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Shale reservoirs are characterized by extremely low permeability and high clay content. To further study the stress sensitivity of a
shale reservoir, the Lower Cambrian shale in north Guizhou was utilized. 
rough laboratory testing, the relationships between
the shale porosity and permeability and the e�ective stress were established, and the stress sensitivity of shale was analysed. 
e
mechanical properties and mineral composition of this shale were studied by rock mechanics testing and X-ray di�raction. 
e
main factors a�ecting the stress sensitivity were analysed. 
e results show that the porosity and permeability of this shale decrease
with increasing e�ective stress; the shale reservoir permeability damage rate is 61.44 ∼ 73.93%, with an average of 69.92%; the
permeability stress sensitivity coecient is 0.04867 ∼ 0.05485 MPa−1, with an average of 0.05312 MPa−1; and the shale reservoir
stress sensitivity is strong. Shale stress sensitivity is related to the rock mineral composition and rock mechanical properties. 
e
higher the clay content in the mineral composition, the lower the elastic modulus of shale, the higher the compressibility, and the
greater the stress sensitivity coecient.

1. Introduction

Shale gas is an important unconventional natural gas whose
higher content, long production cycle, and other advantages
have earned it extensive attention across the world. It is
one of the most realistic alternatives to conventional oil
and gas resources, giving it an important strategic position
[1–10]. Porosity and permeability are important reservoir
characteristics that directly a�ect shale gas production. 
e
pore characteristics in�uence the storage capacity, occur-
rence state, and migration capacity of shale gas within the
reservoir. Permeability is a measure of the ability of porous
media to allow �uid �ow and is the key parameter of shale gas
production capacity [11, 12]. Experimental research has been
an important means to study the permeability of shale gas;
some scholars have analysed the permeability characteristics
of shale gas accounting for Klinkenberg’s e�ect and the shale

gas migration form [13–18]. Nelson [19] found the nano pores
in the shale, which revealed a huge shale gas storage sites, and
increased the study of the spatial scale of shale gas seepage.

Many scholars have studied the relationship between
the permeability and stress of conventional oil and gas
reservoirs and have achieved remarkable results [20–24].
e
de�nitions of the volume compression coecient and pore
compression coecient of rock and their relations have been
given explicitly, the concept of the pore compression coe-
cient and stress sensitivity coecient have been introduced
into reservoir engineering problems, and the e�ect of the
deformation of the pore volume change and permeability
has been analysed [24, 25]. Compared with conventional
oil and gas reservoirs, shale gas formations and reservoirs
have the same layer and geological characteristics, including
obvious elastic and plastic deformation and stress sensitivity.
Scholars have extensively studied the stress sensitivity of
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Table 1: Basic data of shale samples.

Sample ID
Test core size

Moisture Permeability/10−3�m2 Porosity/%
Diameter, mm Length, mm

1 25.23 50 Dry 0.0060 1.67

2 25.27 51 Dry 0.0052 1.62

3 25.21 50.5 Dry 0.0071 1.85

4 25.30 51 Dry 0.0073 1.80

5 25.20 49 Dry 0.0056 1.56

shale matrix. Dong et al. [26] studied the porosity and
permeability of shale samples, and the testing results showed
that the stress sensitivity of shale was stronger than that of
sandstone, and the change of porosity and permeabilitymeets
the power relationship under e�ective stress. Chalmers [27]
used the pulse method to show that shale has strong stress
sensitivity by changing the e�ective stress. Kwon et al. [28]
researched the in�uence of internal and external pressure
changes on shale stress sensitivity by the pulse method. Reyes
andOsisanya [29]measured 4 shale cores from theOklahoma
area using the steady state method, and the results showed
that the stress sensitivity of shale exhibited the highest
degree of exponential �tting. Although various studies have
investigated the stress sensitivity of shale, the previous studies
were mostly intuitive analyses of the experimental results,
rock mineral composition, and rock mechanical properties;
several factors have rarely been analysed.


is study utilizes the overburden pressure permeability
and porosity measurement experiment of the Lower Cam-
brian shale core to evaluate the shale stress sensitivity. At the
same time, for a shale reservoir with a series of characteristics
di�erent from conventional reservoirs, our study combined
X-ray di�raction and rock mechanics testing to analyse the
factors a�ecting the shale stress sensitivity. It is anticipated
that our study will have theoretical and practical signi�cance
to revealing the law of permeability stress sensitivity of shale
reservoirs and to the rational and e�ective exploitation of
shale gas resources.

2. Experimental Method

2.1. Experimental Conditions for Permeability of Shale under
Overburden Pressure. 
e experimental samples were from
the Lower Cambrian Niutitang Formation in north Guizhou,
with shale composed mainly of siliceous shale and grey-to-
black shale with high TOC content ranging from 3.54 wt%
to 8.12 wt%, with an average TOC content of 7.24 wt%. 
e
brittleness index is in the range of 19.14-51.87. 
e sample
diameter is approximately 25mm, the length is approximately
50 mm, and the sample basic data are shown in Table 1.

Using an FYKS-2 high-temperature coating porosity
and permeability measuring instrument, the name of the
manufacturer is JiangsuHaian Petroleum Instrument Factory
in China. 
e test was conducted at a temperature of
150 C∘; the porosity and permeability were measured by
using nitrogen gas. All data acquisition and recordings were
calculated through the computer. To study the in�uence of

stress on the porosity and permeability of shale, the change
of e�ective stress was simulated by increasing the e�ective
con�ning pressure of shale. 
e porosity and permeability
under e�ective con�ning pressure were measured, and the
relationships of the shale reservoir porosity and permeability
with stress were analysed. Each con�ning pressure (3, 5, 7,
9, and 11 MPa) and each stress point were sustained for a
suciently long time (tomaintain balance of at least 30min),
and the gas permeability at each stress was determined.

3. Results and Discussion

3.1. �e Relationships of Porosity and Permeability with Stress
for Shale. 
e relationships of the porosity and permeability
with the e�ective stress are shown in Figure 1.

3.1.1. Relationship between Shale Porosity and E
ective Stress.
As seen in Figure 1, the relationship between the porosity of
shale samples and the e�ective stress follows a negative expo-
nential function.
e porosity of the shale reservoir decreases
with increasing e�ective stress as a negative exponential
function.
rough the regression analysis of the experimental
results, the relationship can be de�ned as follows:

� = �0�−�� (1)

where � is the porosity under a speci�c e�ective stress, �0
is the porosity under the initial e�ective stress, m is the
coecient of compressibility (MPa−1), and p is the e�ective
stress (MPa).


e experimental results of 5 samples under varying
e�ective con�ning pressure are shown in Table 2. In Table 2,
the compression coecient of the Lower Cambrian shale
is from 0.1093 to 0.2814 MPa−1, with an average of 0.1734
MPa−1.

3.1.2. Relationship between Gas Permeability and E
ective
Stress of Shale. As seen in Figure 1, the gas permeability
and e�ective stress of shale samples are also subject to a
negative exponential function. 
e permeability of the shale
reservoir decreases with increasing e�ective stress in the
negative exponential function; the relationship can be shown
as

� = �0�−�� (2)

where K is the permeability under a speci�c e�ective stress
(10−3�m2), K0 is the permeability under the initial e�ective
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Figure 1: Relationships of the permeability and porosity with the e�ective con�ning pressure of shale.

stress (10−3�m2), and n is the stress sensitivity coecient of
permeability (MPa−1).


e experimental results of 5 samples under the overbur-
den pressure are shown in Table 2.

In Table 2, the stress sensitivity coecient of the shale
reservoir is 0.08664 to 0.12223 MPa −1, with an average of
0.11030 MPa −1.

3.2. Stress Sensitivity Analysis of Shale Reservoirs. At present,
there is no industry standard for shale stress sensitivity. Our
experiment referenced the petroleum and natural gas indus-
try standards of China (SY/T 5336, 5358, 6385). 
e change
of e�ective stress was simulated by increasing the e�ective
con�ning pressure of shale, and the change of the perme-
ability of shale samples with changing e�ective con�ning
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Table 2: Statistic analysis results of the relationships of the porosity and permeability of shale with the e�ective stress.

Sample ID
Compressibility

m/MPa−1
Porosity
�0/%

R1
2 Coe�cient

n/MPa−1
Permeability
K0/10

−3�m2 R2
2

1 0.1093 2.3858 0.9643 0.08664 0.00768 0.9724

2 0.1457 2.6589 0.9341 0.12223 0.00758 0.9838

3 0.1586 3.0753 0.9298 0.11981 0.00990 0.9705

4 0.1720 3.1822 0.9133 0.12013 0.01023 0.9689

5 0.2814 3.6318 0.9987 0.10271 0.00671 0.9615

Maximum value 0.2814 3.6318 0.9987 0.12223 0.01023 0.9838

Minimum value 0.1093 2.3858 0.9133 0.08664 0.00671 0.9615

Average value 0.1734 2.9868 0.9480 0.11030 0.00842 0.9714

R1
2 is the correlation coecient of the porosity and e�ective stress of shale; R2

2 is the correlation coecient of the permeability and e�ective stress of shale.

pressure was measured. 
e degree of stress sensitivity of the
shale reservoir was then analysed.

3.2.1. Shale Reservoir Stress Sensitivity Parameter. According
to the petroleum and natural gas industry standards of China
(SY/T 5336), the authors used the permeability damage rate
and the stress sensitivity coecient to evaluate the sensitivity.

(1) Permeability Damage Rate. 
e permeability damage rate
is re�ected in the percentage of the permeability damage of
the shale reservoir under the e�ective stress.
e permeability
damage rate D�2 caused by the stress sensitivity can be
calculated according to

�� =
�1 − �min

�1
× 100% (3)

where D� is the maximum value of permeability damage
caused by the process of increasing stress to the highest point;
�1 is the permeability at a given e�ective pressure p; and�min

is theminimum permeability obtained at the highest e�ective
con�ning pressure achieved in this study.

(2) Stress-Sensitive Coe�cient, theDe�nition of the Shale Stress
Sensitivity Coe�cient [30].

�� = −
1
�0
	�
	
 (4)

Equation (4) reveals that the larger the value of �� is, the
more sensitive the permeability of shale samples to the change
of e�ective pressure. Under the same change of e�ective
pressure, the permeability of the shale is larger for a larger ��.
Conversely, the smaller the value of �� is, the less sensitive the
shale sample permeability is.

3.2.2. Relationship between Stress Sensitivity Parameters and
E
ective Stress of Shale. Five shale samples were tested.When
the e�ective pressure increased to 11 MPa, the shale perme-
ability was 0.00198×10−3�m2 to 0.00296×10−3�m2, and the
average was 0.00249×10−3�m2.
e permeability damage rate
was 61.44 ∼ 73.93%, with an average of 69.92%. According to
the petroleum and natural gas industry standard (SY/T 5336,

5358, 6385), it is known that the permeability damage degree
of this area is moderately strong. 
e permeability stress
sensitivity coecient was 0.04867∼0.05485 MPa−1, with an
average of 0.05312 MPa−1. 
erefore, the stress sensitivity
of shale reservoirs in this area is strong. 
e minimum
average stress sensitivity coecient of sample No. 1 of the �ve
samples was 0.04867×10−3�m2. 
emaximum average stress
sensitivity coecient of sample 2 was 0.05511×10−3�m2. 
e
stress sensitivity evaluation parameters of the 5 shale samples
tested are shown in Table 3.

Figure 2 shows the evolution of the permeability dam-
age rate and the stress sensitivity coecient under varying
e�ective pressure for the 5 samples. 
e stress sensitivity
coecient of the shale reservoir decreases with increasing
e�ective stress, and the permeability damage rate increases
with increasing e�ective stress (Figure 2).


e stress sensitivity coecient of the shale reservoir
changes similarly in pressure ranges 0-11 MPa for the 5 shale
samples.
e stress sensitivity coecient of the shale reservoir
decreases with increasing e�ective stress. At the same time,
the damage rate of permeability increases with increasing
e�ective stress.

3.3. Discussion and Analysis of Shale Stress Sensitivity Factor

3.3.1. Component Analysis of Shale Mineral. 
ere is a
di�erence in the degree of deformation of di�erent rock
minerals under compression, which is mainly related to the
skeleton structure and mineral composition of the rock. 
e
mineral composition of the 5 samples was analysed by X-ray
di�raction, and the test results are shown in Figure 3.

As seen in Figure 3, shale samples consist mainly of
quartz, plagioclase, K-feldspar, pyrite, clay minerals, calcite,
and dolomite, and the quartz content is greater than 50%.
e
stress sensitivity of sample 2 is the highest; its clay content
is the highest, reaching 30%, and the quartz content is 50%.

e stress sensitivity of sample No. 1 is the weakest; its quartz
content is the highest, more than 80%, and the clay content is
3%. Samples No. 3 and No. 4 have similar contents of quartz
and clay minerals, and the stress sensitivity coecients are
also similar. 
is shows that quartz and clay mineral are the
two mineral components that most signi�cantly control the
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Table 3: Evaluation parameters of stress sensitivity for the shale reservoir.

Sample ID
Permeability/10−3�m2

Permeability damage rate/% Average value of stress sensitivity coecient/MPa−1
3 MPa 11 MPa

1 0.00592 0.00296 61.44 0.04867

2 0.00525 0.00198 73.93 0.05511

3 0.00691 0.00265 73.23 0.05481

4 0.00713 0.00273 73.32 0.05485

5 0.00493 0.00218 67.69 0.05218

Maximum value 0.00713 0.00296 73.93 0.05485

Minimum value 0.00493 0.00198 61.44 0.04867

Average value 0.00603 0.00249 69.92 0.05312

Figure 2: Relationships of the permeability damage rates and stress sensitivity coecient with the e�ective stress.
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Table 4: Shale elastic modulus and Poisson’s ratio.

Sample ID Elastic modulus (GPa) Poisson’s ratio

1 27.53 0.24

2 20.46 0.26

3 24.15 0.22

4 23.82 0.27

5 25.37 0.29

Figure 3: Mineral composition of the Lower Cambrian Niutitang
Formation shale.

shale compressibility. In general, rocks with high argillaceous
content are more prone to deformation than those with low
argillaceous content. At the same time, porosity decreases
with increasing e�ective stress, but the decreasing trends are
not the same, which is mainly related to the distribution
of the shale microstructure and mineralogical composition.
Overall, the lower the quartz content and the higher the clay
content are, the stronger the stress sensitivity of shale is.

3.3.2. Rock Mechanics Analysis of Shale. Shale mechanical
parameters not only provide the necessary technical basis
for the design of horizontal drilling and fracturing param-
eters in the exploitation of hydraulic fracturing but also
are an important factor a�ecting the shale stress sensitivity.

erefore, uniaxial compression tests were used to test the
mechanical parameters of 5 shale samples to further study
the relationship between themechanical properties and stress
sensitivity. Young’s modulus and Poisson’s ratio for the 5
samples according to the experimental results are shown in
Table 4 and Figure 4.


e elastic modulus of rock is an important parameter
to determine the compressibility of reservoir rock, and the
compression coecient of rock is related to the volumetric
modulus of the skeleton: the harder the skeleton is, the
smaller the compression coecient is [31]. 
e compression
coecient of rock is also related to the porosity of the
rock: the greater the porosity is, the higher the compression
coecient is. 
e relationship of the compression coecient
of rock, the porosity, and the skeleton compression coecient
is

�p =
�
1 − ��s (5)

where �s is the skeleton compression coecient of rock;
�p is the coecient of rock compressibility; and � is rock
porosity.

Elgmati [32] gave the constitutivemodel of the volumetric
strain as a function of Young’s modulus and Poisson’s ratio;
the expression of volumetric strain in the elastic deformation
of rock is derived by the constitutive model

�
V
= �s
(1 + V) (�� + �	 + �
)
3 [V�� + V�	 + (1 − V) �
]

(�� − 
) (6)

where �
V
is the volumetric strain; ��, �	, �
 are x, y, z in the

direction of the strain; v is Poisson’s ratio; and �t is the
overburden stress.

According to (6), the volumetric strain is proportional
to the coecient of skeleton compression. 
e skeleton
compression coecient of the rock can be expressed as

�s =
3 (1 − 2V)
�

(7)

Formula (7) shows that the greater the Young modulus
of the rock is, the smaller the volume strain is and the
less deformed the rock is. 
e relationship between Young’s
modulus and the stress sensitivity index of 5 samples is shown
in Figure 5. 
e experimental results are consistent with
the theoretical analysis of the elastic modulus and the stress
sensitivity.

4. Conclusions

(1)
e experimental results show that the e�ective stress and
the permeability and porosity of the Lower Cambrian shale
in north Guizhou Province follow a negative exponential
function, and the correlation coecient is greater than
0.9. Under compressive stress, shale reservoirs have normal
compressive deformation with increasing stress, while the
porosity and permeability of the shale reservoir decrease.

(2)
e compression coecient m of the Lower Cambrian
shale reservoir is 0.1093 ∼ 0.2814 MPa−1, and the average is
0.1734MPa−1; the regression coecient of stress sensitivity is
0.08664 ∼ 0.12223 MPa−1, and the average is 0.11030 MPa−1.

e compressibility and stress sensitivity regression coe-
cients can be used to calculate the porosity and permeability
of a shale reservoir under the present formation pressure,
which is very important for shale reservoir physical property
research.

(3) 
e shale permeability damage rate was 61.44 ∼
73.93%,with an average of 69.92%.
epetroleumandnatural
gas industry standards (SY/T 5336, 5358, 6385) show that the
degree of permeability damage in the region is moderately
strong. 
e stress sensitivity coecient of permeability is
0.04867 ∼ 0.05485 MPa−1, and the average is 0.05312 MPa-
1, so the stress sensitivity of the shale reservoir is strong.

(4) 
e degree of shale stress sensitivity is related to the
rock mineral composition and rock mechanics properties.

e higher the clay mineral content in the mineral com-
position is, the smaller the elastic modulus of the shale is,
the higher the compressibility is, and the greater the stress
sensitivity coecient is.



Shock and Vibration 7

Figure 4: Stress-strain curve of samples.
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