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	is paper presents an experimental investigation of anisotropic strength and deformation behavior of coalmeasure shale.	e e
ect
of two factors (i.e., anisotropy and water content) on shale strength and deformation behavior was studied. A series of uniaxial and
triaxial compression tests were conducted on both room dried and water saturated samples for di
erent lamination angles. 	e
test results indicate that (1) the compressive strength, cohesion, internal friction angle, tangent Young’s modulus, and axial strain
corresponding to the peak and residual strengths of room dried specimens exhibit anisotropic behavior that strongly depends on
the orientation angle (�); (2) in comparison to the room dried samples, the compressive strength and Young’s modulus as well as
the anisotropy are all reduced for water saturated specimens; and (3) the failure mechanism of the samples can be summarized into
two categories: sliding along lamination and shearing of rock material, with the type occurring in a particular situation depending
strongly on the lamination orientation angles with respect to the major principal stress. According to the �ndings, it is strongly
recommended that the e
ect of anisotropy and water content on the strength and deformation behavior of the rock must be
considered in ground control designs.

1. Introduction

Shale is one of themost abundant rockmaterials in coalmines
and forms the bulk of the roofs and 
oors of underground
coal mines. Consequently, most cases of ground control
failure are associated with shale. Among the 36 cases with
detailed descriptions of geological conditions depicted by
Peng [1], there were 32 cases with the immediate roof being
shale, and all 9 roof fall cases occurred in shale strata.

Being the weakest part of shale, laminations play a key
role in many kinds of ground control failures but its role
in controlling rock mass behavior has been mostly ignored
by researchers and engineers of the coal mining industry
[2]. Current research on ground control design and analysis
of the causes of ground control failures using computer

modeling and physical simulation are largely based on the
assumption that the mechanical response of shale is isotropic
[3]. However, because of the presence of laminations, the
behavior of sedimentary rock is anisotropic. During mining,
the stresses in the roof strata redistribute continuously. 	e
orientation of the major principal stress (�1) with respect
to the laminations or foliation of sedimentary rock may
not be in the vertical or horizontal directions, and the
failure strength of the rock mass is highly dependent on
the anisotropic properties of the sedimentary rock. Hence,
anisotropy must be taken into consideration in the dynamic
analysis of geologic structure or in the prediction of dynamic
disasters in engineering projects [4].

In the past few decades, the strength anisotropy of many
kinds of rock has been investigated, such as shale and slates
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in [4–8], gneisses and schists in [9–11], phyllites in [12],
sandstone in [7, 13], and arti�cial transversely isotropic rock
in [14–16]. 	eir works demonstrate that the failure strength
of anisotropic material is related to the inclination angle (�)
of the specimen laminations with respect to the direction of
the major principal stress. Ramamurthy [12] stated that the
maximum failure compressive strength is at � = 0∘ or � = 90∘
and the minimum value is around � = 30∘. Meanwhile,
several investigators [8, 12, 16–19] have proposed a series of
failure criteria to predict the strength of anisotropic rocks.
By observing the failure processes and modes, several failure
mechanisms have been proposed by researchers on di
erent
kinds of rock [5, 8, 14]. In spite of those attempts to investigate
the mechanical properties of shale, the anisotropic strength
and deformation behavior, especially the failure mechanism
and the postfailure behavior of coal measure shale, remain
obscure.

In addition to the presence of laminations, another
important factor controlling shale behavior in coal mines is
water content, including liquid water (manmade or natural,
e.g., water inrush from the roof and 
ooding) and high
moisture content ventilation air. It must be pointed out that
because of the abundance of roof water, this issue is more
serious in Chinese coal mines [20–22] than those in most
other countries. In the past, some researchers [6, 23–26] have
investigated the impact of ventilation air moisture on shale.
	eir work demonstrated that the properties of shale changed
greatly as the water content increased. However, those studies
dealt with the special situation when the rock surface was
exposed to moisture carried by ventilation air, instead of
the more general case where underground shale tends to
be immersed in water most of the time. Furthermore, the
detrimental e
ects of high water content on the mechanical
properties of di
erent types of rock have been investigated
in [27–33]. But most of these tests were conducted under
uncon�ned conditions, and few tests were performed on
shale, especially coal measure shale, and none of them
considered the e
ect of water content on rock anisotropy.
Hence, it is of great value to conduct triaxial tests on the water
saturated samples to evaluate the e
ect of water.

In this research, the uniaxial and triaxial compression
tests were conducted with the con�nement in the range of
engineering interests to study the transverse anisotropy
behavior of coal measure shale over the entire range of �
under either the room dried or the saturated conditions.

2. Coal Measure Shale

A well laminated shale block was obtained from the roof
strata of Pittsburgh Seam of a surface mine in Frostburg,
Maryland, USA. To minimize variations in the natural
moisture content of shale samples and in order to obtain
conditions similar to in-situ, the samples were kept wrapped
in plastic sheets until specimen preparation. 	e procedure
used for preparation followed the ASTM Standard D7012-10
[34]. Cylindrical specimens 50mm in diameter with length-
to-diameter ratio of 2 were cored at di
erent angles (� = 0∘,
15∘, 30∘, 45∘, 60∘, 75∘, and 90∘) to the lamination.
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Figure 1: 	e moisture content increment of the specimens in the
water saturated group.

Two groups of tests, room dried and water saturated,
were performed at di
erent values of � (0∘, 15∘, 30∘, 45∘,
60∘, 75∘, and 90∘). With respect to the con�ning pressure
applied to the samples during testing, Brady and Brown [35]
collected data for about 900 in situ stresses measured by
various investigators in various parts of the world and found
that themaximumhorizontal stress was 30MPa for depths up
to 1000m. Sincemost coalmines in theUSA andChina range
from 101 to 1000m in depth, a maximum con�ning pressure
of 30MPa should cover the stress conditions encountered.
Hence, the con�ning pressure applied to the specimens for
this research was no more than 30MPa, that is, 0MPa,
10MPa, 20MPa, and 30MPa for room dried specimens.

Although the shale blocks were wrapped with plastic
sheets during transport from the site to the laboratory, the
specimens were unavoidably watered during the coring, cut-
ting, and grinding processes. Hence, before the tests started,
all the specimens in the room dried group were placed in
the laboratory at room temperature for at least 2 weeks
to release most of the moisture absorbed during specimen
preparation. 	e moisture content for the specimens in the
roomdried groupwas obtained by performing standard tests.
Small pieces of sample were dried at a temperature of 110∘C ±
5∘ for at least 16 h. By dividing the mass of lost moisture by
themass of solid particles, themoisture content was obtained.
	e test results show that the moisture content for the ready-
to-test specimens in the room dried group was 0.79%.

All the specimens in thewater saturated group underwent
the same procedure as those in the air-dry group before they
were immersed in water for about 36 days. For the specimens
in this group, the moisture content increased to 3.79–4.23%
due to immersion in water (Figure 1). Note that the terms
“saturated” or “saturation” in this paper simply refer to the
state achieved by immersing the specimens as described in
this paper; it is di�cult to achieve a full water saturation in
this way.
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Figure 3:	e layout of all 3 linear variable di
erential transformers
(LVDTs).

3. Apparatus and Testing Procedures

	e tests were carried out with the GCTS triaxial rock test
system (RTX-1500) (Figure 2) housed in the Department of
Mining Engineering of West Virginia University, Morgan-
town, WV, 	e United States. 	e testing system is equipped
with two loading subsystems, a servo-controlled vertical
loading subsystem with capacity of 1500 kN, and a servo-
controlled con�ning pressure subsystem with capacity of
200MPa. 	e sti
ness of the testing frame is 1750 kN/mm.

	e axial and lateral strains were determined from data
obtained by the linear variable di
erential transformers
(LVDTs) shown in Figure 3. 	e LVDT 1 and LVDT 2 were
used to measure the axial displacements and LVDT 3 was
a circumferential lateral deformation measurement device
using a chain to measure the lateral/circumferential strain of
the specimens. All 3 LVDTs were calibrated before testing.

Before testing, the sample was placed between the base
cap and the top end cap inside the triaxial cell and jacketed
with the polyole�n heat shrink tube to seal the sample from
the con�ning 
uid. 	en, LVDTs and various sensors were

installed and the triaxial cell was placed onto the testing
platform. A small di
erential stress (�1 − �3) of 0.5MPa was
applied to ensure that the sample was in good contact with
the upper platen. In other words, in the initial part of loading
sequence, the axial stress is consistently 0.5MPa larger than
the gradually increased con�ning pressure until reaching the
planned level of con�ning pressure. During this period, the
axial load was applied from a hydraulic pumpwith a constant
strain rate of 0.002%/s until the test was �nished.

4. Test Results

Figure 4 presents the variations of axial strain (��) and lateral
strain (��) versus the di
erential stress (�1−�3) of room dried
specimens (RD) under con�ning pressures of 0MPa, 10MPa,
20MPa, and 30MPa for di
erent orientation angles (�).
	e complete stress-strain curves corresponding to the water
saturated specimens (WS) are also shown in Figure 4 marked
with pink dots. For di
erent orientation angles, the stress-
strain curves, including both the prefailure and postfailure
stages, exhibit di
erent characteristics. 	e jagged portion
of the stress-strain curves will be discussed in Section 5.4.
Figure 4 shows that the water saturated samples have a lower
compressive strength and Young’s modulus as compared to
the room dried ones.

5. Discussion

5.1. E�ect of Anisotropy andCon	ning Pressure onCompressive

Strength of Room Dried Samples

5.1.1. Peak Compressive Strength. Figure 5 shows the variation
of the di
erential stress at failure (�1−�3) and the correspond-
ing sample orientation (�) at di
erent con�ning pressures
(�3) for room dried specimens. 	e compressive strength of
shale is anisotropic and depends on its orientation angle (�).
It reaches the maximum at � = 0∘ for con�ning pressures
10MPa and 20MPa and at � = 90∘ for con�ning pressure
0MPa and 30MPa. 	e minimum strength always occurs
for samples with � between 30∘ and 45∘ under all con�ning
pressures except uniaxial compressive tests. Similar results
have been obtained by several researchers [5, 8] for other
kinds of rock.

Nasseri et al. [10] de�ned the intensity of anisotropy for
the strength of transversely isotropic materials with the fol-
lowing two parameters:

�1 =
(�1 − �3)max

(�1 − �3)min

�2 =
(�1 − �3) 11
(�1 − �3) ⊥

,
(1)

where �1 de�nes the ratio of the maximum to the minimum
strength and �2 is the ratio of the failure stress for the samples
parallel to the laminations to those perpendicular to the
laminations.
�1 is 3.5, 2.93, 2.45, and 2.14 for con�ning pressures 0,

10, 20, and 30MPa, respectively (Figure 6). In other words,
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Figure 4:	e complete stress-strain curves of dry and saturated shale samples of various angles (�), tested under di
erent con�ning pressures.
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Figure 5: Di
erential stress at failure (�1 − �3) versus � at di
erent
con�ning pressures (�3).
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Figure 6:	e relationship between anisotropic ratio �1 and the con-
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strength anisotropy decreases continuously as the con�ning
pressure increases. Meanwhile, Figure 6 also shows that the
relationship between �1 and the con�ning pressure is linear
and that the anisotropic e
ect of the failure strength will
disappear at a su�ciently high con�ning pressure. When
the con�ning pressure increases, rocks become more ductile,
thereby inhibiting rock anisotropy. 	e same trend was also
noted by other researchers [5, 8]. For con�ning pressures
0, 10, 20, and 30MPa, �2 is 0.84, 0.97, 0.96, and 1.07,
respectively. Hence, the anisotropy of the samples parallel
to the laminations is not markedly di
erent to that of
those perpendicular to the laminations. Figure 7 shows that
the di
erential stress increases linearly with the con�ning

pressure �3 for all correlation coe�cients (	2) more than 0.9.

5.1.2. 
e Mohr-Coulomb Failure Criterion. 	e Mohr-Cou-
lomb failure criterion is widely used in ground control design
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Figure 7: Di
erential stress at failure (�1 − �3) versus con�ning
pressure (�3) at various orientation angles (�).

[23]. 	e cohesion (
) and internal friction angle (�) can be
determined using (2) [35] as shown below:

tan� = 1 + sin�1 − sin�

�� =
2
 cos�
1 − sin�,

(2)

where tan� = the slope of Mohr’s envelope and �� = the
uniaxial compressive strength.

	e slope and intercept of the lines in Figure 7 were
used to determine the cohesion (
) and internal friction angle
(�) of room dried samples with di
erent �. 	e results are
plotted in Figure 8. Based on the constructedMohr-Coulomb
curves, the peak strength envelope of normal stress (�) and
shear stress (
) for di
erent � was obtained and shown
below. It can be seen from Figure 8 that cohesion exhibits
obvious anisotropic behavior and strongly depends on the
loading orientation. Speci�cally, the cohesion of samples with
� between 15∘ and 45∘ is much smaller than others. 	is is
because the failure mode of samples with � between 15∘ and
45∘ is shearing along the laminations (Section 5.4). Obviously,
the required force of shearing failure along the rock material
is higher than that of shearing along the laminations.

Figure 8 indicates that the internal friction angle follows
a “W-shaped” curve, which is neither consistent with the
concave curve nor remaining constant as reported in [4, 8].
	e internal friction angle is anomalously high for � = 45∘.
A�er a closer examination of the fracture planes for � = 45∘,
the discrepancy could be attributed to di
erences in rock
material variability even over a very short distance, even
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Figure 8: 	e friction angle and cohesion at various orientation
angles were determined by plotting the linear Mohr-Coulomb fail-
ure envelopes.

though all specimens were drilled from the same block. Tiny
sandstone streaks were found on the main fracture planes for
� = 45∘ and the granularity of sandstone is coarser than that
of shale. Consider

For � = 0∘, 
 = � tan 30.73∘ + 25.4,

For � = 15∘, 
 = � tan 20.39∘ + 11.05,

For � = 30∘, 
 = � tan 12.64∘ + 15.97,

For � = 45∘, 
 = � tan 23.88∘ + 7.4,

For � = 60∘, 
 = � tan 14.86∘ + 28.5,

For � = 75∘, 
 = � tan 12.09∘ + 33.83,

For � = 90∘, 
 = � tan 22.14∘ + 35.55.

(3)

5.2. E�ect of Anisotropy and Con	ning Pressure on

Deformability of Room Dried Samples

5.2.1. Young’s Modulus. In accordance with the recom-
mended method by ASTM [34], the tangent Young modulus
(��) was calculated using the average slope of the axial stress-
axial strain curve (Figure 4) at 50% of the peak strength.
	e relationship between the tangent Youngmodulus and the
corresponding orientation (�) at di
erent con�ning pressures
(�3) for room dried specimens is presented in Figure 9. Note
that the highest Young’s modulus was always obtained at � =
0∘ nomatter what con�ning pressurewas applied, while lower
values of Young’s modulus occurred for samples with � in
the range of 45∘–75∘. 	is is because the axial deformation
for specimens in that angle range is mainly controlled by the
laminations.

Similar to the relationship between the peak strength and
the orientation angle of the laminations (i.e., �), a correlation
has been obtained between Young’s modulus and �, as shown
in Figure 9. As the con�ning pressure increases, Young’s
modulus 
uctuates only slightly overall.
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5.2.2. Poisson’s Ratio. Poisson’s ratio was calculated from (4)
based on the ASTM Standard [34], as shown in Figure 10.
Most of the ratios range from 0.3 to 0.4 with small variations
exceptwhen� = 30∘ and 45∘. It can be seen that Poisson’s ratio
does not exhibit apparent anisotropic behaviorwith respect to
the orientation angle within the range of con�ning pressures
tested. In fact, the ratio tends to vary only slightly. In addition,
it also can be seen from Figure 10 that Poisson’s ratio of the
water saturated samples is generally smaller than that of room
dried specimens except for those with � = 75∘:

] = − slope of axail curve

slope of lateral curve
= − ��

slope of lateral curve
,
(4)
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where the slope of the lateral curve of the complete stress-
strain curve (Figure 4) is determined in the same manner as
was done for tangent Young’s modulus, ��.

5.2.3. Volumetric Strain. Figure 11 shows the variation of dif-
ferential stress versus volumetric strain of room dried and
saturated specimens under di
erent con�ning pressures.
When the axial load is initially applied, specimen tends to
be compressed. As the di
erential stress approaches or just
reaches the peak strength, the volume of the specimen starts
to increase due to internal fracturing. 	is phenomenon is
called specimen dilation. Shortly a�er the peak strength is
reached, the net volumetric strain of the specimen becomes
negative, which means the dilation continues in the postpeak
stage. Note that, for the two specimens with � = 75∘ and
� = 90∘ and both tested under con�ning pressure = 10MPa,
the result is invalid because the lateral deformation measure-
ment device (LVDT 3) failed during tests. Meanwhile, since
small cracks are gradually closed with the applied con�ning
pressure, the amount of volume compression for specimens
in triaxial compression is much smaller than that of the
specimens in uniaxial compression.

5.3. E�ect of Water Content on Anisotropic Strength and
Deformation Behavior. Figure 12 shows compressive strength
curves plotted against the orientation at con�ning pressure
20MPa for the room dried and saturated specimens. 	e
cohesion and internal friction angle could not be determined
directly for the water saturated specimens because tests were
performed at a single con�ning pressure of 20MPa.

In comparison to the room dried specimens, the intensity
of anisotropy is obviously suppressed for water saturated
specimens.	e curve for the saturated specimens in Figure 12
is 
at instead of shoulder-shaped. 	e compressive strength
is maximum at � = 90∘, followed by 75∘, and the minimum
is at � = 45∘. Figure 12 also indicates that water has some
impact on the compressive strength of shale. 	e average
compressive strength of saturated specimens is 28.9% lower
than that of the room dried specimens. 	e largest reduction
of 54% occurs at � = 0∘. Similar results were reported in
[25, 27, 28, 30]. In addition, it is quite interesting to note that
strength reduction is sensitive to the orientation angle (�);
that is, water content has the greatest e
ect on compressive
strength when the load is applied perpendicular and parallel
to the laminations, while the minimum e
ect occurs when
the orientation angle is around 30∘.

Figure 13 compares Young’s modulus of the room dried
and saturated specimens under con�ning pressure of 20MPa.
	e average and maximum reductions in Young’s modulus
of the water saturated samples are 26.1% and 62% (at � =
90∘), respectively. Similar to the e
ect of water content
on compressive strength, the proportion of reduction of
Young’s modulus (i.e., shadow area in Figure 13) is related
to the orientation angle (�) of specimen laminations; that
is, reduction in Young’s modulus increases gradually from
the middle (� = 45∘) to both ends (� = 0∘ and 90∘). In
other words, water has the largest e
ect on sti
ness of shale
specimenwhen the applied load is perpendicular and parallel

to the laminations, but it has the minimum e
ect when the
orientation angle is around 45∘.

Li et al. [31] claimed that although various hypothe-
ses including fracture energy reduction, capillary tension
decrease, frictional reduction, chemical and corrosive dete-
rioration, and e
ective stress decrease due to pore pressure
have been put forward in an attempt to interpret the e
ect of
water content, none of them provides a reliable and quantita-
tive approach to the problem. Based on Li’s theory, when rock
contains su�cient water-sensitive constituents such as clay
and silt, both cohesive strength and internal friction anglewill
be reduced due to the presence of water, whichmeans that the
shear strength of the potential failure plane decreases. Hence,
the water saturated specimen will fail at a lower compressive
strength than that of the dry specimen. van Eeckhout and
Peng [6] stated that water enrichment in ground strata could
have a profound e
ect on coal mine roofs. More speci�cally,
when the water is absorbed into the roof shale, the shale
will relax because of decreased elasticity. 	ese might be
the reason why compressive strength and Young’s modulus
decrease under the water saturated condition. Nevertheless,
themechanisms behind the phenomena that the higher water
content of specimens reduces the anisotropic e
ect and the
rationale behind it are still unclear.

5.4. Failure Mechanism and Postfailure Behavior

5.4.1. Failure Modes. As stated in the previous sections, the
mechanical properties of shale (i.e., compressive strength,
Young’s modulus, and axial strain at peak strength) exhibit
obvious anisotropic characteristics, which are believed to be
related to the failure mechanisms in shale. It was observed
that brittle fractures are deformation characteristics of all
specimens at all three con�ning pressures. Generally speak-
ing, the fracture planes develop in two modes of brittle
fractures, that is, sliding along laminations and shearing of
rockmaterial. Since themaximumcon�ning pressure applied
in this research was 30MPa, which is insu�ciently high to
translate the failure mode from brittle to plastic 
ow or kink

ow as reported in [4, 8]. Figure 14 shows all the samples
a�er testing, whereas Figure 15 illustrates two typical modes
of specimen failure.

(1) Types of Fracture. 	ere are two types of fracture (Fig-
ure 16). In the �rst type (Figure 16(a)), the laminations
intersect one or both of the end surfaces of the specimen.
In this case, when a fracture along the laminations occurs,
it intersects one or both interfaces between the specimen end
and the platen. As the test continues, the postfailure stress-
strain curve 
uctuates without losing strength (Figures 4(a),
4(b), and 4(f)). It �nally drops down gradually as the test
continues further. In the second type (Figure 16(b)), fractures
occur in the shale matrix or along the laminations. In this
case, both ends of the fracture are located on the free surface
of the specimen without the constraint of the interface
between the specimen ends and the platen. Consequently, its
postfailure curve is a very rapid and sudden drop of strength
(Figures 4(d) and 4(e)) is observed.
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Figure 11: Continued.
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Figure 12: Comparison of the compressive strength of the room
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(2) Fracture Developed along the Laminations. For samples
with � between 15 and 45∘ (Figures 4, 14, and 15(a)), spec-
imens always failed suddenly along the lamination, because
at failure the shear stress acting on the laminations exceeds
their shear strength. Hence, the strength of samples with �
between 15 and 45∘ was dictated by the shear strength of the
laminations.

(3) Fracture Developed across Rock Material. For samples
with � = 0∘ and between 60 and 90∘ (Figures 4, 14, and
15(b)), fractures developed in the rock material, which can
be attributed to the fact that the shear stress acting on
the laminations was smaller than the shear strength along
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Figure 13: Comparison of the tangent Young modulus of the room
dried and saturated specimens.

the laminations. Consequently, failure was dictated by the
shale matrix instead of the laminations.

6. Conclusion

Coal measure shale is one of the most widely distributed
rock materials in underground coal mines, and most ground
control failures are related to coal measure shale. Although
lots of research work have been done on the anisotropic
behavior of di
erent types of rocks or arti�cial materials,
more detailed laboratory work on anisotropic strength and
deformation behavior of coalmeasure shale, especially taking
into consideration the e
ect of water content, is still needed
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Figure 14: Photos of room dried samples at di
erent � under various con�ning pressures a�er testing.

in order to understand better the mechanisms of many
ground control failures. In this study, the uniaxial and triaxial
compression tests have been conducted on samples of coal
measure shale, under both room dried and water saturated
conditions, to study the e
ect of anisotropy andwater content

on the strength, deformability, and failure modes of coal
measure shale.

Results of tests show that the strength and deformation
behavior of room dried samples are strongly a
ected by the
direction of the laminations with respect to that of the major
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principal stress. 	e maximum strength always occurs at
� = 0∘ or � = 90∘. Meanwhile, the minimum strength
always occurs for samples with � between 30∘ and 45∘. As
the con�ning pressure increases, the compressive strength
increases uniformlywhereas the anisotropic e
ect of strength
decreases. Based on the Mohr-Coulomb failure criterion,
the cohesion ranges from 7.4 to 35.5MPa with the higher
values being found among samples with � = 60∘–90∘. 	e
tangent Young modulus also exhibits anisotropic behavior
with respect to � with the maximum being for � = 0∘.
Furthermore, as the con�ning pressure increases, Young’s
modulus only 
uctuates slightly.

On the other hand, the impact of water content on com-
pressive strength anddeformation behavior is very evident. In
comparison to room dried samples, the average compressive
strength and Young’s modulus reductions of water saturated
samples are 28.9% and 26.1%, respectively, whereas the max-
imum reductions are 54% and 62%, respectively. Meanwhile,
test results also indicate that these reductions are strongly
related to the orientation angle (�). Water content has more
e
ect on strength andYoung’smoduluswhen the applied load
is perpendicular and parallel to the lamination orientation
and has minimum e
ect when the orientation angle falls in
the range of 30∘–45∘. Furthermore, compared to room dried
samples, the anisotropy of compressive strength and Young’s
modulus of water saturated samples is clearly reduced.

	ere are two types of failure mechanisms for shale:
sliding along laminations and shearing of rock matrix. 	e
two types of postfailure stress-strain curve are strongly
dependent on the failure mechanism. One is a sudden and
rapid drop down, while the other 
uctuates before slopping
down gently to the residual strength.
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