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The reciprocal influence of convective and elliptical instabilities is studied experimentally in an

elliptically deformed rotating cylindrical shell with an imposed temperature at the inner cylinder

using the centrifugal force to mimic a radial gravity field. When the temperature contrast is

stabilizing, we observe that the elliptical instability can grow and that the heat flux scales as the

inverse of the viscous boundary layer depth. When the temperature profile is destabilizing, we

observe �i� that the elliptical instability can still grow on the established convective motions, �ii� that

for the experimental range of parameters, its growth rate progressively decreases when the intensity

of convection increases, and �iii� that the elliptical instability modifies the heat transfer when the

viscous boundary layer is smaller than the thermal one. Scaling laws for both cases are derived

analytically and validated experimentally. We conclude that in geophysical and astrophysical

systems, thermal effects have to be taken into account when looking for inertial instabilities and that

these inertial instabilities have to be taken into account when evaluating heat transfers.

© 2010 American Institute of Physics. �doi:10.1063/1.3508946�

I. INTRODUCTION

It is known from the analysis of Kelvin
1

that rotating

flows support inertial �or “Kelvin”� waves, whose origin

comes from the restoring effect of the Coriolis force. These

waves are generally damped by viscosity, but they can persist

when an external forcing is applied. For instance, the ellip-

tical instability arises in elliptically deformed systems from

the triadic resonance between two Kelvin waves and the

deformation.
2

Such an instability could be excited in the liq-

uid core of planets that are tidally deformed by close bodies,

leading, for instance, to the generation or induction of a mag-

netic field.
3,4

The dynamics of the elliptical instability has

been studied in detail, following the first experimental ap-

proach of Malkus,
5

but always in the isothermal case. How-

ever, thermal effects have a fundamental importance in the

dynamics of planetary cores. Indeed, convective flows are

expected to control heat transfers and dynamo processes in

most planets, as, for instance, in the Earth �see Ref. 6 for a

review�. Convective instabilities in rapidly rotating systems

are also closely interconnected with inertial waves. Indeed,

recent studies �e.g., Refs. 7 and 8� show that the convective

flow can be represented, depending on the value of the

Prandtl number, by either a single inertial-wave mode or by a

combination of several inertial-wave modes and is controlled

or influenced by the effect of the Ekman boundary layer.

Moreover, following the Proudman–Taylor constraint, con-

vective flows in rapidly rotating systems are almost invariant

along the axis of rotation.
9

Experimentally, Busse and

Carrigan
10

reproduced these columns in a rapidly rotating

system submitted to a destabilizing temperature contrast us-

ing the centrifugal force to mimic the planetary radial grav-

ity. In the present paper, we investigate the reciprocal influ-

ence of the elliptical instability and thermal effects in a fluid

contained in a rotating cylindrical shell by coupling in a

single experiment the historical setups of Malkus
5

and Busse

and Carrigan.
10

Note that in addition to the geophysical in-

terests, our study could also be relevant in some industrial

applications, for instance, in the domain of vortex control in

the wake of aircraft wings by means of injection of heated or

cooled air.
11

Le Bars and Le Dizès
12

studied analytically the linear

stability of a rotating flow in an elliptically deformed cylin-

drical shell with an imposed �stable or unstable� conductive

temperature profile. In this case, the elliptical instability

comes from the resonance of gravito-inertial waves. They

concluded that the growth rate of the elliptical instability is a

decreasing function of the Rayleigh number, Ra, which char-

acterizes the intensity of convection, and that the growth rate

surprisingly increases with the intensity of stratification.

Nevertheless, Le Bars and Le Dizès
12

did not investigate the

nonlinear processes of the elliptical instability, and their sta-

bility analysis always started from a simple elliptical and

nonconvective rotating base flow. This paper thus aims at

completing these first conclusions by a systematic experi-

mental study. Our purpose is to answer the following three

questions: �i� could the elliptical instability grow in the pres-

ence of established convective motions? �ii� How are the

growth rate of the elliptical instability and the convective

heat flux modified? �iii� What is the predominant mechanism

at the planetary scales? Note that the same questions are

addressed numerically in the ellipsoidal geometry in a com-

panion paper by Cébron et al.13

This paper is organized as follows. In Sec. II, the setup

and the experimental procedure are presented. In Sec. III, the

influence of the convection on the growth of the ellipticala�
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instability is studied experimentally. The experimental re-

sults regarding the influence of the elliptical instability on

heat transfers are presented in Sec. IV, where general scaling

laws are also derived. Finally, these scaling laws are applied

to geo- and astrophysical systems in Sec. V.

II. EXPERIMENTAL SETUP

Our setup is a combination of the one developed by

Busse and Carrigan
10

to study convective motions in a rap-

idly rotating system submitted to radial gravity and of the

one developed by Malkus
5

to study the elliptical instability

�see Fig. 1�. A vertical cylindrical shell �height H=80 cm,

inner radius Ri=3 cm, and outer radius Ro=10 cm� en-

closed between two concentric cylinders is filled with water

and set in rotation along the vertical axis at a constant angu-

lar velocity �, ranging from 150 to 350 rpm. This angular

velocity is sufficiently rapid such that the local gravity is

negligible compared to the centrifugal force.
9,10

We apply an

elliptical deformation to the outer cylinder made of e
=3 mm thick transparent polymethyl methacrylate �PMMA�
by compressing it on its middle with two fixed vertical 20 cm

long rollers aligned with the rotation axis. We measure the

value s of the compression, which ranges between 0 and 4

mm. In the centrifugally driven case, the onset of convection

is possible when the inner boundary is sufficiently cooled

compared to the outer one. Otherwise, the flow is radially

thermally stratified. In order to study both cases, we can

either cool or heat the inner cylinder at a fixed temperature

Tin by the circulation of a coolant fluid from a thermostated

bath inside the inner cylinder, which is made of copper, so as

to ensure an efficient heat transfer. Actually, the coolant fluid

is injected in an inner pipe with a radius of 1 cm inside the

copper cylinder from the top of the experiment. It flows

through this pipe down to the bottom of the experiment and

then goes back to the top through the outer circular ring

inside the copper cylinder before being sucked. With this

setup, we do not measure any temperature variation along

the outer boundary of the copper cylinder. The top and bot-

tom of our shell are made of 5 cm thick Plexiglas, ensuring a

very good thermal isolation. Note that these flat ends are

perpendicular to the axis of rotation. Four temperature

probes �precisely calibrated thermocouples� permit to mea-

sure the inner and outer heat fluxes. Two probes measure the

temperatures of the circulating fluid, respectively, at the entry

�i and at the exit �o of the system. The mean inner heat flux

is then given by

Fi =
�cp���i − �o�

2�RiH
, �1�

where � is the density of the circulating fluid, cp is its spe-

cific heat, and � is the flow rate of the thermostated bath

measured via a flow meter. These two thermocouples also

permit to define the surface temperature of the inner cylinder

Tin, which we take as the mean value of �i and �o. Note that

because of technical constraints, it was not possible to mea-

sure �i and �o exactly at the entrance of the inner cylinder.

Corrections due to heat loss from the circulating pipe toward

the surrounding atmosphere are thus included in Fi using a

standard value of the heat transfer coefficient of the air. The

local temperature at a given location of the inner surface of

the outer cylinder Ti and the temperature of its outer surface

To at the same location are measured by the two other

probes. They permit one to define the local outer heat flux

Fo = kp

To − Ti

e
, �2�

where kp=0.2 W m−1 K−1 is the thermal conductivity of the

PMMA. We verified that once a thermal steady state is

reached, the measured time-averaged values of the power

through inner and outer cylinders �2�RiFiH and 2�RoFoH�
are in good agreement, i.e., within 10%.

To visualize motions, we embedded the working fluid

with anisotropic Kalliroscope flakes and used two separate

systems of camera and laser sheet. In the first system, the

laser and a wireless camera are embarked in rotation with the

cylindrical shell, which allows one to visualize convective

motions in a horizontal plane in the rotating frame. In the

second system, a semirapid camera �200 frames/s� captures

the dynamics of the elliptical instability from the laboratory

frame through a vertical laser sheet, tangential to the inner

cylinder.

According to the �-Buckingham theorem, six dimen-

sionless parameters control the system. We choose

�a� the eccentricity of the outer cylinder measured at the

midheight, �=2s /Ro;

�b� the Ekman number based on the gap of the shell,

E=	 /��Ro−Ri�
2, where 	 is the kinematic viscosity of

the working fluid taken at the mean fluid temperature;

�c� the Rayleigh number based on the centrifugally gravity

taken at the outer cylinder, Ra=
�Ti−Tin��
2Ro�Ro

−Ri�
3
/�	, where 
 is the thermal expansion coefficient

of the working fluid and � its thermal diffusivity;

�d� the thermal Prandtl number, P=	 /�;

�e� the shell aspect ratio, a1=Ri /Ro; and

�f� the cylinder aspect ratio, a2=H /Ro.

By systematically changing the temperature of the ther-

mostated bath, the rotation rate, and the cylinder compres-

sion, we explored the following ranges: �� �0;0.08�,

FIG. 1. �Color online� Sketch and picture of our experimental device. Ri and

Ro designate the radii of the inner and the outer cylinders, respectively. H is

the height of the tank and � is its rotation rate. �i and �o are the tempera-

tures at the entrance and at the exit of the inner cylinder, respectively.
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E� �5�10−6 ;2�10−5�, and �Ra�� �107 ;109�, with either a

stabilizing �i.e., Ra0� or a destabilizing �i.e., Ra�0� tem-

perature contrast. The three other dimensionless parameters

were kept constant, with the Prandtl number of water P
�7.0, the shell aspect ratio a1=0.30, and a cylinder aspect

ratio a2=8.0, chosen so as to excite the isothermal principal

mode ��1,1,1� with an axial wavenumber equal to 2 in the

notations of Eloy and Le Dizès
14 �i.e., the resonance between

the Kelvin waves of azimuthal wavenumbers �1 and 1 with

the simplest radial structure�.
In our case, the critical Rayleigh number for the onset of

the convection Rac is given by Busse and Carrigan
10

as

Rac = 8�2E−1/2
�R

H
, �3�

where �R=Ro−Ri is the size of the shell gap. This critical

Rayleigh number corresponds to Eq. �2.13� of Ref. 10, where

“the change in height can be neglected, the friction in the

Ekman boundary layer becomes the dominant stabilizing

force.” It was derived in the small gap limit �R /Ro�1,

which is not really fulfilled in our experiment. Nevertheless,

we have not found in literature any analytical result for the

critical Rayleigh number in the finite gap limit with an im-

posed temperature contrast, and we thus use this formula as a

first order approximation. Note that since we do not change

the value of �R and H in our study, the important point here

is the dependence of Rac on E−1/2, which we expect to be

generic. The same dependence is indeed found in Ref. 15 in

a geometry similar to our experimental setup but for convec-

tion induced by internal heating rather than by an imposed

temperature contrast. Note also that our experimental device

is not designed to evaluate the value of Rac and that a desta-

bilizing temperature profile immediately leads to largely su-

percritical values of the Rayleigh number.

The same protocol was followed for all the experiments

presented in this paper: �i� the system is set in rotation at a

constant rate; �ii� after the spin-up time �at least 30 min�, the

inner cylinder is thermalized at the assigned constant tem-

perature; �iii� once a thermal steady state is reached �after

several hours�, heat flow measurements for the reference

nondeformed case are performed at the inner and outer cyl-

inders; and finally �iv� the two rollers are pushed to deform

elliptically the outer cylinder at the chosen eccentricity, and

systematic measurements of heat flux as a function of the

eccentricity are performed.

III. ON THE INFLUENCE OF THERMAL EFFECTS ON
THE GROWTH OF THE ELLIPTICAL INSTABILITY

Here, we study, via systematic laboratory experiments,

the potential development of the elliptical instability above

the established convective motions. Using the embarked

camera, we visualize the motions in the rotating frame in the

presence of convection, with or without elliptical instability.

A space-time diagram made along a radial line between the

two cylinders and some corresponding snapshots are shown

in Fig. 2. In the absence of outer cylinder compression, con-

vective plumes �typical size: 1 cm� develop slowly and drift

�Fig. 2�b��. However, once a sufficient compression is ap-

plied, we observe cycles of rapid and fully turbulent small

scale flows �Fig. 2�c��. Snapshots of the evolution of the

dynamics of the flow from the laboratory frame are presented

in Fig. 3. The first snapshot �Fig. 3�a�� presents the flow

before the deformation, with only convective motions. Verti-

cal structures corresponding to convective columns are

clearly visualized, whose trace in the horizontal plane corre-

sponds to the plumes already described. Once the outer cyl-

inder is deformed and if the deformation is sufficient, the

effective axis of rotation of the fluid is progressively tilted,

confirming the growth of the mode ��1,1,1� of the elliptical

instability above the established convective motions �Fig.

3�b��. Its behavior is then similar to the cycling behavior

observed in the isothermal case, as studied, for instance, by

Eloy et al.16
in the cylinder and by Herreman

17
in the cylin-

drical shell. After an exponential growth, the selected mode

of instability saturates and finally explodes �Fig. 3�c��, giving

rise to the small scale three-dimensional turbulence �Fig.

3�d�� also observed in the rotating frame. Finally, these small

scales are dissipated by viscosity, the flow relaminarizes, and

a new cycle starts �see also this cycling behavior in Fig.

FIG. 2. �Color online� �a� Space-time diagram of the flow in the rotating

frame made along a radial line of the cylindrical shell. The left part of the

space-time diagram corresponds to the convective case in the absence of

outer cylinder compression where the dynamics of the plumes is slow �see

picture �b��, while the right part of the space-time diagram exhibits a more

rapid and small scale chaotic dynamics, which takes place once a sufficient

compression is applied �see picture �c��. The dimensionless numbers are

Ra=1.8�108, E=6.4�10−6, and �=0.04. See additional material online for

a movie of the temporal evolution of the flow �enhanced online�. �URL:

http://dx.doi.org/10.1063/1.3508946.1�

FIG. 3. �Color online� Four images extracted from a video sequence cap-

tured from the laboratory frame that show the growth of the mode ��1,1,1�
of the elliptical instability. �a� Time t=0: initial convective state, with ver-

tical convective columns corresponding, in the horizontal plane, to Fig. 2�b�.
�b� t=1.5 s: growth of the mode. �c� t=3.5 s: saturation of the mode. �d�
t=4 s: explosion that generates a three-dimensional turbulent flow corre-

sponding, in the horizontal plane, to Fig. 2�c�. This dynamics is cyclic. The

dimensionless numbers are Ra=1.8�108, E=6.4�10−6, and �=0.04.
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2�a��. As illustrated in Fig. 4, we measured the growth rate of

the elliptical instability by extracting from the movie re-

corded in the laboratory frame, the maximum amplitude of

the sinusoidal deformation of the rotation axis as visualized

by Kalliroscope with respect to time. On the right curve in

Fig. 4, the linear fit corresponding to the exponential growth

of the instability before its nonlinear saturation is superim-

posed on the experimental measurements. The slope of this

straight line gives a direct measurement of the linear growth

rate � of the instability. This measurement is difficult be-

cause of the great size of the device and of the large rotation

rate, which induce very fast growth and relatively important

vibrations. Nevertheless, we find that �i� in the absence of

convection, our experimental results compare well with the

asymptotic value of the dimensionless growth rate �

=9� /16 calculated for an unbounded, inviscid, and isother-

mal elliptical flow
2

and that �ii� the dimensionless growth

rate � is systematically smaller in the presence of convec-

tion. Figure 5 shows the evolution of the growth rate with the

Rayleigh number for two values of the Ekman number E. We

conclude that the convection has a stabilizing influence on

the growth of the elliptical instability. In their linear study of

the elliptical instability in the presence of a diffusive tem-

perature profile, Le Bars and Le Dizès
12

concluded similarly

on the stabilizing influence of an increasing Rayleigh num-

ber and quantified this influence. They predicted corrections

in the growth rate and selected wave numbers of order Rã

=
�Ti−Tin� / �ln Ri /Ro�. In our experiments, Rã typically

ranges between 2�10−4 and 5�10−3, so this theoretically

predicted dependence cannot explain the results presented in

Fig. 5. Besides, we did not observe any change regarding the

selected wave number when increasing the Rayleigh number.

In fact, the significant variations of the growth rate measured

experimentally must be related to the presence of an estab-

lished convective flow that was not taken into account in the

linear study. We can understand this effect qualitatively as a

function of Ra by looking at the base flow above which the

elliptical instability grows. For intermediate values of Ra �as

those explored in the experiment�, convective motions are

two dimensional and take place at a typical scale comparable

to the size of the gap. They can thus be considered as per-

turbations of the isothermal elliptical base flow at an inter-

mediate scale. When the Rayleigh number increases, the

streamlines are more and more disturbed compared to the

isothermal elliptical ones so that the elliptical forcing is less

and less felt by fluid particles and the growth rate of the tidal

instability decreases. There might even exist a Rayleigh

number above which the elliptical instability cannot grow.

However, when further increasing Ra, the convection be-

comes fully turbulent and three dimensional, with very small

scale eddies: it is then possible to define an eddy viscosity

that replaces the kinematic viscosity. Thus, the elliptical in-

x-x0
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1 32
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FIG. 4. Space-time diagram of the ��1,1,1� mode, made along an horizontal

line of a video sequence captured from the laboratory. The highlighted curve

corresponds to the growth of the sinusoidal S shape of the mode, whose

temporal evolution is reported on the right curve together with the best

exponential fit, indicating the growth rate of the instability. The dimension-

less numbers are Ra=1.6�108, E=3.8�10−6, and �=0.06.
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stability should reappear, provided that the deformation is

sufficient to overcome viscous diffusion using the turbulent

�rather than molecular� viscosity. Note that the study of Fa-

bijonas and Holm,
18

using the rotating Craik–Criminale so-

lutions of the Lagrangian-averaged Navier-Stokes 
 turbu-

lence model, even shows that three-dimensional turbulence

enhances the inviscid growth rate of the elliptical instability

for Kelvin wavelengths that are larger than the turbulence

correlation length. The study of this peculiar fully turbulent

regime is very interesting, but unfortunately, it is beyond the

possibilities of our present experiment. We thus plan to

tackle this limit in a future experiment using grid generated

turbulence.

IV. ON THE INFLUENCE OF THE ELLIPTICAL
INSTABILITY ON HEAT TRANSFERS

As we discussed in Sec. I, centrifugally driven convec-

tion is typically organized in convection columns parallel to

the rotation axis. We also saw in Sec. III that this organiza-

tion is completely broken in the presence of the elliptical

instability. Here, we study, via our laboratory experiment, the

influence of the changes of the flow due to the elliptical

instability on the radial heat transfer.

To do so, we introduce the Nusselt dimensionless num-

ber, Nu, which characterizes the efficiency of the real heat

transfer compared to the purely conductive heat transfer. In

the case of a cylindrical shell, the diffusive heat transfer can

be written as 2�keH�T / ln�Ro /Ri� and the Nusselt number is

given by

Nu =
total heat transfer

conductive heat transfer
=

2�RiHFi

2�keH�T/ln�Ro/Ri�
,

�4�

where ke is the thermal conductivity of the working fluid,

�T= �Ti−Tin�, and Fi is the inner flux defined in Sec. I. We

use Fi to calculate Nu rather than the outer flux Fo because

Fi is a mean value of the flux averaged over the whole inner

cylinder, whereas Fo is measured locally at a given location

of the outer cylinder. In Fig. 6, a typical temporal evolution

of Nu for a convective case is shown. Once the thermal

steady state is reached, the two lateral rollers are pushed on

the outer cylinder, and if the deformation is sufficient, a

mode of the elliptical instability grows and the Nusselt num-

ber increases. Then, the Nusselt number does not stay con-

stant, but its fluctuations correspond to the observed hydro-

dynamic cycles. During the laminarization phase, Nu

decreases, while during the turbulent stage, Nu increases.

Once the elliptical constraint is released, Nu goes back to its

value before the tidal deformation, provided that the thermal

steady state is effectively reached.

Following the recent study of King et al.19
regarding the

two regimes of heat transfer in rotating Rayleigh–Bénard

convection, the sudden variation of the heat flux can be ex-

plained by a boundary layer control. Indeed, our fluid vol-

ume schematically consists of three distinct regions: the in-

terior of the fluid �the bulk� and two vertical boundary layers

situated near the inner and outer cylinders. The boundary

layers located at the top and at the bottom of the shell are not

considered here because the heat flux is negligible there. The

boundary layers are thin regions where heat transfer is con-

trolled by diffusion, whereas the bulk is well-mixed and iso-

thermal. So, the heat transfer is completely controlled by the

thickness of the boundary layers � and the inner heat flux

scales as Fi=ke�Ti /�, and similarly for the outer heat flux.

Here, �Ti is the temperature difference across the inner

boundary layer and is given by the conservation of the total

power 2�RiFiH=2�RoFoH plus the simple equation �T
=�Ti+�To, i.e., �Ti=�TRo / �Ro+Ri�. The Nusselt number

then scales as Nu=RiRo ln�Ro /Ri� /��Ri+Ro�.
Considering the elliptical instability only, the vertical

boundary layers are viscous layers of thickness �E, which

scales like �E��REEI
1/2. Here, EEI is the Ekman number

based on the typical velocity of the elliptical instability. As

shown numerically by Cébron et al.,20 EEI=E, except in the

vicinity of the threshold of the elliptical instability given by

the critical Ekman number, Ec��� /5.24�2, where EEI

�E /	E−1−Ec
−1. Now, considering convective motions only,

the boundary layers are thermal boundary layers of thickness

��, which scales like ����R�Ra /Rac�
−�, where � is a posi-

tive constant, such that the thermal boundary layers become

thinner as the vigor of the convection increases. The numeri-

cal value of � depends of the type of convection we consider.

For the classical Rayleigh–Bénard convection, �=1 /3 is the

most common scaling.
21

In our case with a cylindrical shell
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FIG. 6. Typical temporal evolution of Nu in a convective case for �=0.06, Ra=108 �once the thermal equilibrium is reached�, and E=9.7�10−6. A zoom on

the elliptically unstable stage is made, with the presence of fluctuations linked to the dynamics of the instability.
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and flat top and bottom perpendicular to the rotation axis, the

same value is expected.

In our experiment, considering the convective structures

as the base state above which the elliptical instability grows,

there are two possible regimes: �i� the thermal boundary lay-

ers are thinner than the viscous layers, ���E, so that the

elliptical instability grows inside the convective bulk and �ii�
the viscous layers are thinner than the thermal ones, �E

��, so that the elliptical instability also partially grows

over the thermal boundary layers. The transition between

“thermal-control” by the convection and “viscous-control”

due to the elliptical instability occurs when ����E, corre-

sponding to a transitional Nusselt number, Nut. Our experi-

ment allows us to change the thickness of the thermal bound-

ary layers alone by varying the temperature contrast. The

series of Nusselt number measurements for various Rayleigh

and Ekman numbers are presented in Fig. 7 as a function of

Ra /Rac, with and without elliptical instability. Note that in

the experimental data, Rac is different for each Ekman num-

ber considered and computed according to Eq. �3�. Concern-

ing the elliptically stable but convectively unstable case, the

best fit of the heat transfer data in terms of Ra /Rac power

law gives

Nu = 0.097
 Ra

Rac
�0.32

. �5�

The obtained coefficient is consistent with the expected 1/3.

When elliptical instability is included, heat transfer becomes

larger for all studied cases, especially in the stratified case

�Ra0�, and the Nusselt number remains roughly constant

equal to 4.6 when changing Ra. This behavior is compatible

with a viscous rather than thermal boundary layer control.

We define the transition between the thermal-control regime

and the viscous-control regime as the point of intersection

between their respective scalings, Nu=0.097�Ra /Rac�
0.32 and

Nu=4.6. Equating the two, we solve for the transitional Ray-

leigh number,

Rat = 1.4 � 107
�R

H
E−1/2. �6�

When RaRat, convection is not sufficiently strong and heat

transfer is affected by the elliptical instability. When Ra

�Rat, heat transfer is not affected by the elliptical instability

and follows the convective scaling. For example in our ex-

periment, Rat=3.9�108 when E=9.7�10−6. Unfortunately,

our setup does not allow to reach such values.

We can also explore the dependence of the heat flux on

the Ekman number by systematically changing the rotation

rate in maintaining �2Ro�g and �T constant. Note however

that since our apparent gravity is related to the centrifugal

force, changing the rotation rate also changes the Rayleigh

number. In Fig. 8, the behavior of the heat transfer as a

function of the Ekman number is shown, with and without

elliptical instability. Concerning the elliptically unstable

case, where the heat transfer is larger, the best fit of the heat

transfer data gives the scaling law

NuE = 0.016E−0.50. �7�

The obtained exponent is in excellent agreement with the

expected exponent �1/2, which validates the hypothesis of

control by the viscous boundary layer. The prefactor is also

in very good agreement with the results of Cébron et al.,13

who determined a prefactor equal to 0.01 for a spherical

shell. Concerning the elliptically stable case, expressing Eq.

�5� in the configuration of constant �T and variable � leads

to

FIG. 7. Plot of the Nusselt number, Nu, as a function of the ratio between

the Rayleigh number and the critical Rayleigh number, Ra /Rac, without

�filled symbols� and with elliptical instability �empty symbols, �=0.04�. Rac

is calculated for different Ekman numbers following Busse and Carrigan

�Ref. 10�: E=1.3�10−5 �squares�, E=9.7�10−6 �circles�, E=7.8�10−6

�vertical triangles�, E=6.5�10−6 �stars�, and E=5.6�10−6 �horizontal tri-

angles�. The solid line represents the best fit for the convective case �i.e.,

Ra�Rac�, giving the scaling law Nu=0.097�Ra /Rac�
0.32 above the threshold

and Nu=1 otherwise. The dotted line represents the mean experimental

value �i.e., Nu=4.6� in the presence of the elliptical instability. A zoom on

the convective part is presented in the inset with a logarithmic plot.
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FIG. 8. Logarithmic plot of Nu as a function of E without �filled circles� and

with elliptical instability �empty circles� for �=0.04 and �T=3 K. The

dashed line represents the best fit in the elliptically unstable case, NuE

=0.016E−0.50. The continuous line corresponds to the scaling law determined

in Fig. 7 for the purely thermal �elliptically stable� case.
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Nu� = 0.097

�THRo	

8�2�R2�
�0.32

E−0.48. �8�

As shown in Fig. 8, the scaling closely agrees with our sys-

tematic experimental measurements.

Our last study concerns the dependence of Nu as a func-

tion of the eccentricity �. In Fig. 9, this dependence is plotted

for different E. We notice that in agreement with Eq. �7�, Nu

increases when E decreases. For each experiment at constant

Ekman number, Nu increases close to the threshold of the

elliptical instability and rapidly reaches a constant value at

larger �. This evolution is related to the evolution of EEI, i.e.,

the Ekman number based on the typical velocity of the ellip-

tical instability introduced before, which implies a scaling of

Nu in �E /	E−1− �5.24 /��2�−1/2 close to the threshold and a

rapid saturation toward E−1/2 once the deformation is suffi-

cient. This result thus also validates our analysis in terms of

the relative thickness of the two types of boundary layers.

To finish with, note that the recent study of Schmitz and

Tilgner
22

has suggested an alternative explanation to King

et al.19
regarding the heat flux control of rotating Rayleigh–

Bénard convection. Indeed, their numerical simulations also

show the presence of two regimes as the function of the

rotation rate even if their system has no Ekman layer. Hence,

they do not interpret their results in terms of boundary layers

competition, but rather in terms of advective flux competi-

tion in the bulk. In our case, the relevant advective heat flux

in the bulk is related to the velocity along the imposed tem-

perature gradient, which comes from the Ekman pumping

induced by the elliptical instability. This Ekman pumping

also scales in E−1/2 and induces the same Nu scalings as

those that we obtained with the boundary layer analysis.

Hence, we cannot discriminate one or the other control

mechanism.

V. CONCLUSION

This paper presents the first systematic experimental

study of the reciprocal influence of the elliptical and convec-

tive instabilities in an elliptically deformed and differentially

heated rotating cylindrical shell. The first predominant result

is that the elliptical instability grows on the established con-

vective motions even if its growth rate decreases when the

intensity of the convection increases. We have also found

scaling laws characterizing the Nusselt number. Two regimes

were found corresponding to boundary layers controlled by

either thermal dissipation or viscous diffusion. Even if the

range of parameters �Ekman and Rayleigh numbers� acces-

sible to our experimental device is relatively limited, we

have identified and validated the general physical mecha-

nisms that control the heat transfer, with or without elliptical

instability.

In the Earth’s core, convective motions are different

from our case because of geometrical constrains. Indeed,

they take the form of Busse columns
9

around the inner solid

core, which propagate as thermal Rossby waves. Hence,

scaling law for heat transfers is different. Christensen and

Aubert
23

determined

Nu − 1 = 0.14
 Ra

Rac
�1.1

, �9�

where Rac scales like E−4/3.
24

A good way to reproduce this

type of motions in the laboratory is to incline the top and

bottom boundaries of the shell.
10

This will be the subject of a

future study. However, we already expect the physical

mechanisms shown here to remain valid. In particular, the

scaling �7� is robust and should persist in planetary cases.
13

Equating this scaling with Eq. �9�, we can evaluate the tran-

sitional Rayleigh number, Rat, as a function of E,

Rat = Rac
0.016E−0.50 − 1

0.14
�1/1.1

, �10�

A typical estimation of the Ekman number in the Earth’s

liquid metal outer core is E�10−15, which gives a transi-

tional Rayleigh number, Rat�7.2�1022. This result sug-

gests that the outer Earth’s core, where Ra�8�1024,
23,25

is

above the transition between the two regimes; hence, it is

thermally controlled. Nevertheless, due to the closeness of

the obtained values, a tidally dominated flux is not precluded

in other convective planetary systems. Note also that the heat

transfer by elliptical instability could be especially important

in the outer stratified part of the core,
26

which should not be

considered as a thermal blanket.
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