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Experimental study of spatiotemporally localized surface gravity water waves
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We present experimental results on the study of spatiotemporally localized surface wave events on deep water

that can be modeled using the Peregrine breather solution of the nonlinear Schrödinger equation. These are often

considered as prototypes of oceanic rogue waves that can focus wave energy into a single wave packet. For small

steepness values of the carrier gravity waves the Peregrine breathers are relatively wide, thus providing an excellent

agreement between the theory and experimental results. For larger steepnesses the focusing leads to temporally

and spatially shorter events. Nevertheless, agreement between measurements and the Peregrine breather theory

remains reasonably good, with discrepancies of modulation gradients and spatiotemporal symmetries being

tolerable. Lifetimes and travel distances of the spatiotemporally localized wave events determined from the

experiment are in good agreement with the theory.
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I. INTRODUCTION

Several mechanisms for the formation of giant waves in

the ocean, known as rogue waves, are presently under intense

discussion [1–4]. One of the explanations is based on the linear

theory of wave evolution. According to this approach, high-

amplitude waves appear as a result of constructive interference

of many smaller-amplitude waves. The main deficiency of this

approach is that when increasing the amplitude, the waves

inevitably have to follow the laws of nonlinear dynamics.

Indeed, one of the solid proofs of necessity of using nonlinear

equations for surface gravity wave propagation was the exper-

imental observation of modulation instability by Benjamin

and Feir [5]. The most common approach to model the

nonlinear dynamics of gravity waves in certain approximations

is the nonlinear Schrödinger equation (NLS). Being relatively

simple, it takes into account nonlinearity and linear dispersion.

Despite relative simplicity, it describes well the phenomenon

of Benjamin-Feir instability and highly nontrivial subsequent

nonlinear wave dynamics [6–8]. Several experimental works

confirmed validity of NLS for deep water waves [9–11]. In

particular, Lake et al. [9] have shown that a wave with unstable

periodic modulation evolves to near recurrence just like the

NLS predicts.

One of the clear advantages of using the NLS is its integra-

bility [12]. Having solutions in analytic form is attractive when

comparing experimental results with theory. Indeed, the well-

known solution in the form of a traveling envelope soliton has

been investigated in detail experimentally in Refs. [8,11,13].

Another class of solutions is breathers. One of the forms of

breathers is solitary waves on finite amplitude background

[1,14,15]. Due to nonlinear interference of the soliton with

the finite background these solitons are pulsating. Surprising

results of the theory are the breathers that pulsate only once.

Among them is the Peregrine soliton [16] that is localized both

in time and space. It is given by a rational expression and can

be considered as the limiting case of either the space periodic

breathers [17,18] or the time periodic breathers [19,20]. Being
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doubly localized, the Peregrine breather describes a unique

wave event in which the waves of large amplitude seem to

appear from nowhere and disappear without a trace [21]. As

such, it has long been speculated to play a key role in rogue

wave formation in the open ocean [22].

In contrast to solitons, experimental studies of breather

solutions started only in recent years. After the first successful

observation in nonlinear optics [23], the Peregrine breather has

been observed in a water wave tank [24], in the case of surface

gravity waves and later on for waves in multicomponent

plasma [25]. In each case, remarkable agreement between the

experiment and the Peregrine solution of the NLS has been

found. The objective of the present work is to provide a detailed

study of the rogue wave phenomenon based on breather theory.

Here, we use a wide range of parameters of the background

carrier wave and estimate the limits of applicability of breather

theory. The paper is organized as follows: First, we discuss the

Peregrine soliton solution of the NLS. Second, we describe the

experimental approach on exciting and measuring wave states

in the water wave tank. Then, we present the experimental

results for various parameters of the background carrier wave.

Additionally, we measured the lifetimes and travel distances

of the spatiotemporally localized wave states and compared

them with predictions of the NLS model.

II. MATHEMATICAL APPROACH AND EXPERIMENTAL

SETUP

Weakly nonlinear deep water waves can be described by

the NLS [7]:
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where t and x are time and space coordinates, while k0 and

ω0 = ω(k0) denote the wave number and the angular frequency

of the carrier wave, respectively. The frequency ω0 and the

wave number k0 are linked by the dispersion relation of linear

deep water wave theory, ω0 =
√

gk0, where g denotes the

gravitational acceleration. Accordingly, the group velocity of

a wave packet is cg := dω

dk
|k=k0

= ω0

2k0
, which is half the phase
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speed of the carrier. The surface elevation η(x,t) of the sea

surface is then, to lowest order, given by

η(x,t) = Re(a(x,t) exp[i(k0x − ω0t)]). (2)

A rescaled form of the NLS [12],

iqT + qXX + 2|q|2q = 0, (3)

is obtained from (1) using the variables

T = −
ω0

8k2
0

t, X = x − cgt = x −
ω0

2k0

t, q =
√

2k2
0a

Here, X is the coordinate in the frame moving with the

wave group velocity and T is the rescaled time. A family

of space-periodic solutions of (3), which starts from a plane

wave at T → −∞ and returns back to the plane wave when

T → +∞, has been found in Refs. [17,18]:

qA(X,T ) =
cosh(�T − 2iϕ) − cos(ϕ) cos(pX)

cosh(�T ) − cos(ϕ) cos(pX)
e2iT . (4)

Here � = 2 sin(2ϕ), p = 2 sin(ϕ), and ϕ ∈ R. It can be shown

[18] that Eq. (4) is an exact solution of the NLS that represents

growth-return cycles of modulation instability.

A solution describing a soliton on a background, which

is periodic in time and tends to the plane wave solution as

X → ±∞, has been derived in Refs. [19,20]

qM (X,T ) =
cos(�T − 2iϕ) − cosh(ϕ) cosh(pX)

cos(�T ) − cosh(ϕ) cosh(pX)
e2iT , (5)

with � = 2 sinh(2ϕ), p = 2 sinh(ϕ), and ϕ ∈ R.

The solution first presented by Peregrine [16] can be

understood as a limiting case of either of the above solutions

when ϕ → 0, i.e., when the spatial or the temporal period

becomes infinite. The solution then takes rational form as a

fraction of two polynomials:

qP (X,T ) =
(

1 −
4(1 + 4iT )

1 + 4X2 + 16T 2

)

e2iT .

Thus

qP (X,T ) = lim
ϕ→0

qA(X,T ) = lim
ϕ→0

qM (X,T ). (6)

The Peregrine solution breathes only once as it is localized in

both space and time as shown in Fig. 1. The fact that makes

this particular solution a prototype of a rogue wave is that the

maximum amplification at the point of highest amplitude is

three.

The experiments have been performed in a 15 × 1.6 ×
1.5 m water wave tank with 1 m water depth. A single vertical

flap activated by a hydraulic cylinder is located at one end

of the tank and an absorbing beach is installed at the other

end to avoid wave reflections. The surface height of the water

at a given position is measured by a capacitance wave gauge

with a sensitivity of 1.06 V/cm which allows us to make

measurements with an accuracy of up to three significant digits.

The sampling frequency is 500 Hz. The wave gauge is shown

in Fig. 2, slightly to the left from the center of the tank.

In order to generate a Peregrine soliton solution of the NLS

in the water wave tank, we first have to represent its analytical

FIG. 1. (Color online) Contours of equal modulus of the Peregrine

breather solution (6). The maximum amplitude occurs at X = T = 0

and is exactly three times the amplitude of the background carrier

wave.

expression in dimensional form relevant to Eq. (1):
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(

1 −
4
(

1 − ik2
0a

2
0ω0t

)

1 +
[

2
√

2k2
0a0(x − cgt)

]2 + k4
0a

4
0ω

2
0t

2

)

× exp

(

−
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0a
2
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2
t

)

, (7)

and take into account the fact that to lowest order the surface

elevation is then given by

η(x,t) = Re{qP (x,t) exp[i(k0x − ω0t)]}. (8)

In this approximation, we are ignoring the bounded waves.

Equation (8) is used to determine the initial conditions for the

flap motion and to compare subsequent measured data with

NLS-based theoretical prediction.

The range of parameters for the carrier wave is limited in

the experiment by a number of factors. First of all, due to

the limited length of the tank, wavelength has to be chosen

sufficiently short to observe both growth and decay processes.

Conversely, the wavelength needs to be large enough to ignore

the effects of surface tension. When the tank size is given, the

wavelength should also satisfy the conditions of deep water.

Namely, the depth d and the wave number k0 should satisfy

the condition k0d ≫ 1 [26]. When taking into account all these

requirements, the range of wavelengths that can be excited in

the tank is becoming very narrow. The actual numbers used in

the experiments are given below.

FIG. 2. (Color online) Schematic illustration (side view) of the

water wave tank. The beach is shown at the left, the paddle at the

right. The capacitance wave gauge is movable along the tank.
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Thus, before starting the experiment, we determine the

initial amplitude and the frequency of the carrier in order

to satisfy deep water conditions. As a preliminary exercise,

we generate the harmonic wave with the specific constant

amplitude along the tank in centimeter scale. Once generated,

the amplitude is almost constant along the whole tank, except

for the small region near the flap. They are nearly constant

up to the beach, which is a signature of small dissipation in

the experiment. By generating waves with various amplitudes,

we established that within the small range we are using the

wave amplitudes are linearly proportional to the signal which

determines the flap motion. The coefficient of proportionality

is adjusted empirically. This preliminary procedure allows us

to determine the scaling factor to a chosen amplitude a0 in

the above equations. The wave number k0 is derived from

the linear dispersion relation. After these preparations, we are

ready to use more complicated initial conditions. In particular,

a simple negative translation of Eqs. (8) and (7) along the x axis

provides us with the initial condition that should be applied to

the flap in order to observe the Peregrine soliton.

III. EXPERIMENTAL RESULTS

A. Spatiotemporal growth and decay

In order to demonstrate the existence of Peregrine solitons,

we performed a number of experiments with different wave

numbers and amplitudes of the carrier wave. An illustrative

example is shown in Fig. 3. Here, the amplitude of the

background is chosen to be a0 = 0.005 m, the carrier fre-

quency f0 = 2.40 Hz, or ω0 = 15.1 s−1, the wave number

k0 = 23.2 m−1, and the wavelength λ0 = 0.270 m. Thus, the

steepness of this carrier wave becomes ε := a0k0 = 0.116.
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FIG. 3. (Color online) Illustration of the spatiotemporal evolution

of the water surface height at various distances from the wave

maker. The curves are measured at distances from the wave maker

shown in the vertical axis on the left. Surface elevation for each

curve is measured in centimeters, as shown in the vertical axis on

the right. Parameters chosen for the experiment are a0 = 0.005 m,

k0 = 23.2 m−1; consequently, ε := a0k0 = 0.116.

The flap motion was programmed to generate a wave with

the maximum breather amplitude at a distance 4.60 m along

the tank. Water surface elevation measurements have been

collected at nine positions, with equal separations of 1 m

along the direction of wave propagation. These data show

that the carrier wave that is slightly modulated near the flap

propagates along the tank with the group velocity. Small

perturbation of the carrier wave grows such that at about 4.60 m

along the tank the amplitude reaches its maximum with an

amplification factor of three. In good agreement with the NLS

theory, afterward the amplitude decays. Thus, if we forget for

a moment that initial conditions are created by ourselves, the

rogue wave on top of the carrier wave appears seemingly out

of nowhere.

In the sections that follow, we first explore the influence

of carrier parameters on wave evolution. This allows us to

evaluate the extent of agreement between measurements and

theoretical predictions of the NLS as well as its limitations.

Then, we give further quantitative evaluation of the spatiotem-

poral properties of Peregrine breathers in terms of lifetimes

and travel distances.

B. The influence of carrier wave steepness

The analytical expression of the Peregrine breather in

dimensional form [Eqs. (7) and (8)] suggests that at the position

where the maximum wave amplitude is achieved, for a given

wave frequency ω0, the time evolution depends, apart from

an amplitude scaling, only on the steepness ε = a0k0 of the

carrier wave. We therefore performed a number of experiments

to study to what extent this parameter influences the measured

data.

Figure 4 shows the results for three different amplitudes

of the carrier: 0.010, 0.020, and 0.030 m. The wavelength of

the carrier has been adapted for each measurement to yield a

wave steepness ε = 0.116. The point of wave maximum has

been chosen 9 m away from the wave maker. We can see,

from Fig. 4, that within the amplitude range considered, the

resulting time series do scale quite well. The noticeable phase
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FIG. 4. (Color online) Comparison of measured (solid line) wave

heights at the position of maximum wave amplitude with Peregrine

solution (dashed line) evaluated at X = 0.
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FIG. 5. (Color online) Comparison of measured (solid line) wave

profiles at the position of maximum wave amplitude with theoretical

Peregrine soliton solution (dashed line) evaluated at X = 0 for

steepness 0.087, 0.058, and 0.029 by varying the amplitude. The

wave number k0 = 11.6 m−1.

shift to the right of the maximum amplitude may be related

to higher steepness in the middle of the wave train and the

corresponding influence of higher Stokes harmonics, which

we ignored in Eq. (8).

Figures 5 and 6 show the influence of the wave steepness

of the carrier wave on the resulting surface elevation at the

point of maximum amplitude. To vary the steepness, we can

alter either carrier amplitude or carrier wave number, or both

simultaneously. First, we fix the the value of k0 = 11.6 m−1

while the amplitudes are varied in order to obtain the steepness

values of 0.087, 0.058, and 0.029, respectively. The results

for the three cases are shown in Fig. 5. In another set of

experiments we fixed the amplitude at the level a0 = 0.010 m

while the wavelength of the carrier is varied in a way to obtain
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FIG. 6. (Color online) Comparison of measured surface heights at

the position of maximum wave amplitude (solid line) with Peregrine

soliton solution (dashed line) evaluated at X = 0 for steepness 0.087,

0.058, and 0.029 by varying the wave number. The scaling parameter

a0 = 0.010 m.

the same steepness values as before. The results of this set are

shown in Fig. 6. For all measurements, the experimental data

are compared to the analytical Peregrine solution.

A few important conclusions can be drawn from the above

results. First, in all measurements, the maximum amplitude

amplification of three is reached in perfect accordance with

the theoretical prediction. Second, the number of waves within

the wave packet increases strongly with decreasing steepness

ε. This fact is also in very good agreement with NLS-based

prediction. Third, the agreement between the measurement

and the NLS theory is higher for smaller steepness values.

This is consistent with the assumption of a weakly nonlinear

nature of the NLS theory, which is valid for small steepness

values. For larger steepness values, discrepancies between the

theory and the experiment start to appear. To some extent,

these discrepancies have been noticed in Ref. [24]. We can

also notice here that the gradients in amplitude modulation are

smaller in theory than in experiment. There is also a noticeable

asymmetry in the wave evolution when comparing the wave

profile before and after the point of maximum amplitude. In

addition to these discrepancies, our measurements confirm

that the wave steepness of the carrier is one of the decisive

parameters in the experiment.

In order to understand the increased number of waves within

the packet, we recall some results known from Benjamin-Feir

instability and Akhmediev breathers. The band of unstable

wave numbers K according to Benjamin-Feir is

0 < K < 2
√

2k2
0a0 (9)

(see, e.g., [15] or [8]). The theory allows us to connect the

amplitude amplification of Akhmediev breathers to the steep-

ness and number of waves under the resulting modulations

[15,27,28]:

amax

a0

= 1 + 2

√

√

√

√

1 −

(

K

2
√

2k2
0a0

)2

= 1 + 2

√

1 −
(

1

2
√

2Nxε

)2

, (10)

where Nx := λmod

λ0
= k0

K
is the number of waves in one period

of modulation in the space series and ε = a0k0 is the steepness

of the carrier. According to the linear dispersion relation, we

have

Nt = 2Nx, (11)

where Nt denotes the number of modulated waves in a

corresponding time series. Thus, Eq. (10) becomes

amax

a0

= 1 + 2

√

1 −
(

1
√

2Ntε

)2

. (12)

For each Akhmediev breather (4) determined by a fixed

value of the parameter ϕ, there is a direct connection between

the number of modulated waves in time series Nt and the

steepness of the carrier wave. Only the product of Nt and ε

enters the above equation, and for given amplification factors,

large steepness leads to a small number of waves and vice

versa. The Peregrine breather, considered in the present study,
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FIG. 7. (Color online) The number of modulated waves in time Nt

vs steepness ε. The value of Nt calculated for the Peregrine breather

when the threshold amplitude is 0.99 (solid line) or 0.75 (dashed line).

Crosses × represent the experimental values obtained for a threshold

amplitude of 0.75.

has a maximum amplification of exactly three and can be

obtained from the Akhmediev breather family by taking the

limit K → 0 within the Benjamin-Feir instability band.

The analytical formulas above do not provide the functional

relationship between Nt and ε. Nevertheless, such a relation-

ship can be found numerically. We calculated the dependance

of Nt = Tmod

T0
on ε for the Peregrine breather, where Tmod and

T0 denote the period of the modulation and the period of the

carrier, respectively. For this calculation, we chose a threshold

value of 0.99 times the wave amplitude to define the points

where modulation appears or disappears. This choice resulted

in reasonable agreement with the asymptotic behavior. On the

other hand, in order to compare the theoretical predictions

with experimental data, which always contain noise, we chose

a more robust threshold of 0.75 times the wave amplitude.

Figure 7 shows each of these results. As can be seen from the

figure, for the Peregrine breather, the number of modulated

waves is roughly inversely proportional to the wave steepness.

A similar result has been found by [16] and [29]. We can also

see that our experiments (crosses ×) show good agreement

with the predictions of the NLS theory.

IV. LIFETIMES AND TRAVEL DISTANCES

The major feature of the Peregrine breather is its maximum

surface elevation reached at a single point. In contrast to

other solitonlike solutions which decay exponentially out of

the region of localization, the Peregrine breather experiences

a growth-decay cycle described by rational functions. This

means that this formation has weaker spatial and temporal

localization. In order to describe quantitatively the degree of

localization, we can introduce the breather’s “lifetime” and

“travel distance.” These quantities can be defined in various

ways. The idea is to introduce certain temporal and spatial

intervals where the amplitude has significant deviation from

the homogeneous background. One of the possibilities is to

define the time or space intervals such that at the edges of these

intervals the wave has a fixed threshold amplitude, which is

a specified fraction of the maximum amplitude value. Below,

we calculated these intervals based on the analytical solution

and also compared the results with measurements.

A. Laboratory scale

As the threshold amplitude is somewhat arbitrary, we used

three different values in order to see if it is crucial for
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FIG. 8. (Color online) Lifetimes of Peregrine breather vs steep-

ness, calculated for the amplitude thresholds of 1.25 (crosses), 1.50

(circles), and 1.75 (stars). Four cases correspond to the following

choice of parameters: (top panel) k0 = 23.2 m−1; (second panel)

k0 = 11.6 m−1; (third panel) a0 = 0.005 m; and (bottom panel) a0 =
0.010 m. Crosses × denote experimental results for the amplitude

threshold of 1.75 [(a) and (c)] and 1.25 [(b) and (d)].
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FIG. 9. (Color online) Travel distances of Peregrine breather vs

steepness, calculated for the amplitude thresholds of 1.25 (crosses),

1.50 (circles), and 1.75 (stars). Four cases correspond to the following

choice of parameters: (top panel) k0 = 23.2 m−1; (second panel)

k0 = 11.6 m−1; (third panel) a0 = 0.005 m; and (bottom panel) a0 =
0.010 m. Crosses × denote experimental results for the amplitude

threshold of 1.75 [(a) and (c)] and 1.25 [(b) and (d)].

our definitions. Namely, we used the thresholds 1.25, 1.50,

and 1.75 for exceeding the envelope over the background

at the edges of the intervals. We recall that at the point of

maximum, the envelope exceeds three times the background.

Figures 8 and 9 show the results of calculations as well

as experimental results (crosses ×). In dimensional units,

there are a few parameters that influence the lifetime and

the travel distance. These are the amplitude, wave number,
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FIG. 10. (Color online) Lifetimes (a) and travel distances (b) of

Peregrine-type wave structures vs steepness for λ = 100 m, defined

by amplification factors of 1.25 (dash-dotted), 1.50 (dashed), 1.75

(dotted), and 2.20 (solid).

frequency, and steepness. The plots show the lifetime vs wave

steepness presented for several values of the wave number

and frequency. As before, to vary the steepness, we either

changed the wave number keeping the amplitude fixed, or we

varied the amplitude keeping the wave number fixed. Direct

measurement of lifetimes and travel distances is difficult since

the length of the wave tank is limited. These data have to

be calculated from the measurements of the wave profiles.

This way, two data points have been produced, one based

on the results shown in Fig. 3 above (k0 = 23.2 m−1) and

the other point based on the results obtained in Ref. [24]

(k0 = 11.6 m−1).

As expected, travel distances and lifetimes of the Peregrine

soliton decrease quickly with the increase of the wave steep-

ness. The experimentally obtained values shown by crosses

× fit well to the NLS-based predictions for corresponding

threshold values 1.75 (shown by stars) or 1.25 (shown

by crosses), respectively. We assume that dissipation can

be ignored within the growth-decay cycle of the Peregrine

breather.

B. Ocean scale

For illustration purposes we calculated lifetimes and travel

distances for the case of ocean waves with a wavelength of

λ0 = 100 m. In addition to the threshold amplification factors

given above, we also used the amplification factor of 2.2, which

is still smaller than the maximum amplification of three. This

factor is justified if we recall that the ocean waves exceeding

the background wave height (roughly speaking, the significant

wave height) by a factor of 2.2 are already rogue waves. Thus,

the Peregrine breather can be a considered as an ocean rogue

wave within extended intervals in time and space.

Figure 10 shows the results. We can see, from this figure,

that for particular wave steepness values of the order 0.100,

the lifetime of a Peregrine breather would be of the order of a

few minutes, while its travel distance is of the order of a few

kilometers. Although being very short in the scale of the world

ocean, these numbers are still sufficiently long if we intend to

develop early warning systems directly installed on ships.

016311-6



EXPERIMENTAL STUDY OF SPATIOTEMPORALLY . . . PHYSICAL REVIEW E 86, 016311 (2012)

V. CONCLUSIONS AND FUTURE DIRECTIONS

Our study shows that the Peregrine solution of the NLS

equation which models regular deep water surface gravity

waves can be observed experimentally in a water wave tank.

It can be generated directly by applying initial-boundary

conditions derived from the exact solution of the NLS. In the

weakly nonlinear regime, when the steepness of the underlying

background carrier wave is small, the agreement between

experimental results and the Peregrine solution of the NLS

is very good. Discrepancies start to grow with increasing the

steepness values. The carrier wave steepness is also a key

parameter with respect to the spatiotemporal wave shape. At

higher steepnesses the resulting wave packets become very

narrow in space and time. Consequently, the lifetime and travel

distance of the spatiotemporally localized wave structures

decrease.

Although our results demonstrate reasonably good correla-

tion between the wave tank measurements and the dynamics

of the NLS solution, they also clearly show limitations of

the NLS in the present context. When nonlinearity becomes

stronger, i.e. steepness increases, the measured waves become

asymmetric. The modulation gradients also become larger

than those suggested by NLS theory. The origin of these

discrepancies deserves further study. One way to improve the

modeling is to use higher-order envelope equations offered,

e.g., by Dysthe [30] or Slunyaev [31]. Wave breaking that

can be observed for even higher carrier steepness is another

limitation that needs attention. In addition, for ocean waves,

the background wave state is irregular. The role of Peregrine

breathers in such a natural sea state has to be studied separately.

Work in this direction has already started.
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