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Experimental Study of Machine-Learning-
Based Detection and Identification of
Physical-Layer Attacks in Optical Networks

Carlos Natalino, Member, IEEE, Marco Schiano, Senior Member, IEEE, Andrea Di Giglio, Lena
Wosinska, Senior Member, IEEE, and Marija Furdek, Senior Member, IEEE, OSA

Abstract— Optical networks are critical infrastructure sup-
porting vital services and are vulnerable to different types of
malicious attacks targeting service disruption at the optical layer.
Due to the various attack techniques causing diverse physical-
layer effects, as well as the limitations and sparse placement of
optical performance monitoring devices, such attacks are difficult
to detect, and their signatures are unknown.

This paper presents an experimental investigation of a Machine
Learning (ML) framework for detection and identification of
physical-layer attacks, based on experimental attack traces from
an operator field-deployed testbed with coherent receivers. We
perform in-band and out-of-band jamming signal insertion
attacks, as well as polarization scrambling attacks, each with
varying intensities. We then evaluate 8 different ML classifiers in
terms of their accuracy, and scalability in processing experimental
data. The optical parameters critical for accurate attack
identification are identified and the generalization of the models is
validated. Results indicate that Artificial Neural Networks (ANNs)
achieve 99.9% accuracy in attack type and intensity classification,
and are capable of processing 1 million samples in less than 10
seconds.

Index Terms— optical network security, monitoring, machine
learning, attack detection.

I. INTRODUCTION

S the only future-proof technology capable of sustaining

the pressing growth rates of network traffic, optical
networks represent critical communication infrastructure
supporting a wide range of vital societal services. As such, they
make an attractive target of attacks aimed at exploiting
physical-layer vulnerabilities to disrupt services by, e.g.,
inserting harmful signals or disabling critical components [1]
via direct access to the fiber plant deployed in unprotected
environments such as ducts and manholes. Reported
occurrences of severe optical network security breaches can be
found in [2], [3]. The damage caused by service disruption
attacks can escalate from immediate deterioration of the
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transmission quality of Wavelength Division Multiplexing
(WDM) data channels to performance degradation of the
carried upper-layer services in a cascading fashion. Optical-
layer security issues become even more significant for the
proliferating advanced physical-layer paradigms such as
Quantum Key Distribution (QKD) and Space Division
Multiplexing (SDM) with high-core-count multi-core fibers,
which are highly sensitive to physical-layer disturbances
aggravated by attacks. Combined with the ultra-high data rates
carried in today’s networks and stringent performance
requirements of next-generation services, all of the above calls
for a high degree of operators’ preparedness to optical-layer
security breaches.

The most disruptive attack methods reported in the literature
include in-band and out-of-band jamming, where a harmful
signal is inserted in the fiber. Aside from directly accessing the
patch-panel and tampering with the fiber plant, this type of
attack can be performed by bending the field-deployed fiber and
creating a temporary coupler, according to the method
described in [4] and depicted in Fig. 1. An in-band jamming
signal overlaps with the useful optical channel and adds
unfilterable noise. An out-of-band jamming signal inserted
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Fig 1. Creating a temporary coupler to extract or insert a signal [4].

Gothenburg, Sweden wosinska,
(@chalmers.se).
Marco Schiano and Andrea Di Giglio are with Telecom Italia, Turin, Italy

(e-mail: {marco.schiano, andrea.digiglio}@telecomitalia.com).

(e-mail:  {carlos.natalino, furdek}

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JLT.2019.2923558

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

outside of the used spectrum can degrade the quality of co-
propagating channels via gain reduction in optical amplifiers
and intensified physical-layer impairments in optical fibers and
switches. The intensity of the effects of the inserted signals and
the resulting damage depends on their frequency and power
levels, the components deployed in the network, as well as on
the routes, modulation formats and spectrum assigned to the
legitimate connections. In addition to the deliberate insertion of
harmful signals into the fiber, service disruption attacks can be
implemented by techniques that do not require fiber intrusion.
An example is the polarization modulation attack, demonstrated
in this paper for the first time, which applies a fast-varying
lateral pressure on the fiber under attack and thus inflicts fast
polarization scrambling on the propagating signals. When this
polarization scrambling is fast enough (typically above a few
million radians per second), the polarization recovery
algorithms of coherent receivers are no longer able to
demultiplex the two orthogonally polarized signals, which
results in errors. A polarization modulation attack can be
implemented by applying to the bare fiber a relatively simple
clip-on device with piezoelectric actuators similar to the one
used in our experiment and described in Section IV. Unlike the
bent-fiber couplers, this device does not introduce additional
loss and is very difficult to locate.

The diversity of the mechanisms exploited by different attack
methods, and their disparate effects on legitimate optical
channels make detection and identification of physical-layer
attacks extremely challenging. Models of physical-layer attacks
are scarce and simplistic, unable to capture the complex effects
of a range of attacks. As attacks may cause optical parameters
to deviate from regular operating conditions, simulating attack
behavior using the well-known theoretical models of physical-
layer impairments may fall short of capturing their complex
effects, which motivates the need for an experimental testbed
investigation. Another challenge in security diagnostics stems
from the prohibitively high cost of Optical Performance
Monitoring (OPM) equipment, which leads to sparse
deployment of diverse equipment that does not ubiquitously
provide a consistent set of monitoring parameters. The latter
issue is somewhat alleviated by OPM-enabled coherent
transceivers which allow operators to collect an extensive set of
real-time measurements and monitoring data at the destination
nodes that can then serve to interpret the security status of each
signal. However, modeling the effects of physical-layer attacks
and identifying attack signatures, which is a prerequisite for
their quick and accurate detection (and subsequently, effective
network recovery), still pose a major challenge.

The complex explicit characterization of effects caused by
physical-layer attacks makes optical network security
assessment ideal for the application of ML methods. ML is
well-suited for processing huge amounts of data and identifying
intricate patterns among them without the need for explicit
specification of models or parameter thresholds, and it has
shown great potential for enhancing optical network
performance [5], [6]. Recent research has brought forth several

applications of ML to optical networking issues such as soft-
fault identification [7], [8] and predictive maintenance [9].
However, the application of ML to optical network security
diagnostics is still in its infancy. In this paper, extending upon
our preliminary study in [10], we experimentally investigate an
ML-based framework for detection and identification of attacks
targeting disruption of the optical layer. To the best of our
knowledge, this is the first experimental demonstration of
several physical-layer attack techniques in an operator testbed,
and the first application of ML tools to distinguish among
diverse attack techniques of different intensities, making an
important step towards improving physical-layer security of
optical networks.

Our proposed framework is based on extensive
measurements gathered from a field-deployed experimental
network where OPM data is collected by a coherent transceiver
under normal operating conditions and in the presence of (i)
an in-band (IB) jamming signal, (i) an out-of-band (OOB)
jamming signal inserted in the network, and (i) a
polarization modulation attack. For each of these attacks, two
different intensity levels are considered, i.e., light and strong.
The problem is modeled as a classification problem aimed at
detecting the type of attack and identifying its intensity. We
evaluate the performance of eight different ML algorithms for
the attack detection and identification framework, all of them
trained with the collected OPM data. Besides the training,
validation and testing, we also perform cross-validation in order
to evaluate the reliability of the classifiers. We assess the
accuracy of the ML classifiers with respect to the OPM
parameters that contribute the most to the classification, with
the goal of finding the smaller set of parameters that can provide
the maximum accuracy. To understand the impact of different
OPM parameters (or features) to the classification accuracy,
we analyze the classifiers’ accuracy for varied subsets of
features, and extract the average, upper, and lower bounds on
the accuracy for different missing features. Moreover, we
analyze the ML classifiers’ scalability for a varied number of
samples to verify the attack detection time. Among the
proposed approaches, the one based on ANNs detects attacks
with 99.9% average accuracy over all attack scenarios, and
is capable of processing up to 1 million samples in less than 10
seconds using ordinary off-the-shelf hardware.

The remainder of the paper is organized as follows. Section
IT reviews the related work on optical-layer security and
application of ML to optical network management. Section III
presents our proposed framework for attack detection and
identification. Section IV describes the experimental testbed
and measurement procedures used to emulate attacks in real-
life scenarios. Section V analyzes the performance of the
proposed ML-based attack identification framework, while
Section VI concludes the paper.

II. LITERATURE OVERVIEW

Systematic overviews of physical-layer vulnerabilities and
attack techniques that exploit them in order to disrupt services
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or perform unauthorized access to data carried by optical
networks can be found in [1], [11]. Management of optical-
layer security has been in focus of substantial research efforts
worldwide. It can broadly be classified into [12]: (i) security
assurance through modeling of attack consequences and attack
surface minimization [13]-[16]; (ii) security assessment through
monitoring and detection of attacks, which is the primary goal
of this work; and (iii) attack recovery through re-configuration
of affected connections, attack source neutralization and
network adaptation [17], [18].

Security assessment in optical networks comprises the
diagnostics of the security status of individual connections and
network-wide localization of the attack source. Network-wide
attack localization has been addressed in the context of high-
power jamming with the main objective of identifying the
lightpath that carries the harmful signal [19], [20]. These
approaches track power surges generated by an attack along
each connection and create alarm trees associated to different
origins of attacks. They rely on the availability of accurate real-
time status of all connections at the input and the output ports
of all nodes in the network, which is a costly, unrealistic and
unscalable assumption. The security cognition potential of the
network may be enhanced by strategic placement of optical
performance monitors [21], but it requires extra investment
from the operator nonetheless. Moreover, the applicability of
the above approaches is limited to attacks that cause detectable
power surges, which is not the case for all attack scenarios
considered in this paper. An alternative approach for network-
wide localization of harmful signals which does not require
specialized monitoring devices is based on tracking the health
of the channels at their receivers, and correlating their statuses
to deduce the insertion point of a harmful signal according to
the subset of affected connections [22]. However, the technique
relies on accurate security status assessment of individual
connections, which is not attainable by existing approaches.
To the best of our knowledge, no accurate theoretical nor
experimental data-driven models of physical-layer attacks exist
which could be applied for real-time security diagnostics of
distinct optical channels. To close this gap, we perform
experimental analysis of realistic attack scenarios on an
operator’s testbed, and leverage machine learning approaches
to analyze the experimentally obtained data in order to detect
and identify attacks affecting individual optical channels.

ML algorithms have been widely used to support monitoring
and management of optical networks [5], [6]. A recurrent
application of ML  in  optical networks is
prediction/estimation of Quality of Transmission (QoT) [23]—
[25] of unestablished lightpaths. The ML estimation allows
operators to avoid running computationally-intensive
algorithms, thus reducing complexity of operating the optical
network. ML models have also been used to estimate QoT of
quantum channels [26], supporting the coexistence of QKD
and WDM channels over the same optical fiber. Another
application of ML 1is the detection, identification and
localization of soft-failures [7], [8], [27], [28]. ML has been
shown to achieve very high accuracy in detection and
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identification of failures and anomalies, contributing to the
reliable operation of the optical network [9].

An ML technique, i.e., support vector machines, has recently
been applied to optical network security in [29], where the
authors experimentally investigated cooperative detection of
unauthorized signals and their paths in the network by
analyzing the optical spectrum features. Besides focusing only
on unauthorized signals, that approach requires specialized
OSA devices, which are costly and provide limited OPM
information. In [30], different ML techniques are applied to
detect in- and out-of-band jamming attacks using a dataset
obtained via simulations only, and derive attack detection
probability as an input to, preemptive resource reallocation for
reducing the damage from attacks. Contrary to [29], we propose
an approach that relies only on the data collected at the coherent
off-the-shelf receivers, where each connection needs to be
detected anyway, without requiring any specialized monitoring
equipment. This enables cost-efficient detection of security
threats reliant on a standardized OPM set, and applicable to an
array of attack methods which exploit different mechanisms
and affect diverse OPM parameters. Moreover, unlike [30], we
apply ML techniques to experimental data obtained from an
operator metropolitan testbed.

In this paper, we extend our preliminary study from [10],
where we used a real-world testbed to perform out-of-band
jamming attacks with different intensities, and applied two
different ML classifiers for attack detection and identification.
The extension includes an enhancement of the testbed where we
now perform three different types of attacks (one of them
reported for the first time) of varying intensities. The dataset is
collected over a longer period, making it richer and more
suitable. The range of ML considered classifiers is broadened,
the reliability of the generalized models is evaluated via k-fold
cross-validation, the OPM parameters critical for accurate
diagnostics are identified, and ML performance over datasets
with missing features is evaluated. Finally, a scalability
assessment demonstrates that the proposed framework can run
over a very large network, even considering that monitoring
samples are collected every minute.

MACHINE-LEARNING-BASED ATTACK DETECTION AND
IDENTIFICATION

111

Monitoring capabilities are a key enabler of dynamic and
autonomous operation of optical networks [31]. As the amount
of information collected from the network increases, more
advanced algorithms are required to automate the analysis and
self-configuration of these networks. Machine learning arises
as one of the most promising ways of handling these data
[6]. These technologies can provide comprehensive sensing of
the network status, giving cognitive algorithms the ability to
self-optimize the network parameters [32]. In this section, we
describe the Attack Detection and Identification (ADI)
framework proposed in this work and briefly introduce the ML
algorithms considered for the framework.
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Security
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Fig 2. Attack Detection and Identification (ADI) framework.

A. Attack Detection and Identification (ADI) Framework

The ADI framework is depicted in Fig. 2. The framework
collects the OPM data from each lightpath established in the
network. In this way, it can not only analyze each individual
lightpath, but also perform combined analysis considering co-
propagating lightpaths.

The framework consists of three steps to be executed each
time new monitoring data are available. The first step consists
of retrieving OPM data. In the context of ML, each data point
in time collected from the lightpaths is referred to as a
sample, while each collected OPM parameter is referred to as
a feature. In the context of Software-Defined Optical
Networking (SDON), the OPM data is retrieved by the optical
monitoring module from the coherent receivers and saved in
the SDON data repository, by using a service such as the one
presented in [33]. We do not consider here the OPM data
possibly collected in ROADM switching nodes because we
focus on the lowest-cost monitoring scheme that excludes
expensive optical spectrum analyzers in ROADMs. To
perform this step, SDON controllers typically adopt
standardized interfaces and protocols such as NETCONF.
Once new OPM data is collected and properly stored, the
security assessment module is triggered to perform the
appropriate processing, retrieving the OPM data from the data
repository. At this stage, it is desirable that the security
assessment module completes data processing within the
monitoring cycle (e.g., one minute), i.e., before the next
monitoring data arrives.

The following data preprocessing step removes outliers (e.g.,
due to transients during channel addition) and normalizes the
features. Since OPM data can encompass very different
parameters with large differences in their values and scales,
data normalization plays a crucial role in easing the processing
and learning by the ML algorithms. The normalization is done
for each of the features individually, and can be implemented
using several techniques such as z-score standardization.

The next step processes the normalized data to perform attack
detection and identification. The main objective of this step is

to detect whether any of the evaluated lightpaths is affected
by an attack and identify the type and intensity of the attack.
The goal of the framework is to classify attacks with minimal
false negative and false positive rates. Note, however, that false
negatives represent a higher risk for network operation than
false positives in the context of attack detection and
identification. For example, false negatives lead to attacks
remaining undetected, potentially evolving to more disruptive
events, while false positives could trigger unnecessary
countermeasures such as protection rerouting, causing an
overhead in resource usage, but do not bring as high security
risk as the false negatives. There are several algorithms that
can be used to perform the classification needed to solve the
attack detection and identification problem, and the most
promising ones are detailed in the following.

B. Machine-Learning-Aided Attack Classification

The attack detection and identification problem can be
formulated as a classification problem, which falls within the
supervised learning type of ML problems. In a classification
problem, a classifier receives a sample as input, and outputs
the class to which that sample belongs. While training time
requirements may vary depending on the deployment scenario,
an important requirement is that the processing time for the
algorithm should be shorter than the monitoring cycle, i.c.,
the time between two consecutive monitoring measurements.
There is an ample number of algorithms that can be used to
perform classification. Although there is prior literature
analyzing the performance of classifiers over a number of
problems, it is difficult to infer which classifier is more suitable
for an unseen problem, such as the one we are analyzing in
this paper. Moreover, several algorithms, such as the ones
described below, have complexity that increases linearly with
the number of features and samples, demonstrating potential
efficiency for the ADI, except for the decision tree, whose
complexity increases quadratically with the number of features
[30]. Therefore, we consider a number of classifiers with
different characteristics, in an effort to assess their benefits and
drawbacks when applied to the particular problem tackled in
this paper. We refer to [34] for an in-depth assessment of
classifiers’ performance. In the following, we briefly introduce
the classifiers considered in this work.

1)  Artificial Neural Network (ANN): mimics the human
nervous system by forming layers of artificial neurons that
communicate with each other via weighted combinations of
input and output function values. It is able to learn complex
relations between inputs and outputs, as well as to process
complex data such as images.

2)  Support Vector Machine (SVM): uses a spatial model of
the data, mapped so as to achieve gaps as wide as possible
between different classes. The kernels used by SVM can
transform the data to enable better spatial separation and clearer
interpretation of the classifier.

3)  Gaussian Process (GP): implements a Gaussian process
for probabilistic classification. This type of classifier can
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handle multi-class classification (which is the one suitable for
our problem) by extending the Gaussian process on a per-class
or per-pair-of-classes basis. It can capture model uncertainties
and be tuned with prior knowledge of the problem.

4)  Decision Tree (DT): classifies the samples by learning
simple decision rules inferred from the training data. An
important parameter of a decision tree is its depth, which
defines how complex it is, and may also help in improving
accuracy. An advantage of DTs is that their representation can
be easily interpreted, and implementation can be done using
simple computer language control instructions.

5)  Random Forests (RF): use a number of decision trees
fitted on subsamples of the training data. The results from the
decision trees are averaged to improve accuracy and prevent
overfitting. It has shown good performance for a variety of
datasets [34].

6) Naive Bayes (NB): implements a probabilistic
classification algorithm. This classifier applies Bayes’ theorem
with strong (naive) independence assumption between the
features. If this assumption holds, NB can converge quickly
or needs less training data.

7)  Nearest Neighbors (NN): different from other models,
k-nearest neighbors is instance-based learning. It does not learn
a model out of the training data, but instead saves the data for
future queries. Thus, for each new sample, the algorithm
computes the class based on the most representative class out
of £ neighbors. The learning process is quite fast, as it saves
all the training data for further use.

8)  Quadratic Discriminant Analysis (ODA). is a classifier
that builds a quadratic decision surface in order to differentiate
the classes. It is derived from probabilistic models which model
the class conditional distribution of the data for each class.

IV. EXPERIMENTAL TESTBED AND MEASUREMENT
PROCEDURES

The experiment is designed to emulate a link of a transport
network affected by either an intrusion signal injected along
the fiber line, or by high speed polarization modulation. A
meshed network scenario is not considered here for the lack of
ROADM nodes in the present testbed. The experimental setup
is shown in Fig. 3.

The optical signal under test is a 200 Gbit/s polarization
multiplexed 16QAM signal generated by a commercial
transponder (Coriant Groove G30). The line system is loaded
with 10 additional Continuous Wave (CW) optical channels,
whose wavelengths range from 1541.4 to 1558.2 nm, to emu-
late realistic operating conditions. Since transmission channel
crosstalk is not relevant in this work, the lack of modulation on
the CW loading signals does not jeopardize the final results.

These optical channels are aggregated by a passive
multiplexer and sent to one of the input ports of a
Lumentum Transport ROADM Whitebox/Graybox which
encompasses all the functions of a ROADM line interface:
1x20 flexgrid WSS, optical amplifiers, monitoring devices,
board controller, etc. The Dense Wavelength Division
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Fig 3. Experimental setup used in the network attack experiment.

Multiplexing (DWDM) signal exiting the booster amplifier is
then combined with a CW intrusion signal by a 3 dB coupler
emulating a bent-fiber temporary coupler that might be used
for a field attack. The signal then passes through an all-fiber
polarization modulator composed of 3 piezoelectric fiber
squeezers (General Photonics, PolaRITE-II) which implements
the polarization attack (details of attack scenarios are given
in the following subsections). Just one of the fiber squeezers is
used; it is driven by a sinewave signal at 110 kHz frequency,
which corresponds to one of the resonant frequencies of the
piezoelectric  element and therefore produces a deep
polarization modulation. The polarization modulator loss is
negligible, and it does not perturb the DWDM signal except
when the sinewave generator is switched on to simulate a
polarization attack.

Finally, the signal is delivered to the optical line system
which includes 6 field amplification sections, each composed
of an optical line amplifier and a 76 km span of G.652 fiber.
The line amplifiers work in the transparency regime, i.e., the
gain compensates for the fiber span loss, and the launch power
is set at 0 dBm per channel in all sections.

At the output of the optical line system, the signal is sent to
the line input of the Lumentum ROADM and finally delivered
to the transponder receiver after passing through a passive
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Fig 4. Power spectrum of the baseline DWDM signal at the preamplifier
monitoring port. The OSA resolution is 0.5 nm.
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demultiplexer. An Optical Spectrum Analyzer (OSA) is
connected to the monitor port of the preamplifier to measure the
spectra of the received DWDM signal.

The power spectrum of the baseline DWDM signal at the
preamplifier monitoring port is shown in Fig. 4. The power of
the 11 optical channels has been manually equalized within
+ 2 dB by changing their launch power. The system in the
normal working condition, i.e., without any intrusion signal
or polarization modulation, operates error-free with 20.6 dB
OSNRo.1 (measured with 0.5 nm resolution and rescaled to 0.1
nm). Considering the Optical Signal-to-Noise Ratio (OSNR)
sensitivity limit of the Groove G30 transponder, the system
operates with a 2.6 dB OSNR margin which can be
considered representative of real field conditions. While many
other operative conditions with different OSNR and BER
values may be implemented as normal working statuses, we
have selected the described one because it is close enough to
the transmission limit of the Groove G30 transponder to make
it quite vulnerable to attacks. The OPM data provided by the
coherent receiver are downloaded in 10 seconds intervals by an
application based on the NETCONF protocol. The OPM
parameters collected by the system are shown in Table I. A
first set of OPM data with 400 samples (acquired during 67
minutes) was collected in this condition and automatically
labelled as the baseline scenario of our experiment.

A. In-Band Jamming Attack

In the in-band jamming attack, the intrusion signal is a CW
low power signal whose frequency falls within the bandwidth
of the signal under test as shown in Fig. 5. We have
experimentally assessed that when the intrusion signal is
slightly detuned with respect to the central frequency of the
signal under test, the jamming is particularly effective (i.e. a
remarkable increase in BER-POST-FEC can be achieved by
modest intrusion signal power). For this reason, we detuned
the two signals by about 10 GHz as shown in Fig. 5.

We have emulated two in-band jamming attack conditions,
i.e., light and strong, by setting the power of the intrusion signal

TABLEI
OPTICAL PERFORMANCE MONITORING (OPM) PARAMETERS
CONTAINED IN EACH DATA SAMPLE

Acronym Description
CD Chromatic Dispersion
DGD Differential Group Delay
OSNR Optical Signal to Noise Ratio
PDL Polarization Dependent Loss
Q-factor Q factor
BE-FEC Block Errors before FEC
BER-FEC Bit Error Rate before FEC
UBE-FEC Uncorrected Block
BER-POST-FEC  Bit Error Rate after FEC
OPR Optical Power Received
OFR Optical Frequency Received
LOS Loss Of Signal

For all parameters except BE-FEC, UBE-FEC, and LOS, the system provides
the maximum, minimum and average values in the observation interval.

10 +
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Fig 5. Power spectrum of the channel under test in the in-band (IB) jamming
attack scheme (-12 dB intrusion signal relative power). The spectrum is
measured with maximum OSA resolution (0.01 nm). The peak on the
righthand side of the picture is one of the CW loading signals. The inset shows
the normalized OSNR and BER-POST-FEC (BPF) for the light and strong
attack intensity. The presence of uncorrected errors is highlighted by BPF>0.

to 14 dB and 12 dB below the power of the signal under test,
respectively. In these conditions, the system produces
Uncorrected Block Errors (UBE-FEC) errors ranging from a
few errors to many thousand errors per minute for the light and
strong attack condition, respectively. A full OPM dataset with
400 samples has been collected for each condition.

B. Out-of-Band Jamming Attack

In the out-of-band jamming attack, the intrusion signal is
a CW signal with a frequency outside the bandwidth of the
signal under test as shown in Fig. 6. The intrusion signal at
1562.2 nm wavelength was generated by one of the available
CW lasers. In this type of attack, the power required for the
intrusion signal is much higher than for the in-band attack. In
this case, the intrusion signal causes power reduction of the
other channels, provided that its power is of the same order
of magnitude as the other signals (typically 0 to 3 dBm). This
in turn produces a reduction of the OSNR that impairs the
working channels and degrades their performance. We have
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Fig 6. Power spectrum of all channels in the out-of-band (OOB) jamming
attack scheme (0 dBm intrusion signal relative power). The intrusion signal
is the one on the righthand side of the spectrum (1562.2 nm) and has the same
power as the optical channel under test. The inset shows the normalized
OSNR and BER-POST-FEC (BPF) for the light and strong attack intensity.
The presence of uncorrected errors is highlighted by BPF>0.
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implemented two out-of-band jamming attack conditions, i.e.,
light and strong, by setting the power of the intrusion signal to
0 dB and +3 dB with respect to the power of the signal
under test, respectively. In these conditions, the system
produces UBE-FEC errors ranging from a few errors to many
thousand errors per minute for the light and strong attack
condition, respectively. A full OPM dataset with 400 samples
has been collected for each condition.

C. Polarization Modulation Attack

In the polarization attack, we have switched off the intrusion
signals and activated the polarization state modulator. In this
operating condition, all optical parameters of the system are
the same as in the baseline condition, but the polarization
modulation causes transmission errors as soon as it is faster
than the coherent receiver polarization recovery algorithm [35].

We have experimentally identified one of the resonant
frequencies of the fiber squeezer at 110 kHz by monitoring the
amplitude of the sinewave driving signal. Then, the sinewave
amplitude was set to 0.14 and 0.4 V peak-to-peak resulting in
light and strong attack, respectively. In these conditions, the
system produces UBE-FEC errors ranging from a few errors to
many thousand errors per minute for the light and strong
attack condition, respectively. A full OPM dataset with 400
samples has been collected for each attack condition.

V. RESULTS

The framework described in Sec. III was used to analyze
the real-world attack scenarios from the experimental setup
detailed in Sec. IV. The experiment collected 400 samples for
each attack scenario of interest, yielding a total of 2800 samples
across the 7 scenarios, and generating a balanced dataset, where
each attack scenario is represented by the same number of
samples in the dataset. Each sample contains a total of 30
parameter values, described in Table I. Out of the dataset, 50%
of the samples were used for training the ML classifiers, 10%
were used for validation (in the classifiers that allow for it), and
the remaining 40% were used for testing. We also performed -
fold cross-validation to confirm that the dataset split is not
biasing the results. The k-fold cross-validation splits the dataset
into k folds. Then, it trains the model for each combination of
k-1 folds, while validating the trained model with the remaining
1 unseen fold. After repeating this process for every
combination of folds, the average and standard deviation of the
accuracy obtained for the unseen folds is used to evaluate the
reliability of the classifier. Models which obtain high accuracy
and low standard deviation are regarded as reliable.

The framework was implemented using Python!. Data
retrieval and outlier removal was implemented using Pandas

[36]. Data normalization and classification used the
implementation provided by Scikit-learn [37]. In particular, z-
score standardization technique was used for data

normalization, by computing the average and the standard

! The implementation is available at https://github.com/carlosnatalino/JLT-
2019-Experimental-ML-attacks. The data is not shared due to confidentiality.
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Fig. 7. Test and cross-validation accuracy of the considered ML classifiers.
Bars represent the average test accuracy for the 50% test dataset. Diamond
marker shows the average cross-validation accuracy, while interval bars show
the standard deviation of the accuracy over the 10 folds.

deviation for each feature and representing each data point by
the multiple of standard deviations from the average. The
performance of the classifiers described in Sec. III-B was
evaluated for the attack classification problem required in the
ADI framework. For all classifiers, the 30 OPM parameters
described in Table I are used as input.

Some classifiers provide the means to configure some of
their parameters. We tested several classifier configurations and
report the one that yielded the best classification accuracy. For
the ANN, two hidden layers were used, with 50 and 100
neurons, using linear and tanh activation functions,
respectively. Initialization of weights was performed using the
Xavier procedure [38]. The output layer was composed of 7
neurons using the softmax activation function, appropriate for
classification purposes. The training was done over 1000
iterations using Adam optimizer with learning rate of 0.0001,
configured to optimize classification accuracy. Nearest
neighbors used £=5. Decision tree and random forest were
configured for maximum depth equal to 5, with random forest
having 10 estimators. The other parameters were kept according
to the defaults set by Scikit-learn.

In our performance assessment, we first evaluate the
classification accuracy of the different classifiers. We then
analyze the distribution of the classification error over the
different classes for two representative classifiers (the ones
achieving the worst and the best performance). Furthermore,
we assess the OPM parameters that contribute the most to the
accuracy of the classifiers, with the goal of finding the smaller
set of parameters that can provide the maximum accuracy. We
also investigate classifier accuracy for datasets with missing
features to analyze their robustness to OPM parameter set
incompleteness. Finally, we assess the execution time for the
classification of a number of samples, in order to evaluate
the maximum number of lightpaths that can be monitored per
ADI instance.
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Fig. 8. Confusion matrices for the worst (QDA) and the best (ANN) classifier.

A. Classification Accuracy

Fig. 7 shows the classification accuracy of the classifiers
for the test set, i.e., unseen monitoring samples, and for the
cross-validation using 10 folds. We define accuracy as the
percentage of correctly classified samples. All considered
classifiers achieve accuracy higher than 90%. The ANN, GP
and RF achieve the same highest test accuracy, correctly
classifying more than 99.9% of samples. However, in cross-
validation, the ANN is the only classifier to achieve 99.9%
accuracy on average, and the one presenting the lowest standard
deviation. This is explained by the capacity of ANNs to
accurately model intricate relations between the input and the
output, even for very complex phenomena. QDA exhibits the
poorest performance, achieving only 93% accuracy, while
having the highest standard deviation of the cross-validation.

The above results for the ANN indicate that the model,
tested here for the single-hop scenario, has good generalization
power to identify attacks through holistic assessment of the
OPM parameter set collected at the coherent receivers.
Therefore, it can be expected (with some hyperparameters fine-
tuning) to perform well even in multi-hop scenarios, where the
optical connections may be impacted in other ways by co-
propagating connections and traversed devices, potentially
posing a more challenging scenario for the ML algorithms.

For the problem investigated in this paper, accuracy alone
does not fully characterize the performance of a classifier.
Since false negatives are potentially more hazardous than false
positives when it comes to security breach detection (as
explained in Sec. III-A), the confusion matrix may further help
to identify the best performance. Fig. 8 presents the confusion
matrices obtained by ANN and QDA as the best and the worst
classifier, respectively, for the considered test set. Confusion
matrices are used to assess classification accuracy in a per-
class manner (i.e., per-attack scenario, in our case). In general
classification problems, the objective is to concentrate the
outcomes of the classifier along the main diagonal of the
matrix. In addition, our scenario also calls for a false-negative
rate (depicted in the left-most column) as low as possible.

QDA attains the lowest classification accuracy, which
translates into a confusion matrix with several
misclassifications (Fig. 8a). More specifically, 29% of in-band
attacks are misclassified as either polarization (>28%) or out of
band (<1%) attacks, while 8% of the polarization attacks are
also misclassified either as in- (5%) or out-of-band (3%)
attacks. This means that QDA misinterprets attack types, which
can lead to triggering inappropriate recovery strategies. The
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Fig. 9. Classification error for ANN starting with one feature, and sequentially
adding the feature that yields the lowest error (BER-POST-FEC is denoted by
BPF).

ANN confusion matrix (Fig. 8b) indicates the highest
classification accuracy. The only misclassification observed for
the ANN is related to the 1% of samples of a light polarization
attack classified as a strong polarization attack. Such cases do
not represent a significant danger for network operation, as
effective measures to counteract the attack will be triggered
even for the misclassified cases.

B. Key Features for Classification Accuracy

In addition to the performance assessment considering the
entire dataset, we assess the significance of each of the OPM
parameters from Table I. The ANN classifier was used to
perform this assessment. To this end, we start by evaluating the
accuracy performance by having only one of the OPM
parameters from Table I in the training/test dataset. After
identifying the parameter that provides the highest accuracy, we
permanently add it to the dataset, and repeat the process for the
remaining parameters.

Fig. 9 presents the error (the inverse of the accuracy)
observed by following the procedure just described. The error
is showed instead of accuracy for better visualization of the
contribution of each added parameter. For a dataset with a
single OPM parameter, BER-FEC results in the lowest error
(i.e., 32%). In the next iteration where another of the remaining
parameters is added to the dataset holding BER-FEC, OPR
arises as the parameter that attains the strongest error reduction.
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Fig. 10. Accuracy change when features are missing in comparison to the
full feature case, i.e., the difference between accuracy with missing features
and accuracy with full features, relative to the latter.
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In this case, ANN already reaches more than 90% accuracy, i.e.,
the error diminishes from 32% with BER-FEC only to 3.4%
with BER-FEC and OPR. The third parameter that contributes
the most to the decrease in classification error is the BER-
POST-FEC. When the dataset contains BER-FEC, OPR and
BER-POST-FEC, the ANN obtains an error lower than 1%, i.e.,
the accuracy increases from 96.6% to 99.2%. In the subsequent
iterations, DGD, OSNR and PDL are the features that reduce
the error the most. Finally, after adding CD, the ANN achieves
its maximal accuracy, which is higher than 99.9%.

The results show that by considering 7 out of the 12 collected
OPM parameters described in Table I, the highest performance
observed for the ANN classifier can be achieved. Reducing the
number of considered OPM parameters can potentially reduce
complexity during training. Shorter training times may enable
network operators to update their models more quickly if a new
kind of attack is discovered. Similar procedures can be used by
other ML algorithms for identifying key parameters for specific
network tasks.

C. Classification Accuracy for Datasets with Missing OPM
Parameters

In addition to the performance assessment considering the
entire dataset, and the one to find the most significant OPM
parameters, we assess the accuracy change observed for each
classifier in case of removal of each individual OPM
parameter. To this end, for each OPM parameter in Table I,
we generated a new dataset where the parameter of interest is
set to zero in all samples.

Fig. 10 presents the accuracy change observed for each
classifier when a given OPM parameter is missing. This change
is defined as the difference between the accuracy achieved for
the set without the missing feature and the accuracy achieved
for the full set of features, relative to the latter. It can be noticed
that the removal of the key parameters identified in the previous
section (e.g., BER-FEC, OPR, BER-POST-FEC) causes the
highest losses in accuracy. However, some classifiers, such as
ANN, GP and DT, are minimally impacted by the missing
features. On the contrary, NN and QDA are significantly
impacted by the missing features. In particular, the accuracy of
QDA drops by more than 4% when OPR is removed from the
dataset. Interestingly, QDA is also the most positively impacted
by missing features. For instance, when BER-FEC is removed
from the dataset, QDA improves its classification accuracy by
up to 4%. However, this 4% improvement in performance
would result in 98% overall accuracy, which remains below the
accuracy of most of the classifiers tested.

D. Scalability of the Classifiers

In the last part of this work, we assess how many lightpaths
would be possible to monitor by the ADI framework. For this
purpose, we measure the time required by each classifier to
classify up to one million randomly generated samples. For this
assessment, we use a Red Hat Enterprise Linux workstation
with an Intel Xeon CPU E5-1660 v3 with 8 cores and 16 threads
clocked at 3.00GHz and 64 GB of RAM. The platform uses
Python 3.6 and Scikit-learn 0.20.0. All classifiers use their CPU
implementation, but some of them could benefit from running
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Fig. 11. Execution time of the classifiers for up to 1 million samples (i.e.,
lightpaths). Red dashed line represents the 1-minute threshold.

in GPUs to boost speed [39]. To eliminate the impact of the
dataset on the performance, we randomly generate a synthetic
dataset with the desired number of samples using a normal
distribution defined, for each feature, by its mean and standard
deviation computed from the experimentally generated dataset.
Fig. 11 shows the time required by each classifier to
classify a given number of samples, with the dashed line
denoting the 1-minute threshold, as recommended in [40]. The
trend shown in the figure confirms that the complexity of the
algorithms is linear with respect to the number of samples.
Considering that monitoring data are collected from the
network every minute, we can see that most of the classifiers
are capable of processing up to one million lightpaths during
the monitoring cycle. In particular, ANN is capable of
classifying the one million samples in less than 10 seconds,
leaving space for other operations that might be necessary in the
monitoring platform, or for a shorter monitoring cycle.

VI. CONCLUSION

This paper experimentally evaluates a machine-learning-
aided framework for physical-layer attack detection and
identification over a range of attack techniques with varying
intensities. A set of 8 ML classifiers is evaluated, revealing that
ANN achieves the highest classification accuracy (higher than
99.9%), whereas no false negatives are observed.

The obtained results show the significance of the OPM
parameters to accurate attack detection by the ANN. It is
possible to identify 7 OPM parameters which enable the ANN
to achieve the same accuracy as when it uses all 12 collected
OPM parameters. We also evaluated datasets with missing
features. The results show that ANN performs well even in
cases where any single OPM parameter is unavailable. For
some ML classifiers, e.g., QDA, limiting the input features may
increase accuracy by up to 4%. This emphasizes the need for
careful selection of the OPM data to be input to the deployed
models so as to enhance classifier performance.

The scalability assessment indicates that most of the
classifiers are able to classify a million samples (i.e., a million
lightpaths) in less than one minute, using a standard off-the-
shelf workstation. Moreover, ANN is able to classify a million
lightpaths in less than 10 seconds, leaving a sufficient portion
of the 1-minute monitoring cycle for other tasks.

Although the framework presents good performance, its
deployment in real-world infrastructures remains an open task.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/JLT.2019.2923558

>REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

The integration of the framework with state-of-the-art
monitoring or SDON controller software is also an interesting
challenge. The framework for cognitive security diagnostics of
individual connections presented in this paper creates a
foundation for detecting attack types and techniques among the
multitude of connections in the network and exhibits strong
potential to enhance the level of optical network security.
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