configurations. The lower

aspect ratio configurations achieved a higher peak pressure

ratio and efficiency and a larger flow range over the range

of speeds tested. The largest Increase In flow range oc-

curred at the design speed.

For the higher design pressure ratio configurations the

peak rotor efficiency, at de4lgn speed, for the lower aspect

ratio configuration (stage 37) Is about 2.5 points higher than

that for the higher aspect ratio configuration (fig. 3(a)).

However, the difference in stage efficiency is about one

point.
Similar trends are shown for the lower design pres-

sure ratio configurations (fig. 3(b)). At design speed, the

peak efficiency for both rotor and stage is approximately

2 points higher for the lower aspect ratio configuration.
The highest overall rotor and stage efficiencies were

obtained with the lower aspect ratio higher -pressure con-

figuration (stage 37) and they occurred at 90 percent design

speed. The maximum rotor and stage efficiencies are 91, 6

percent and 89.3 percent, respectively. The corresponding

pressure ratios are 1,775 and 1.751.

The peak efficiencies at design speed along with the

corresponding pressure ratios for rotor and stage for all

four configurations are aul .̀ Oarized in table U. Also shown

are the values of stall margin based on conditions at peak

efficiency and stall.
ri

Radial Distributions of Performance Parameters

Comparisons of the radial distributions of rotor per-

formance parameters, for the peak rotor efficiency`
,
 at de-

sign speed, are presented in figure 4. Some general

trends, common to both aspect ratio configurations, are

noted The radial distributions of total pressure ratio are
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in overallperformance manifests itself Duck the blade span,	ratloa over practically the entire blade span. The radial
Rotor tip and stator hub diffusion factors for the four ata-	distribution of rotor inlet relative Mach number is praetl-

caily identical !or all four configurations. The rotor inlet

relative Mach numbers are supersonic over the entire span

and the exit relative Mach numbers (not shown) are sub-

sonic over the entire blade span. It is apparent that the

distributions of efficiency and total loss parameters are

strongly Influenced by the shock losses.

In comparing the lower design pressure ratio confipo)

rations (fig. 4 (a)), the efficiency dill"erence Is most pro-
nounced In the region from 30 to 85 percent span. There is

a noticeable Inflection in the efficiency distributions at the

50-percent span location for both rotors. This could be a

result of large shock losses associated with the high inlet
relative Mach (1.4) and high blade loading for this span-

wise Ioc, ' tion. For the lower aspect rat,o rotor (rotor 36),

the efficiency varies from about 0.80 In the tip region to

0_927 at the 85-percent span location. For the higher as-

pect ratio rotor (rotor 36), the efficiency yaries from about

0.79 In the tip region to 0.902 at the 85-0ercent span loca-

tion. In comparing the higher design pressure ratio rotors"

(rotors 37 and 38), the efficiency for the lower aspect ratio
rotor (rotor 37) varies from about `a. 77 In the tip region to
0.938 at the 85-percent span location. For the higher as-

pect ratio rotor, the efficiency varies from 0.76 in the kip

region to 0.904 at the 85-percent span location.

)affects of Aspect Ratio on Stall D-Factor

Although the diffusion factor (D-factor) was developed

to represent blade loading In a flow field that is totally sub-

sonic, it is commonly use to correlate data from blade

rows that operate in a tra ,'sonic flow field. For flows with
shocks; ̀ it is recognized that the diffusion factor Is ques-

tionable for expressing local diffusion (blade loading) on the

blade surfaces. However, D-factor has been used, with
some success in correlating losses and stall .margin for

transonic blade rows. This indicates that comparative re-

sults utilizing D-factor correlations for transonic blade

rows can be useful when applied in a consistent manner.

This section shows, on a relative basis, how the D-factors

for the near-stall conditions vary with blade aspect ratio.
The diffusion factor and inlet relative Mach number are

plotted in figure 5 as a function of percent design speed at

the near-stall condition for all four stages. Data are shown

for the rotor tip (10 % span) and stator hub (90 % span). Con-

sidering that the rotor tip diffusion factors are substantially

higher than the corresponding stator hub diffusion factors

and that the maximum stator hub Mach number is about

0.83, it is reasonable to assume that the flow range is lim-

ited by the flow conditions in the rotor tip region for all four

stages. For the rotor tip (fig. 5 (a)), the inlet relative Mach
similar for all four rotors. The highest pressure ratio and	numbers at the near-stall conditions are practically the
efficiency occurred In the hub region. for both levels of	same for all four rotors. However, the rotor diffusion fac
design pressure ratio, the lower aspect ratio rotors (35 tors at the near-stall conditions show that the stalling

e	 and 37) achieved higher efficiencies and higher pressure	D-factors are substantially larger for the lower aspect ratio

^
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rotors (rotors 35 and 37) than those for the higher aspect

ratio configurations at all speeds with a possible exception

of the 50-percent speed, For all .rotors, the largest value

of diffusion factor at near-stall conditions occurred at de-

sign speed. The higher design pressure ratio low i6peot

ratio rotor (rotor 37) had the highest stall diffusion factor

of 0.645, This value -)f diffusion factor* is higher" than that

for other inhouse higher aspect radio rotors with compara-

ble inlet relative Mach numbers,

Tr,o diffusion factor and inlet Mitch number at the sta-

tor Buie (90% span from tip) are plotted as a flxnction of de-

sign speed in figure 5(b), The trends of Mach number and

i > D-factor variations with percent design speed are similar

to those for the rotor. However, the diffusion factor val-

ues are not considered to be stall valites for these stators.

It is of Interest to note; however, that at an inlet Mach

number of approximately 0.83 stator 37 (lower aspect ra-

tio) operated at a diffusion factor of approximately 0, 575.
r Based on NASA experience, this is air unusually high value

of stator hub diffusion factor for this level of inlet Mach
number.

Blade Element Performance Comparisons

Comparisons of rotor blade element performance pa7,:

rameters for he high and low aspect ratio configurations

and for each level of design pressure ratio are presented

In figure 6. Data are presented for the 10-, 50-, and 90-

percent span locations at design speed. Total loss param-

eter and diffusion factor are plotted as a fii iction of suction

surface incidence angles. The lower aspect ratio rotors

operated over a wide range of incidence angles than the

higher aspect ratio rotors for all three blade elements.

For the lower aspect ratio rotors, the 10 and 50-percent
elements operated to higher diffusion factors levels than

the higher abctratlo rotors. For the 10- and 60-percent

span, the blade ,$,ements for the low and his ; ,ispect ratio

rotors operated along the same incidence angle loss char-

acteristics.

Axial Distributions of Rotor Tip Static Pressure	,

For rotor blade rows operating in a transonic flow en-

vironment, the axial distribution of the time-averaged

static pressures over the rotor 'tips is strongly influenced

by the shock patterns within the ;lade passage, In an at-

tempt to qualitatively relate these axial distributions of

static pressure to the shook patterns within the blade, data

from another transonic rotor are presented (ref. 3). These

data include both the axial distributions of rotor tip static

pressures and shock patterns within the blade passage. The

shock patterns were obtained from intrablade flow field

measurements made with a Laser Anemomenter (LA) sys-

tem. The blade passage shock patterns along with the axial

distributions of rotor tip static pressure are presented In

figure 7 for the maximun. , flow and near-stall conditions.

The shock patterns derived from the LA systemnieasure-

a

ments are for the 15-percent span (from the tip) loostion,

The axial distributions of static pressures measured on the

casing over the rotor tips are ratioed to rotor inlet total

pressure and platted ail afi? ctlon of percent of rotor pro-

jected chord. At the maximum flow condition (fig, 7(a)),

there is a weak shock at the blade entrance region and a

stibng shock<at the exit of the blade passage. The static

pressure gradients in the front and rear portions of the
blades are Indicative of these passage shock strengths.

For the near-stall condition (fig. 7(b)) there is a strong

passage shock at the blade entrance region. The strength

of the shock is represented by the steep static pressure

gradient in the front portion of the blade. However, just

downstream of the shook the gradient decreases. These

data provide a qualitative assessment of how the axial dis-
tribution of time-averaged rotor tip static pressure is In-
fluenced by the shook patterns within the blade passage.

Based on this assessment the shock strengths will be in-

ferred from the axial distributions of rotor tip static pres-

sure for the rotors evaluated In the low aspect ratio study.

The axial distributions of rotor tip static pressure are

presented In figure 8 for all four rotor configurations.

Data are presented at design speed for three flow rates=
maximum flow, peak efficiency) and near=stall conditions.

These curves. (fig. 8) show quite similar static pressure

gradients for rotors with the same aspect ratio even though

the blade rows are designed for differant total pressure ra-

tios. This implies that the shock patterns for the low as-

pect ratio rotors (rotors 35 and 37) are similar and the

shock patterns for the higher aspect ratio rotors (rotors 36

and 38) are similar.

For the lower aspect ratio rotors, as the back pres-

sure is increased (tower flow), there is a substantial in-
crease in the static pressure gradient over the front portion

of the blade. This indicates that the strength of the shock

Is increhsing and the shock is moving forward in the blade

passage. The smooth and continuous static pressure rise`

on the rear portion of the blade indicates good subsonic dif-
fusion even behind a strong shock,

For the higher aspect ratio rotors, as the back pres-

sure is increased ¢otyar flow), the increase in static pres-

sure gradient over Vie front portion of the blade is small.

However, the staticpressure gradients in the 50- to 60-

percent chord region increases very rapidly, and then .

'drops off substantially just downstream of the 60-percent

chord location, This indicates a strong shock and poor dif-
fusion caused by flow separation and recirculation just

downstream of the shock.

A comparison of the axial distribution of rotor tip sta-

tic pressures for the near-stall conditions is presented in

figure 9 for the low and high aspect ratio configurations,

The comparison shows that the higher aspect ratio rotors

have steeper static pressure gradientsAhan the lower as-

pect ratio configurations. This indicates that it is the
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This paper presents a study of low aspect blading for	d
inlet stages of a high pressure ratio, high-speed core com-

pressor no basic overall desi variables were of a	
Stall margin:

SUMMARY OF RESULTS

V
5

steeper static pressure gradient, caused by tllo shock pat	Diffusion factor:
terns, that is responsible for the relative, poor flow range

for the higher'aspect ratio configurations,	 Y	Q, -	0
+ 110 + 

rVrV
to	la

RFMARRS	 Yto	(rte rid vt)
to

:Benefits of lower aspect ratio binding for aohloving

good efficiency at higher loading levels have generally been

demenstrated with stages designed for subsonic flows. In

this study the application of low aspect redo binding to ro-

tors with high loading and high supersonic Inlet relative

Mach numbers over the entire blade span was Investigated.

The good efficiency and relatively higher flow range

achieved with the lower aspect ratio configuration demon-

strates that low aspect ratio blading Is highly beneficial for

transonic blade rows. For advanced high pressure multi-
stage core compressor the Inlet stages must operate at

high loading level and high inlet relative Mach numbers.

There has been a question whether sufficient flow range

can be obtalned with stages of this type such that they would

be suitable for multistage application. Results of this

study indicate that through the use of law aspect ratio bind-

ing, high Mach number, highly loaded stages can achieve
0	a performance level suitable for multistage compressor

applications,
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pressure ratio and blade aspect ratio, These four sues
tepresent two levels of total pressure ratio (1,82 and`	

W	0

2,,45), two levels of rotor blade aspect ratio (1.1'9 and	 `P3	

„ 

l)statl C	d	)ref
1.63)	 and two levels of stator vane aspect ratios (1, 26 and	

SM '^	 - 1	t 100

1,78),	Comparisons of overall performance, radial dis-	 W	r1

tributions o(performance parameters, diffusion factors at	\P3/plJref V d	stall

the near-stall conditions, blade element data, and axial

distribution of rotor" tip static pressures has yielded, the	REFERENCES

following results;	u	 r	 -
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TA0131. « DZWGN OVERALL P911FORMANC9 PARANINTIMS FOR

Sl`AGCS 35, Be. 37, AND 38

Param¢ters stage

35 36 37 38

Rotor total pressure ratio 11865 1.863 2,106 2,105
Stage total prossure ratty 1,820 1 .820 2 1 050 21050

Bator total temparaturg ratio' 1,225 1.227 1.270 1.260
Stage total temperature ratio 1.225 1.227 1.270 1,260

Rotor adiabatic efficiency duo 0.$58 0.877 0.878
Stage adiabatic efficiency Q1,828  0.822 0.842 0,844
ilotorpolytropie efficiency .877 0,870 0,889 0.800
Stage polytroplo efficiency 0.842 0.837 0.857 0.859

Rotor hand rise coofficiont 0.273 0.272 0.333 0.331
Stags head rise coefficient 0.262 0.261 01310 0.318
Flow coefficient 0.451 - 0,447 0.453 0.448
Weight flow per unit frontal area 100.808 100.464 100.960 100.525

Weight flow per unit annulus area 190.989 198.640 200.549 198.877
Weight Clow 20,188 20.188 2U,188 "20.188
RPW 17 188,700 17 188.700 17 185.700 17 188.700
Tip speed 454.456 455,233 454.136 455.006

flub-tip radius ratio 0.70 0.70 0.70 0,70
Rotor aspect ratio

ii
1119 X. 03 1,19 1.63

Stator. aspect -ratiA, .	_.. .. 1126. _ .1.78 L 26 1.77

Number of rotor blades 36,6 48.0 36,0 48.0
Number of stator blades 46,0 62,0 46.0 62.0

i

i

^i

o

€'	c

fi

TABLE II. -SUMMARY OF OVERALL PERFORMANCE

Stage Rotor Rotor Stage Rotor Stage Stall

number °aFpect peak peak pressure pressure margin

ratio efficiency efficiency ratio ratio

37 1.19 0.876 0.840 2.056 2.000 10

35 1.19 .872 .845 1.875 1.842 21

36 1.63 ,852 .821 1.766 1.730 11

38 1.63 .849 ,831 1.969 1.944 0

u
11

a

0

'

_	
3





F
^ 14 X1l0^!(1#CI^G^^

c3	..s ..

lis

Pin

r-4  es 4604-i-4

,c
9

GJ

W

^+ Mme_.
00

^^! ^+ t^ ^

Q H^ tat ^	̂

ja

J
cz

CD	^.

wo 'sniava

c	c



PERCENT OF

DESIGN SPEED

v	50

it	60	 0
C]	70
O
80

E3	90
9
100

SOLID SYMBOLS - DESIGN

PLAIN SYMBOLS - ROTOR OR STAGE 35

TAILED SYMBOLS - ' ROTOR OR STAGE 36

^ Lp

F

	

.9	 Cl
a IT-	p•	̂.	

OD	!^

	

^ ,8
 eels
S0

•y
 o

	

Zo	 ;/

QaCL

	

1.8 	
,

Lai

Or

	

1.2	Qj.

	

1. 8

10
12
14
16
18
20
22
8
10
12
14
16
18
20
22

EQUIVALENT MASS FLOW, kg/sec

	

G'	 ROTORS 37 AND 38.	 STAGES 37 AND 38.

(a) DESIGN STAGE PRESSURE RATIO OF Z05.

Figure 3. - Effects of blade aspect ratio on overall -" v.,\nance.
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