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Abstract: As the most important device of an Autonomous Underwater Vehicle (AUV), thrusters are
one of the main sources of fault. If the thruster fault can be diagnosed in the early stage, it would
give more time to guarantee the safety of an AUV. Fault feature extraction is the premise of fault
diagnosis. The traditional feature calculation methods extract fault features from one domain. These
methods work well in the case of high fault severity, but poorly in the case of weak fault severity.
In addition, for weak faults, the fault features extracted by the traditional methods may not meet
the monotonic relationship with fault severity and cannot be used in fault severity identification.
Aiming at these problems, through experimental data analysis, this paper excludes the features that
do not meet the law from the 52 selectable fault features in the time domain, frequency domain
and time-frequency domain. Aiming at the problem that there is no useful feature in the frequency
domain, a new feature calculation method is proposed, and the order of magnitude of the available
feature is given, which provides concise and accurate information for subsequent fault feature fusion
and fault severity identification.

Keywords: Autonomous Underwater Vehicle; weak fault; multi-domain feature extraction;
experiment study

1. Introduction

At present, the Autonomous Underwater Vehicle (AUV) plays an important role in
the detection of marine resources [1]. Safety is one of the vital issues for AUV research
and application during unmanned and cableless operations in the marine environment [2].
Fault diagnosis technology is a key technology to ensure its safety [2]. As the component
with the heaviest load and the highest use frequency in an AUV, the thruster is one of the
main fault sources of an AUV [3]. Fault diagnosis technology of thrusters has important
research significance and practical value to improve the safety of AUVs [4].

The thruster fault diagnosis technology of AUVs has attracted the attention of many
scholars and its main research focuses on the serious thruster fault (loss of effective-
ness > 10%) [5–7]. Different from serious thruster faults, most weak thruster faults
(loss of effectiveness ≤ 10%) are the faults in the early stage. The weak fault feature of
thrusters and external interference overlap in the frequency band, and the AUV closed-loop
control system has a certain compensation effect on ocean current interference and even
thruster fault [8,9]. All of these increase the difficulty of a weak fault diagnosis of thrusters.
Thus, research on weak fault diagnosis technology of thrusters can give more time to
guarantee the safety of an AUV, so as to avoid fatal accidents. There is still little literature
on weak thruster faults at present [10,11].

The process of weak fault diagnosis of thrusters mainly includes fault feature ex-
traction and fault severity identification [12]. This paper studies the problem of fault
feature extraction.
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Generally, fault features are extracted in three domains: time domain, frequency
domain, or time-frequency domain [13,14], and several features are extracted in one do-
main [15]. In the past, only one domain was mostly selected to extract several fault features
for fault severity identification [16–20]. The existing fault feature extraction methods in-
clude wavelet decomposition, empirical mode decomposition, sparse decomposition, and
other methods. Liu, et al. [21] proposed an AUV fault diagnosis method based on wavelet
decomposition. This method transforms the surge velocity and yaw angle in the time
domain into frequency domain features by the wavelet method. After that, the fractal
method is used to extract the fractal characteristics of the original signal, approximation
coefficient, and detail coefficient to realize the fault diagnosis of the fault severities greater
than 10% (10% to 50%). However, when the method handles 5% weak faults, it cannot
obtain satisfactory fault feature values. Zhang, et al. [22] proposed an AUV fault extraction
method based on empirical modal decomposition (EMD). This method converts the surge
velocity and control quantity in the time domain into frequency domain features by EMD
and wavelet methods, so as to achieve blind source separation and enhancement of fault
features. This method is also difficult to extract the fault feature values of weak fault [23].
In this study, it was found that for the serious thruster faults, most of the features extracted
in the three domains could be used for subsequent fault severity identification. However,
for the weak thruster faults, among the fault features extracted in the three domains, some
of the fault features do not satisfy the law of monotonous increase (or monotonic decrease)
with the increase of the fault degree. In addition, although some of the fault features con-
form to the monotonic law, the difference of fault features between adjacent fault severities
is too small to be used for fault severity identification. None of these features can be used
for the subsequent fault severity identification. Therefore, for weak fault feature extraction
of thrusters, it is necessary to determine the useful fault features and eliminate the useless
ones at first.

For AUV fault diagnosis, there are multiple input signals such as surge velocity signal,
yaw angle signal, control signal, tracking error (and so on), and each input signal has
multiple features in one domain. Moreover, for all the features of all input signals in
the three domains, not all features are useful. Therefore, to maximize the extraction of
fault features for the weak fault diagnosis of AUVs and provide refined and accurate
information for subsequent fault severity identification, fault features should be extracted
in different domains (time domain, frequency domain, and time-frequency domain), and
the unusable feature should be eliminated. In terms of solving the problem of weak
fault feature extraction of thrusters, there is no literature report on which features are
useful and which are not. Furthermore, in the experimental study, it was found that the
traditional feature calculation method is difficult to extract useful features in a certain
domain. Therefore, it is necessary to improve the traditional feature calculation method.

Based on the above analysis, in order to improve the accuracy of subsequent weak
fault diagnosis, this paper looks for scientific and reasonable fault characteristics from
different domains. The main innovation points of this paper are as follows:

(1) Aiming at the problem of feature extraction of weak thruster fault, based on the
experimental data of AUVs with different fault severity, this paper studies the variation
trend and characteristics of different features in multiple domains (time domain, fre-
quency domain and time-frequency domain), and determines the scientific and reasonable
fault features.

(2) To enlarge the number of useful fault features as much as possible, the features
without monotonic change law are improved to show an obvious monotonic change law
with the fault severities, and their effectiveness is verified by experiments.

(3) Finally, the useful fault features in time domain, frequency domain, and time-
frequency domain are extracted, and the order of magnitude of different fault features is
given, which lays a foundation for subsequent fault feature fusion.

This paper is organized as follows: In Section 2, the experimental carrier, experimental
environment and thruster fault simulation methods are briefly introduced. In Section 3, the
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research ideas of this paper are proposed. In Section 4, the fault feature of each domain is
briefly described. In Section 5, taking the surge velocity signal as an example, the law of all
features in the time domain, frequency domain, and time-frequency domain is analyzed,
and aiming at the problem that there are no useful features in the frequency domain, a new
calculation method of feature is proposed. In Section 6, for the commonly used AUV signals
such as control quantity, yaw angle and tracking error, according to the experimental data,
the useful features are extracted, and the order of magnitude of each feature is given, which
provides scientific and reasonable features for feature fusion and fault degree identification.
Finally, the main findings of this paper, the limitations of this methodology, and the research
perspectives are presented in Section 7.

2. Experimental Setup

This section briefly describes the experimental platform and fault simulation methods.

2.1. Experimental Carrier

In this paper, a Beaver II AUV is used as the experimental carrier, as shown in Figure 1.
Its length, width and height are 0.8 m, 0.5 m, and 0.4 m, respectively, and the mass in the
air is 50 kg.

Machines 2022, 10, 236 3 of 17 
 

 

This paper is organized as follows: In Section 2, the experimental carrier, experi-

mental environment and thruster fault simulation methods are briefly introduced. In Sec-

tion 3, the research ideas of this paper are proposed. In Section 4, the fault feature of each 

domain is briefly described. In Section 5, taking the surge velocity signal as an example, 

the law of all features in the time domain, frequency domain, and time-frequency domain 

is analyzed, and aiming at the problem that there are no useful features in the frequency 

domain, a new calculation method of feature is proposed. In Section 6, for the commonly 

used AUV signals such as control quantity, yaw angle and tracking error, according to the 

experimental data, the useful features are extracted, and the order of magnitude of each 

feature is given, which provides scientific and reasonable features for feature fusion and 

fault degree identification. Finally, the main findings of this paper, the limitations of this 

methodology, and the research perspectives are presented in Section 7. 

2. Experimental Setup 

This section briefly describes the experimental platform and fault simulation meth-

ods. 

2.1. Experimental Carrier 

In this paper, a Beaver II AUV is used as the experimental carrier, as shown in Figure 

1. Its length, width and height are 0.8 m, 0.5 m, and 0.4 m, respectively, and the mass in 

the air is 50 kg. 

Digital 
Compass

Depthmeter

Left 
Horizontal 
Thruster

Doppler 
Velocity 

Log

Navigation/telemetry
 Pressure Vessel

Power 
Pressure Vessel

 

Figure 1. Beaver II. 

Beaver II takes the PC104 module as the core system and is equipped with a variety 

of expansion modules to realize data acquisition and analog/digital input and output. 

PC104 module runs VxWorks real-time operating system to ensure the real-time perfor-

mance of AUV path planning, motion control, data transmission, and other functions. The 

control frequency is 5 Hz. Beaver II is divided into two parts: sensor system and actuator 

system. The specific configuration is as follows: 

a. Sensor System Configuration 

To obtain AUV status information such as speed, angle and depth required for fault 

diagnosis, the sensors system configuration includes Doppler Velocity Log (Navquest 600 

Micro); digital electronic compass (HMR3000); depth gauge (Cyt-151). 

b. Actuator System Configuration 

Beaver II is propelled by propellers, and the turning motion of the bow is realized by 

the lateral propeller and the differential between the two main propellers. The specific 

arrangement of the propeller is shown in Figure 2. 

Figure 1. Beaver II.

Beaver II takes the PC104 module as the core system and is equipped with a variety
of expansion modules to realize data acquisition and analog/digital input and output.
PC104 module runs VxWorks real-time operating system to ensure the real-time perfor-
mance of AUV path planning, motion control, data transmission, and other functions. The
control frequency is 5 Hz. Beaver II is divided into two parts: sensor system and actuator
system. The specific configuration is as follows:

a. Sensor System Configuration

To obtain AUV status information such as speed, angle and depth required for fault diag-
nosis, the sensors system configuration includes Doppler Velocity Log (Navquest 600 Micro);
digital electronic compass (HMR3000); depth gauge (Cyt-151).

b. Actuator System Configuration

Beaver II is propelled by propellers, and the turning motion of the bow is realized
by the lateral propeller and the differential between the two main propellers. The specific
arrangement of the propeller is shown in Figure 2.

In Figure 2, the propulsion system of Beaver II includes 6 propeller thrusters. The surge
velocity is controlled by thrusters HT3 and HT4. The heading is controlled by thrusters
HT1 and HT2. The depth is controlled by thrusters VT1 and VT2.

2.2. Experimental Environment

To simulate the influence of external interference such as ocean current on fault
diagnosis as much as possible in the pool experimental environment, an ocean current
simulation device used to produce ocean current was designed by the authors’ lab. The
experimental pool and the device are shown in Figure 3.
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Figure 3. Experimental condition.

In Figure 3, the length, width, and depth of the experimental pool are 50 m, 30 m, and
10 m, respectively. The ocean current simulation device is composed of four thrusters (24 V,
200 W) arranged horizontally to simulate the current interference. During the experiment,
the sampling period was 4 s, and the measured flow velocity is shown in Figure 4.
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In Figure 4, the ocean current simulation device is located 3 m below point A, and the
AUV is driven along vector B.
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2.3. Fault Simulation Method

The fault of AUV thrusters is generally manifested as output loss; that is, the actual
output is less than the theoretical output. The greater the fault severity, the greater the
difference between the theoretical output and the actual output. The reasons for the fault
of AUV thrusters may include the entanglement of the propeller, the deformation and
damage of the blade, the reduction of the performance of the motor driving the propeller,
etc. In the experimental research of thruster faults, most of the thruster faults are made via
software [24]. The specific method is as follows:

U′ = (1− λ)U + 0.6326λ (1)

where U′ is the actual input control voltage of the thruster, U is the output voltage of the
controller, and λ is the fault severity of thruster, and its variation range is (0%, 100%). 0%
means no-fault, and 100% means the most serious fault with no thruster output. According
to the relationship between U′ and U, the actual input control voltage U′ of the thruster
corresponding to each fault severity can be calculated. Adjusting U′ can simulate different
degrees of thruster fault severity.

3. Multi-Domain Fault Feature Extraction

Fault features are generally extracted in the time domain, frequency domain, and
time-frequency domain, and several features can be extracted in each domain. In the past,
fault features were generally extracted in a single domain of the above three domains. This
idea is feasible for serious thruster fault, and there are many research results [16–20].

In this study, it was found that weak fault features extracted only in one certain domain
have a poor effect, which directly affects the accuracy of subsequent fault severity identifi-
cation. The reason for this is that the weak fault signal is weak, the strength of the fault
feature is similar to the interference feature. Therefore, it is difficult to effectively extract
weak fault features in a single domain to reflect the real essence of the fault. To accurately
diagnose weak faults, fault features in multiple domains should be used effectively.

There are multiple input signals in this study, including surge velocity, yaw angle,
control input, and tracking error, and there are multiple features in a domain (such as
frequency domain) for one input signal. Therefore, there are many (up to dozens) features.
Among the dozens of features, some of them may not meet the rule of monotonically
increasing (or decreasing) with the increase of fault severity, and some of them meet this
rule, but variation is very small. These features must be removed to provide as few and
accurate features as possible for subsequent fault severity identification. For weak faults of
AUV thrusters, no one has studied which features are useful.

Based on the above analysis, this paper proposes a multi-domain fault feature ex-
traction method for weak fault feature extraction of AUV thrusters. The basic idea is
as follows:

(1) Expand the domain of feature extraction. In the time domain, frequency domain,
and time-frequency domain, the fault feature extraction method is studied.

(2) Improve the traditional feature calculation method. In the time domain, frequency
domain, and time-frequency domain, the result obtained by the traditional calculation
method may not meet the rule of monotonically increasing (or decreasing) with the increase
of fault severity. In this paper, the traditional feature calculation method is improved.

(3) Optimize and select useful features. There are dozens of features in the time
domain, frequency domain, and time-frequency domain, and many of them do not satisfy
the monotonicity rule. If these are sent into fault severity identification without distinction,
the accuracy of fault severity identification will be seriously affected. Therefore, to provide
multi-source and accurate information for subsequent fault severity identification, based on
the experimental results, the features that do not meet the monotonicity rule or have small
variation are eliminated in the dozens of features in the time domain, frequency domain,
and time-frequency domain, and the refined and accurate features are retained.
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To summarize, the specific process of extracting multi-dimensional fault features in
time domain, frequency domain, and time-frequency domain can be summarized, as shown
in Figure 5.
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4. Fault Features in Each Domain

This section describes the definition and calculation methods of fault features in each
domain, so as to facilitate the analysis and refinement of each feature in subsequent sections.

4.1. Fault Features in the Time Domain

The discrete expression of the time domain signal is X = {x1, x2, x3, . . . , xn}, and n is
the number of sampling points. According to the literature [25,26], the six selected typical
features in the time domain are as follows:

(1) Standard deviation (STD)

STD =

√
1

(n− 1)

n

∑
i=1

(xi − x)2 (2)

where x = 1
n

n
∑

i=1
xi.

(2) Root mean square (RMS)

RMS =

√
1
n

n

∑
i=1

(xi)
2 (3)

(3) Fluctuation deviation (FLD)

FLD =

√√√√ 1
(n− 1)

n−1

∑
i=1

(xi+1 − xi)
2 (4)

(4) Kurtosis (KR)

KR =

1
n ·

n
∑

i=1
(xi − x)4

( 1
n ·

n
∑

i=1
(xi − x)2)2

(5)

where x = 1
n

n
∑

i=1
xi.
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(5) Crest factor (CF)

CF =
1
k

k

∑
j=1

CFj (6)

with

CFj =
max

∣∣∣xj
i

∣∣∣√
1
m

m
∑

i=1
(xj

i)
2

(7)

where k is the number of short signals, and m is the length of the short signal, k = n/m; xj
i is

the value of the i-th point within the j-th short signal, j = 1, 2, 3, . . . , k, i = 1, 2, 3, . . . , m.
(6) Shape factor (SF)

SF =

√
1
n

n
∑

i=1
(xi)

2

1
n

n
∑

i=1
|xi|

(8)

4.2. Fault Features in the Frequency Domain

According to the literature [27], the four typical features in the frequency domain after
fast Fourier transform (FFT) are selected as follows:

(1) Mean frequency (MF)

MF =
1
K
·

K

∑
k=1
| fk| (9)

(2) Frequency centroid (FC)

FC =

K
∑

k=1
fk·Xk

K
∑

k=1
Xk

(10)

(3) Root mean square frequency (RMSF)

RMSF =

√√√√√√√√
K
∑

k=1
fk

2·Xk

K
∑

k=1
Xk

(11)

(4) Standard deviation frequency (STDF)

STDF =

√√√√√√√√
K
∑

k=1
( fk − FC)2·Xk

K
∑

k=1
Xk

(12)

For Equations (9)–(12), fk is the frequency value and Xk is the corresponding spectrum
value, k = 1, 2, . . . , K, K is the total number of spectrum lines.

4.3. Fault Features in the Time-Frequency Domain

The three features in the time-frequency domain after S-transformation are as follows:
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(1) Energy of probability (EOP)

EOP =

Nre·
Nre
∑

i=1

K
∑
j
(reij − re)4

(
Nre
∑

i=1

K
∑
j
(reij − re)2)2

(13)

where the energy operator reij is defined as the energy of the point (i, j) in the S-transform
spectrum. re represents the average value of the energy operator of all points of the S-
transform spectrum. Nre = K·(n− 2) is the number of energy operators, K is the number
of spectral lines after FFT (fast Fourier transform), and n is the data length of the signal.

(2) Energy of local maximum (EOLM)

EOLM = max[EOLi] (14)

where EOLi represents the local energy entropy of all sub-regions of the S-transform
spectrum, i = 1, 2, 3, . . . , (n− 2− a)·(K − b), a and b represent the length and width of
sub-regions respectively, K is the number of spectral lines after FFT, and n is the data length
of the signal. The local energy entropy EOLi of each sub-region can be obtained by the sum
of the energy operators of all points in the sub-region:

EOLi(k, h) =
a+k

∑
i=1+k

b+h

∑
j=1+h

(rei j)
2 (15)

where k = 0, 1, 2, 3, . . . , n− 2− a, h = 0, 1, 2, 3, . . . , K− b. The values of k and h are to ensure
that the local energy entropy of all sub-regions can be obtained.

(3) Energy ratio (ER)

ER =
I

∑
i=1

EOLi
max[EOLi]−min[EOLi]

(16)

where I = (n− 2− a)·(K− b), EOLi is given by Equation (15).
For Equations (13)–(16), the energy operator reij is as follows:

reij =
∣∣∣xi+1

2 − xi·xi+2

∣∣∣· f j (17)

where f j is the frequency of the point in the S-transform spectrum, j = 1, 2, 3, . . . , K. xi is
the amplitude of the point in the S-transform spectrum, i = 1, 2, 3, . . . , n− 2.

In summary, there are 13 features in total, including 6 features in the time domain,
4 features in the frequency domain, and 3 features in the time-frequency domain.

As explained above, the weak fault diagnosis of the thruster studied in this paper has
4 input signals: surge velocity, yaw angle, control quantity, and tracking error; and each
input signal can get 13 features, so there are 52 features in total. For the subsequent fault
severity identification, it is not that the more features, the better. Instead, it is hoped to
eliminate the features that do not satisfy the monotonicity law and the features with small
changes and try to ensure that there are features in the three domains.

5. Analysis of Feature of Surge Velocity Signal

For the weak fault diagnosis of the thruster, there are 4 input signals: surge velocity,
yaw angle, control quantity, and tracking error. To make the paper clear, this section takes
the surge velocity signal as an example to study the change rule of its features in the time
domain, frequency domain, and time-frequency domain. Aiming at the problem that the tra-
ditional feature calculation method in the frequency domain cannot obtain useful features,
this paper proposes an improved feature calculation method verified by experiments.
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5.1. Analysis of Fault Features in the Time Domain

The Beaver II is used to simulate different fault severity of thrusters (loss of effec-
tiveness is 0%, 2%, 5%, 8%, and 10%), and the corresponding surge velocity signals are
obtained. The length of the signal is 300. According to the feature calculation formula in
Section 4, the 6 features, including FLD, KR, STD, RMS, CF, and SF in the time domain are
obtained. The results are shown in Table 1.

Table 1. Features of the surge velocity signal in the time domain for different fault severity.

Features 0% 2% 5% 8% 10%

STD 0.0096 0.0101 0.0122 0.0091 0.0103
FLD 1.8659 1.9587 2.0674 2.1865 2.3655
RMS 0.1668 0.1983 0.1831 0.1907 0.1967
KR 3.9506 3.7974 3.4637 3.2676 3.0809
CF 1.1818 1.1897 1.1466 1.1326 1.1344
SF 1.0016 1.0016 1.0015 1.0012 1.0011

From Table 1, as the fault severity increases (loss of effectiveness from 0% to 10%), FLD
and KR show a monotonous increase, which is a usable feature; STD, RMS, CF, and SF do
not show a monotonous increase (or decrease), which are unusable features.

Through the analysis of experimental data, the original 6 features in the time domain
are reduced to two, which provides scientific and reasonable information for subsequent
fault severity identification.

5.2. Analysis of Fault Features in the Frequency Domain
5.2.1. Results of Traditional Feature Calculation Method

The source of experimental data is the same as above. First, the frequency spectrum
is obtained by FFT. The number of spectral lines is 300. Next, according to the feature
calculation equations, the features, including MF, FC, RMSF, and STDF, in the frequency
domain are obtained. The results are shown in Table 2.

Table 2 is analyzed as follows:

Table 2. Features of the surge velocity signal in the frequency domain for different fault severity.

Features 0% 2% 5% 8% 10%

MF 0.1979 0.1815 0.1418 0.1554 0.1324
FC 1.6623 1.6589 1.6616 1.6620 1.6686

RMSF 1.9165 1.9137 1.9199 1.9197 1.9218
STDF 0.9536 0.954 0.9619 0.9607 0.9535

As the fault severity increases (loss of effectiveness from 0% to 10%), none of the MF,
FC, RMSF, and STDF show a monotonous increase (or decrease). Therefore, they are all
unusable features.

5.2.2. The Improved Feature Calculation Methods

By analyzing the FFT of the weak fault signal of thrusters, it is found that the features
of the amplitude variation signal of the weak fault signal in the frequency domain are more
obvious than its features. Therefore, to enhance the features in the frequency domain of
the signal, the three feature calculation methods of FC, RMSF, and STDF in the frequency
domain are improved. Since the formula of MF does not contain a variable Xk, MF will not
be improved.

The implementation process of the improved methods are as follows:
The amplitude variation with more obvious feature variation replaces the amplitude

in the original calculation formula, that is, amplitude variation ∆Xk replaces the amplitude
Xk in Equations (10)–(12).
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The three improved features are respectively denoted as FCx, RMSFx, STDFx, and
their formulae are as follows:

FCx =

K
∑

k=1
fk·∆Xk

K
∑

k=1
∆Xk

(18)

RMSFx =

√√√√√√√√
K
∑

k=1
fk

2·∆Xk

K
∑

k=1
∆Xk

(19)

STDFx =

√√√√√√√√
K
∑

k=1
( fk − FC)2·∆Xk

K
∑

k=1
∆Xk

(20)

where ∆Xk = (Xk+1 − Xk), K is the number of frequencies of the signal after FFT, fk is the
value of frequency.

The improved method and the traditional method were used to calculate the features
of surge velocity signals in the frequency domain under different thruster faults. The
comparison results are shown in Table 3.

Table 3 is analyzed as follows:

Table 3. Comparison of feature extraction effect between improved method and traditional method.

Features 0% 2% 5% 8% 10% 20% 30%

FC 1.6623 1.6589 1.6616 1.6620 1.6686 1.6513 1.6587
FCx 0.1384 0.1261 0.1229 0.1251 0.1204 0.1123 0.0881

RMSF 1.9165 1.9137 1.9199 1.9197 1.9218 1.9110 1.9172
RMSFx 0.2463 0.2336 0.2238 0.2204 0.2176 0.1812 0.1379
STDF 0.9536 0.954 0.9619 0.9607 0.9535 0.9619 0.9615
STDFx 1.5677 1.5559 1.5436 1.5365 1.5261 1.4955 1.4542

For weak faults, FCx does not show a monotonous increase as the fault severity
increases, so it is useless; RMSFx and STDFx meet the law of monotonicity as the fault
severity increases, so they are useful. The original three features (FC, RMSF and STDF) are
useless. In summary, 2 useful feature calculation methods illustrate the effectiveness of
the improvements in this paper. Therefore, there are two useful features in the frequency
domain for weak thruster faults: RMSFx and STDFx.

For serious faults (loss of effectiveness is 20% and 30%), RMSFx and STDFx also meet
the law of monotonicity as the fault severity increases. It shows that the improved method
is also applicable to serious faults. It further verifies the effect of the improved method in
this paper.

5.3. Analysis of Fault Features in the Time-Frequency Domain

The experimental data is the same as Section 5.1. According to the feature calculation
equation, the features, including EOP, EOLM and ER, in the time-frequency domain are
obtained, and the results are shown in Table 4.

Table 4. Features of surge velocity signal in the time-frequency domain for different fault severity.

Features 0% 2% 5% 8% 10%

EOP 7.2395 7.0385 6.6299 6.3279 6.1251
EOLM 1.6432 2.0589 2.6616 2.9620 3.6686

ER 1.3542 1.6875 2.2688 2.6544 2.7568
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With the increase of fault severity, EOP gradually decreases, EOLM and ER gradually
increase. They all conform to the rule of monotonic change, which are useful features.
Therefore, there are 3 useful features in the time-frequency domain for weak thruster faults,
which are EOP, EOLM, and ER.

5.4. Analysis of Useful Features in Each Domain

Summarizing the useful features in the time domain, frequency domain, and time-
frequency domain, the useful features of the surge velocity signal for weak fault diagnosis
of the thruster are shown in Table 5, where

√
means useful feature.

Table 5. Useful features of surge velocity signal.

STD FLD RMS KR CF SF MF FCx RMSFx STDFx EOP EOLM ER
√ √ √ √ √ √ √

Table 5 shows that there are 16 features in the original time domain, frequency domain,
and time-frequency domain. After the above analysis, 9 features that do not meet the rule
are eliminated, and only 7 features are useful for the surge velocity signal, which provides
refined and accurate information for subsequent fault severity identification.

5.5. Comprehensive Analysis of Features in Each Domain

The useful features in the time domain, frequency domain, and time-frequency domain
are summarized in the previous subsection, but the values of the features in each domain
are different. To provide information on relative size between each feature for subsequent
fault severity identification, all the feature values within the 3 domains are summarized in
Figure 6. For a holistic analysis, the useless features are also included in Figure 6.

Figure 6 is analyzed as follows:
(1) Absolute Value
On the whole (absolute value), the features in the time-frequency domain are the

largest and the features in the frequency domain are the smallest.
The size of each feature in each domain is further analyzed. The three useful features

in the time-frequency domain (EOP, EOLM, ER) are the largest; the two useful features
in the time domain (FLD, KR) are the second; the three useful features in the frequency
domain (FCx, RMSFx, STDFx) are the smallest.

(2) The Difference of Feature Value with The Different Fault Severity
As the fault severity increases, the difference between the three useful features in the

time-frequency domain is the largest; the difference between the two useful features in the
time domain is the second; the difference between the three useful features in the frequency
domain is the smallest.

Further analysis, as the fault severity increases, among the three features in the time-
frequency domain, EOLM has the largest difference, ER is the second, and EOP is the
smallest; among the two features in the time domain, the difference in KR is the largest,
followed by the different in FLD. Compared with the features in the time-frequency domain
and the time domain, the features in the frequency domain have the smallest difference
with the increase of the fault severity.

Summary: The above-mentioned qualitative and quantitative analysis results of the
absolute value of the features in different domains and the difference of feature value
with the different fault severity have laid a good foundation for the feature fusion in the
subsequent fault severity identification.
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6. Determination of Useful Fault Features

In Section 5, the characteristics of the features of the surge velocity signals in each
domain are studied, and then the useful features are determined. The input signal also
includes the control quantity, yaw angle, and tracking error. The features of different
input signals in each domain have their own unique characteristics. In this section, the
characteristics of all features are studied, the useful features are determined, and the
qualitative and quantitative analysis results are given.
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Based on the developed method, the obtained features of the control quantity, tracking
error, and yaw angle are shown in Figures 7–9. The specific calculation process is the same
as in Section 5, so the content of it is omitted here.
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To facilitate the analysis, the data in Figures 6–9 are sorted into Tables 6–9, respectively.
The variation range in Tables 6–9 refers to the variation of the feature when the fault severity
is between 0% and 10%.
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Table 6. Useful features of the surge velocity signal.

Index FLD KR RMSFx STDFx EOP EOLM ER

Average value 2.089 3.512 0.228 1.546 6.672 2.599 2.144
Variation range 0.450 0.870 0.029 0.042 1.114 2.025 1.403

Table 7. Useful features of the control quantity.

Index FLD RMSFx STDFx EOLM

Average value 3.294 21.645 21.769 8.442
Variation range 3.944 21.623 22.995 6.721

Table 8. Useful features of the tracking error.

Index FLD MF FCx STDFx EOP ER

Average value 1.351 2.576 5.275 5.701 5.842 3.018
Variation range 0.672 0.652 5.310 4.772 6.789 4.033

Table 9. Useful features of the yaw angle.

Index FLD FCx RMSFx STDFx EOLM

Average value 7.947 8.159 5.611 4.409 2.228
Variation range 1.658 7.202 2.980 4.113 0.901

From Tables 6–9, the following statements are obtained.
(1) Different input signals have different useful features in each domain.
Comparing Figures 6 and 7, it was found that the useful features for the surge velocity

signal are useless for the control quantity signal, such as KR. Therefore, the useful feature
for the surge velocity signal cannot be directly used for the control quantity signal. It is
necessary to find the useful features for each input signal.

(2) Different input signals have different average values of useful features in each domain.
Different input signals have a large difference in the average value of the useful

features. The maximum is 21.769, the minimum is 1.351, and the difference between the
two is 20.418. Therefore, in the subsequent data fusion, this problem should be dealt with.

(3) As the fault severity changes, different input signals have different variation ranges
of useful features in each domain.

For the fault with 0% to 10% loss of effectiveness, the variation range of the useful
features of different input signals is different. The maximum is 22.995, the minimum is
0.450, and the difference between the two is 22.545. Therefore, in the subsequent data
fusion, this problem should be dealt with.

(4) Aiming at the problem that the traditional feature calculation method cannot obtain
the useful feature in the frequency domain, an improved method is proposed in this paper.
The effectiveness of the improved method in this paper has been verified in each domain.
On the other hand, without the improved method in this paper, only the useful features in
the time domain and time-frequency domain can be obtained. The improved method in
this paper can obtain the useful features in the frequency domain, increasing the useful
features in one domain (frequency domain).

(5) Through Tables 6–9, we can determine the size of each feature itself, as well as the
relative size of each useful feature, which provides effective quantitative information for
fault fusion in subsequent fault severity identification.

Discussion of experimental results:
(1) This paper takes the open-frame AUV as the experimental object. The moving

speed of an open-frame AUV is relatively low. For streamlined AUV with relatively high
speed, the fault features determined in this paper may not be applicable. Therefore, it needs
to be further adjusted in combination with the data of the streamlined AUV, but the idea is
the same as this paper.
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(2) Limited by the depth of the pool, this paper analyzes the variation law of fault
features by the data obtained from the constant speed directional experiment of AUV in
the horizontal direction. Whether this law is applicable to the experimental data of heave
movement needs to be further studied.

(3) AUV data obtained from the experimental pool in this paper have some differences
compared with the real sea trial data. The useful features and their order of magnitude
should be further refined in combination with sea trial data.

7. Conclusions

Aiming at the problem of weak fault feature extraction of AUV thrusters, this paper
systematically studies the characteristics and changing laws of fault features in the time
domain, frequency domain, and time-frequency domain. The 32 features that do not meet
the monotonicity rule are eliminated from the original 52 features, and only 20 scientifically
reasonable features are retained. Among the 20 retained features, the order of magnitude
of each feature amount is given. It effectively reduces the number of useless features
and provides refined and accurate information for subsequent fault severity identifica-
tion. At the same time, for the problem that the traditional calculation method of feature
cannot effectively extract the fault features in the frequency domain so that there is no
useful feature in the frequency domain, this paper proposes an improved method. The
experimental results show that the frequency domain features with monotonic variation
characteristics can be obtained based on the improved method, which increases the number
of fault features in the frequency domain. It provides effective qualitative and quantitative
information for subsequent fault severity identification

However, there are some limitations in this paper: This paper takes the open-frame
AUV as the experimental object. The moving speed of an open-frame AUV is relatively
low. For a streamlined AUV with relatively high speed, the fault features determined in
this paper may not be applicable. Therefore, it needs to be further adjusted in combination
with the data of the streamlined AUV. Limited by the depth of the pool, this paper analyzes
the variation law of fault features by the data obtained from the constant speed directional
experiment of an AUV in the horizontal direction. Whether this law is applicable to the
experimental data of heave movement needs to be further studied. AUV data obtained
from the experimental pool in this paper have some differences compared with the real sea
trial data. The useful features and their order of magnitude should be further refined in
combination with sea trial data.
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