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Information-theoretic definitions for noise and disturbance in quantum measurements were given
in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty rela-
tion was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary
qubit observables and carry out an experimental test. Successive projective measurements on the
neutron’s spin-1/2 system, together with a correction procedure which reduces the disturbance, are
performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for
qubits when an optimal correction procedure is applied.

PACS numbers: 03.65.Ta, 03.75.Dg, 03.67.Pp, 07.60.Fs

Introduction - The uncertainty principle, first for-
mulated by Heisenberg in 1927 [1], expresses an intu-
itive understanding of the physical consequences of non-
commutativity. Heisenberg argued that it is impossi-
ble to simultaneously measure noncommuting observ-
ables with arbitrary precision, and used the famous γ-
ray microscope thought-experiment to obtain the ‘noise-
disturbance’ uncertainty relation

q1 p1 ∼ h (1)

for the product of the mean error (noise) q1 of a posi-
tion measurement and the discontinuous change (distur-
bance) p1 of the particle’s momentum. In the subsequent
mathematical derivation of Eq. (1), he showed that the
product of the position and momentum standard devia-
tions, ∆q∆p, was equal to ~/2 for a class of Gaussian
wavefunctions, which was generalised by Kennard to

∆q∆p ≥
~

2
(2)

for all states [2].

Note that relation (2) sets a limitation as to how one
can precisely prepare both the position and momentum
of a quantum system, independently of whether these ob-
servables are actually measured. Hence, such preparation
relations, whether formulated in terms of standard devi-
ations [2, 3] or Shannon entropies [4], do not place any
restrictions per se on joint or successive measurements of
noncommuting observables.

In contrast, Heisenberg’s formulation of the uncer-
tainty relation in Eq. (1) is all about the unavoidable
influence of measuring instruments on quantum systems:
the more precisely one observable such as position is mea-
sured, the greater is the disturbance to another observ-
able such as momentum [1, 5]. As an aside, we notice

that Eq. (1) can in fact be derived from Eq. (2) under
the repeatability hypothesis [6], which was implicitly as-
sumed in most of arguments on quantum measurements
until the 1970’s [7].

A rigorous error-disturbance uncertainty relation, gen-
eralising Eq. (1) to arbitrary pairs of observables and
measurements without assuming the repeatability hy-
pothesis, was derived by Ozawa [8–10] and has recently
received considerable attention. The validity of Ozawa’s
relation, as well as of a stronger version of this relation
[11], were experimentally tested with neutrons [12–14]
and with photons [15–19]. Other approaches generalising
Heisenberg’s original relation can be found, for example,
in [20–22].

It is very natural to also seek a formulation of the un-
certainty principle in terms of the information gained and
lost due to measurement influences. Such a formulation
was recently introduced by Buscemi et al. [1], leading to
a state-independent uncertainty relation. Here, noise and
disturbance are quantified not by a difference between a
system observable and the quantity actually measured,
but by the correlations between input states and mea-
surement outcomes, independently of how they are la-
belled. In this letter we derive a tight uncertainty rela-
tion for information-theoretic noise and disturbance, in
the qubit case, and demonstrate its validity in a neutron
polarimeter experiment.

Theoretical framework - Consider an observable A, act-
ing on a finite-dimensional Hilbert space, with eigenval-
ues α belonging to the non-degenerate eigenstates |a〉
and a measurement apparatus M representing a quan-
tum instrument [24–26] with possible outcomes µ. All
eigenstates |a〉 of A are now fed with equal probability
into the apparatus, which is schematically illustrated in
Fig. 1. The conditional probability p(α|µ) that the eigen-
state |a〉 was sent, given a specific measurement outcome



2

Correction

operation
or Apparatus Measure

Figure 1: (color online) Experimental concept for determina-
tion of noise and disturbance. Randomly selected eigenstates
of A and B are sent into a measurement apparatus M. Af-
ter a correction operation C, and a precise measurement of
B, the information-theoretic noise N(M, A) and disturbance
D(M, B) are calculated using the conditional probabilities
p(α|µ) and p(β|β′), respectively.

µ, and the marginal probability p(µ) for occurrence of
the specific outcome are used to define the information-
theoretic noise N(M, A) as

N(M, A) := −
∑

α,µ

p(µ)p(α|µ) log p(α|µ) = H(A|M).

(3)
Equation (22) is just the conditional entropy H(A|M),
where A and M denote the classical random variables
associated with input α and output µ. The information-
theoretic noise thus quantifies how well the value of A
can be inferred from the measurement outcome and only
vanishes if an absolutely correct guess is possible.

The information-theoretic disturbance is defined in a
similar manner as

D(M, B) := −
∑

β,β′

p(β′)p(β|β′) log p(β|β′) = H(B|B′).

(4)
Here uniformly distributed eigenstates |b〉 of an observ-
able B are input to the apparatus M, and a subsequent
measurement of B is performed, with outcomes labeled
by β′ (Fig. 1). The disturbance D(M, B) thus quantifies
the correlation between the initial and final values of B,
and is a measure of how much information about B is
lost through the measurement M.

In order to determine the irreversible loss of informa-
tion about B, a correction operation C can be performed
before the B-measurement to decrease the disturbance
(Fig. 1), and consists of any completely positive, trace
preserving map. We deal with two cases here; one is
the uncorrected disturbance which we write as D0. The
other is the optimally corrected disturbance denoted as
Dopt corresponding to the correction operation that min-
imizes the disturbance. For any correction procedure the
information theoretic noise and disturbance fulfil the fol-
lowing uncertainty relation [1]

N(M, A) +D(M, B) ≥ cAB := − logmax |〈a|b〉|2, (5)

where |a〉 and |b〉 denote the eigenstates of the observables
A and B.

For maximally incompatible qubit observables, repre-
sented by the Pauli matrices σz and σy, we have been
able to significantly strengthen this relation (see Sec. I of
the Supplemental Material [27]) to the tight relation

g[N(M, σz)]
2 + g[D(M, σy)]

2 ≤ 1. (6)

Here g[x] denotes the inverse of the function h(x) on the
interval x ∈ [0, 1] given by

h(x) := −
1 + x

2
log

1 + x

2
−

1− x

2
log

1− x

2
. (7)

Experimental procedure - In our experiment projective
measurements on neutron spin qubits are utilized. The
observables are chosen to be Pauli spin matrices A = σz
and B = σy, having the eigenvalues α = ±1 and β = ±1.
We denote the eigenstates of A and B as |αz〉 ≡ |±z〉 for
α = ±1 and |βy〉 ≡ |±y〉 for β = ±1, respectively. For
projective measurements the measurement apparatus M
is simply characterized by a measurement operator

M = ~m · ~σ = σy sin θ + σz cos θ, (8)

representing spin along the axis ~m = (0, sin θ, cos θ). It
has the eigenvalues/outcomes µ = ±1 and projects the
system onto its eigenstates denoted as |µm〉 ≡ |±m〉 for
µ = ±1 after the measurement.

The experiment is performed on the neutron’s spin-1/2
qubit system using the polarimeter beam line of the tan-
gential beam port at the research reactor facility TRIGA
Mark II of the Vienna University of Technology [12, 13].
The setup is depicted in Fig. 2 and illustrates the generic
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guide   

field Bz

DetectorNeutron

Preparation Measurement M Measurement B

DC-2DC-1 DC-3 DC-4

BxBx Bx Bx Bx

y

z

x
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Figure 2: (color online) Neutron polarimetric setup for the
demonstration of information-theoretic uncertainty relations
for noise and disturbance. Exploiting Larmor precession of
the Bloch vector around magnetic fields (Bx, Bz) and using
supermirror arrays (polarizer, analyzers) as projectors all re-
quired spin states can be prepared and measured.
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experimental procedure: An unpolarized thermal neu-
tron beam, incident from a pyrolytic graphite crystal,
with a mean wavelength of 2.02 Å and spectral width
∆λ/λ = 0.015, is spin polarized up to ∼ 99% via re-
flection from a bent Co-Ti supermirror array, with po-
larization in the +z-direction. To prevent depolarization
by stray fields a 13Gauss guide field Bz pointing in the
+z-direction is applied along the entire setup.

For the generation of the desired initial states |±z〉
and |±y〉 the first spin turner coil DC-1 is used. Within
the coil region a field Bx, pointing in +x-direction, is
effectively applied. Larmor precession around the x-axis
is induced and the strength of Bx is tuned such that
it causes a spin rotation by an angle of 0, π, or ±π/2
radians within the coil DC-1. In order to achieve the
uniform distribution of the eigenstates as required for
the determination of noise and disturbance all four input
states are sent one after another.

For the measurement of M another spin turner coil
(DC-2) is used. It is placed such that within the dis-
tance to DC-1 integer multiples of the full rotation pe-
riod around the z-axis are performed in the guide field.
Then, by correctly adjusting the strength of Bx in DC-
2, the |µm〉-component of the spinor is rotated to |+z〉.
After the projection onto |+z〉 in the second supermirror
(first analyzer in Fig. 2) spin turner coil DC-3 rotates the
analyzer’s output state |+z〉 to |µm〉 thus completing the
projective measurement ofM . In an analogous way, DC-
4 and the third supermirror perform the B-measurement.
The recovering of the eigenstates of B can be omitted
since the neutron detector is not sensitive to spin (for
more details of the experimental procedure see Sec. II of
[27]).

The two successively performed projective spin mea-
surements result in four output intensities for each input
eigenstate. We label the intensities as IAαµβ′ and IBβµβ′

where all lower indices can take the values ±1. The dif-
ferent upper indices A and B discriminate between the
input states. For example, IA+ . . indicates that the eigen-
state |+z〉 of A = σz has been sent and IB+ . . stands for
output intensities when |+y〉 has been fed to the measure-
ment apparatus. From IAαµβ′ , the probabilities required
for the determination of the information theoretic noise
can be deduced, and IBβµβ′ yields the probabilities for the
information theoretic disturbance:

p(α) =

∑

µ,β′ IAαµβ′

∑

α,µ,β′ IAαµβ′

p(µ|α) =

∑

β′ IAαµβ′

∑

µ,β′ IAαµβ′

(9)

p(β) =

∑

µ,β′ IBβµβ′

∑

β,µ,β′ IBβµβ′

p(β′|β) =

∑

µ I
B
βµβ′

∑

µ,β′ IBβµβ′

(10)

It is important to note here that we first determine which
eigenstate has been sent and then record the probability
for a specific outcome µ. We thus obtain the conditioned
probabilities p(µ|α) and p(β′|β) respectively instead of
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Figure 3: (color online) Noise N(M, A) (straight blue line),
uncorrected disturbance D0(M, B) (dashed green line), and
optimally corrected disturbance Dopt(M, B) (dotted red line)
vs. polar angle θ of M .

p(α|µ) and p(β|β′) for which noise and disturbance are
defined. But, by using Bayes’ theorem for conditioned
probabilities they can be converted into each other (see
Sec. III of [27]).
No correction procedure- In the first experiment, no ad-

ditional correction is applied (C = 1l), we just successively
measure M and B. The setup then consists of the three
stages depicted in Fig. 2: i) state preparation - the cor-
responding eigenstates of the observables σz and σy are
generated. ii) measurement of M = σy sin θ + σz cos θ,
and iii) measurement of B = σy.
We record the intensities while varying the polar angle

θ of M in the interval θ ∈ [0◦, 90◦] with increment ∆θ =
10◦ and with a smaller step width of ∆θ = 20◦ in interval
θ ∈ [100◦, 180◦] since noise and disturbance are mirror-
symmetric around θ = 90◦. Fig. 9 shows the measured
data points and their theory curves, with the latter given
in terms of h from Eq. (27) by

N(M, A) = h (cos θ) , D0(M, B) = h
(

sin2 θ
)

. (11)

An intuitive understanding for the information-theoretic
meaning of noise and disturbance can be reached by look-
ing at special values of θ. For θ = 0◦, the measure-
ment operator M = σz = A. The measurement result
µ is numerically identical to the ”value” α of the ob-
servable A in the eigenstate |αz〉 and thus obviously per-
fectly correlated to it leading to vanishing noise. With
increasing polar angle θ of M the correlation is lost. For
θ = 90◦ (M = σy) the measurement outcome does not
allow any inference as to which eigenstate of A was sent,
p(α|µ) = 1

2 , ∀α, µ. Thus, the information-theoretic noise
is maximal. For θ = 180◦ (M = −σz) the measurement
result is perfectly anti-correlated with the observable’s
value. A guessing function of type α = f(µ) = −µ al-
lows a flawless determination of the observable’s value
from the measurement outcome and thus, this setup is



4

noiseless as well, although the numerical deviation be-
tween the measurement outcome and the value of A is
maximal. While in the standard ”noise operator” ap-
proach [9, 10] the noise then becomes maximal (see for
example error (dashed blue line) in Fig. 8 of [13]), in the
information-theoretic approach the degree of correlation
rather than its sign is relevant. For the same reason, the
behaviour of noise for θ = 180◦ to 360◦ is identical to
θ = 0◦ to 180◦ (see also Sec. III of [27]).

The disturbance induced on B = σy by the measure-
ment ofM behaves reciprocally to the noise in Fig. 9, ex-
emplifying the trade-off between noise and disturbance
in Eq. (5). If M = σz the result of a subsequent B-
measurement allows no inference of the initially sent
eigenstate |βy〉. The outcomes β′ = ±1 are equally prob-
able for both eigenstates and the information-theoretic
disturbance becomes maximal. If M = σy (for θ = 90◦)
the outcomes of the B-measurement are perfectly corre-
lated with the input eigenstates. The prior measurement
ofM leads to no loss of correlation between the β and the
measurement outcome β′ and the information theoretic
disturbance vanishes. For θ = 180◦ (M = −σz), the cor-
relation is lost entirely, we again have p(β|β′) = 1

2 , ∀β, β
′

as for θ = 0◦ and therefore maximal disturbance.

Optimal correction procedure- For the special cases
M = ±A and M = ±B the disturbance is fixed to be
either 1 or 0, but for the intermediate values, it can
be reduced by performing a correction operation C af-
ter the M -measurement. An important class of correc-
tion operations are unitary transformations which could
be experimentally realized by an additional spin turner
device. However, we can concatenate state preparation
after the M -measurement and correction C and imme-
diately prepare the rotated state with DC-3 alone. In
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Figure 4: (color online) Disturbance data points and their
respective theory curves if, after the projective measurement
of M (with θ=50◦) the eigenstate |+m〉 is rotated onto states
|ψ(ϑ, φ)〉 = cos ϑ

2
|+z〉+ eiφ sin ϑ

2
|−z〉 and |−m〉 onto |−ψ〉 =

|ψ(π − ϑ, φ+ π)〉.

Fig .4, we show experimental results if, after the pro-
jective measurement of M with θ = 50◦, the eigen-
states |µm〉 are rotated along arbitrary directions, that
is, onto states |ψ(ϑ, φ)〉 = cos ϑ

2 |+z〉 + eiφ sin ϑ
2 |−z〉

for |+m〉 and |−ψ〉 = |ψ(π − ϑ, φ+ π)〉 for |−m〉. The
directions of the output states are varied over the re-
gion [ϑ × φ] = [[0◦, 180◦] × [0◦, 180◦]] with step widths
∆ϑ = ∆φ = 22.5◦. The minimal disturbance is obtained
if the eigenstates |±m〉 are rotated exactly onto the eigen-
states |±y〉 of B, that is for ϑ = φ = 90◦.

This experimental result can be generalized for the pro-
jective measurement ofM = ~m ·~σ on observable B = ~b ·~σ
yielding the optimal error correction Copt

Copt(|µm〉) :=

{

|µb〉, ~b · ~m ≥ 0

| − µb〉, ~b · ~m < 0
(12)

with µ = ±1 and | ±m〉,| ± b〉 being the respective eigen-
states of M and B (see Sec. IV of [27] for a detailed ex-
planation and proof). The results for the optimally cor-
rected disturbance are depicted in Fig. 9, together with
its theoretically expected curve given, using h(x) from
Eq. (27), by

Dopt(M, B) = h (sin θ) . (13)

In order to investigate the uncertainty relations Eqs.
(5) and (6) we plot disturbance and noise data pairs from
Fig. 9 against each other in Fig. 5. We immediately see
that the noise disturbance uncertainty relation Eq. (5) is
always fulfilled, but not saturable apart from extremal
values, that is when either N or D vanishes. In con-
trast, the improved qubit relation Eq. (6) provides a tight
bound and can be saturated if the optimal correction pro-
cedure is applied, as in our experiment.
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Figure 5: (color online) Disturbance vs. Noise with and with-
out optimal correction procedure. The red shaded area marks
the region which are prohibited according to Eq. (6).
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Conclusions -We have shown the experimental validity
of the information-theoretic formulation of Heisenberg’s
noise-disturbance uncertainty principle in qubit measure-
ments. As soon as we obtain knowledge about the value
of a certain spin observable by applying a suitable mea-
surement the information which can be extracted about
another, incompatible observable is reduced. For maxi-
mally incompatible spin observables we observe a com-
pletely reciprocal trade-off. In order to characterize
the irreversible loss of correlations, correction operations
are performed which minimize the disturbance, but the
sum of noise and disturbance is always bounded from
below. We mathematically characterized and experi-
mentally confirmed the optimal correction procedure for
qubits, leading to a tight noise-disturbance uncertainty
relation. This result should stimulate the search for im-
proved entropic uncertainty relations for observables of
higher dimensional Hilbert spaces as well.

Acknowledgements - This work was supported by the
Austrian science fund (FWF) projects P24973-N20 and
P25795-N20. F.B announces support from the JSPS
KAKENHI, No. 26247016. M. J.W. H. is supported by
the ARC Centre of Excellence CE110001027. M. O. ac-
knowledges support from the John Templeton Founda-
tions, ID 35771, JSPS KAKENHI No. 26247016, and
MIC SCOPE No. 121806010.

[1] W. Heisenberg, Z. Phys. 43, 172 (1927); English trans-
lation in Quantum Theory and Measurement, edited by
J. A. Wheeler and W. H. Zurek (Princeton Univ. Press,
Princeton, NJ, 1984), p. 62.

[2] E. H. Kennard, Z. Phys. 44, 326 (1927).
[3] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[4] D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).
[5] W. Heisenberg, The Physical Principles of Quantum Me-

chanics, (University of Chicago Press, Chicago, IL, 1930).
[6] M. Ozawa, J. Phys. Conf. Ser. 504, 012024 (2014).
[7] E. B. Davies and J. T. Lewis, Commun. Math. Phys. 17,

239 (1970).
[8] M. Ozawa, Phys. Rev. A 67, 042105 (2003).
[9] M. Ozawa, Phys. Lett. A 318, 21 (2003).
[10] M. Ozawa, Ann. Phys. (N.Y.) 311, 350 (2004).
[11] C. Branciard, Proc. Natl. Acad. Sci. USA 110, 6742

(2013).
[12] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa,

and Y. Hasegawa, Nat. Phys. 8, 185 (2012).
[13] G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa,

and Y. Hasegawa, Phys. Rev. A 88, 022110 (2013).
[14] S. Sponar, G. Sulyok, J. Erhart, and Y. Hasegawa, Ad-

vances in High Energy Physics 2014, 735398 (2014).
[15] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat,

Y. Soudagar, and A. M. Steinberg, Phys. Rev. Lett. 109,
100404 (2012).

[16] S.-Y. Baek, F. Kaneda, M. Ozawa, and K. Edamatsu,
Scientific Reports 3, 2221 (2013).

[17] M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M.
Wiseman, and G. J. Pryde, Phys. Rev. Lett. 110, 220402

(2013).
[18] M. Ringbauer, D. N. Biggerstaff, M. A. Broome,

A. Fedrizzi, C. Branciard, and A. G. White, Phys. Rev.
Lett. 112, 020401 (2014).

[19] F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu,
Phys. Rev. Lett. 112, 020402 (2014).

[20] P. Busch, P. Lahti, and R. F. Werner, Phys. Rev. Lett.
111, 160405 (2013).

[21] P. Busch, P. Lahti, and R. F. Werner, Rev. Mod. Phys.
86, 1261 (2014).

[22] X.-M. Lu, S. Yu, K. Fujikawa, and C. H. Oh, Phys. Rev.
A 90, 042113 (2014).

[1] F. Buscemi, M. J. W. Hall, M. Ozawa, and M. M. Wilde,
Phys. Rev. Lett. 112, 050401 (2014).

[24] E. B. Davies and J. T. Lewis, Communications in Math-
ematical Physics 17, 239 (1970).

[25] E. B. Davies, Quantum theory of open systems (Academic
Press London, New York).

[26] M. Ozawa, J. Math. Phys. 25, 79 (1984).
[27] See Supplemental Material at



6

Supplementary Material

Improved information-theoretic uncertainty relation for qubits

A generally valid uncertainty relation between noise N(M, A) and disturbance D(M, B), for any measurement
apparatus M , is given by Eq. (4) of the main text—which for our investigated qubit scenario reduces to

N(M, σz) +D(M, σy) ≥ log 2 = 1 bit. (14)

For our experiment, this inequality is only saturated for extremal values, that is, if either N or D vanish. By
applying the optimal correction operation for rank-one projective measurements, the measured values come closer to
the straight line N +D = 1 in the N -D plane, but do not reach it (see blue data points in Fig. 5 of the main text).
Thus, the question arises as to whether the above inequality can be saturated by a different class of measurements,
or, conversely whether an improved, saturable inequality exists.
Here we show that the above inequality can in fact be substantially improved, to

g[N(M, σz)]
2 + g[D(M, σy)]

2 ≥ 1, (15)

where g[x] is the inverse of the function h(x) := − 1+x
2 log2

1+x
2 − 1−x

2 log2
1−x
2 on the interval x ∈ [0, 1]. This inequality

is in fact optimal, i.e., it is the tightest possible inequality for the noise and disturbance of σz and σy, for arbitrary
measurement apparatuses. Moreover, this optimal inequality is saturated in our experimental scenario, as depicted
in Fig. 5 of the main text.
To prove Eq. (15), let R := {(N,D)} denote the region of possible values of N = N(M, σz) and D = D(M, σy),

over all possible measurements M. Hence, R has some lower boundary, C, that in general prevents the noise and
disturbance from both being arbitrarily small. Indeed, from Eq. (14) above, all points in C must lie on or above the
line N +D = 1 bit. Our aim is to show that C is given by Eq. (15).

Now, as shown in the Supplemental Material of [1], the noise and disturbance of two system observables A and B,
for any measurement M , satisfy

N(M, A) ≥
∑

u

puH(AT |ρu) =
∑

u

puH(A|ρTu ), D(M, B) ≥
∑

u

puH(BT |ρu) =
∑

u

puH(B|ρTu ),

where E = {ρu; pu} is an ensemble of reduced states describing the system S, following measurement of some POVM
{Πu} on a reference copy R of the system that is maximally entangled with S. Here H(C|ρ) denotes the entropy
of C for state ρ, and the transpose CT of operator C is defined with respect to the Schmidt basis of the maximally
entangled state of R and S [1].

It immediately follows that C, the lower boundary of R, lies on or above the lower boundary C∗ of the region

R∗ :=

{(

∑

m

pmH(σz|ρm),
∑

m

pmH(σy|ρm)

)}

, (16)

where E = {ρm; pm} ranges over all possible ensembles of qubit states (thus including the ensembles {ρTu ; pu} in
particular). Remarkably, it turns out that C ≡ C∗, i.e., C∗ specifies the optimal uncertainty relation for N(M, σz)
and D(M, σy) .
The explicit form of the curve C∗ may be determined by showing that attention can be restricted to the subset of

pure-state ensembles, and performing a suitable variational calculation. First, for a given ensemble E = {ρm; pm}, let
r(m) denote the Bloch vector corresponding to the qubit state ρm, i.e., ρm = 1

2 (1+σ ·r
(m)). Now define a corresponding

pure-state ensemble, E ′ := {ρ′m; pm}, by taking r(m)′ to be the unit vector in the y-z plane which has (i) the same
component as r(m) in the y-direction; (ii) no component in the x-direction; and (iii) a remaining component in the
±z-direction, with the + sign (− sign) chosen if r(m) · z ≥ 0 (< 0). Thus, |r(m)′ | = 1, r(m)′ · y = r(m) · y, and
|r(m)′ · z| ≥ |r(m) · z| (since, by construction, r(m)′ has a longer component than r(m) in the z-direction). It follows
immediately that H(σz|ρ

′
m) ≤ H(σz|ρm) and H(σy|ρ

′
m) = H(σy|ρm). Hence,

∑

m

pmH(σz|ρ
′

m) ≤
∑

m

pmH(σz|ρm),
∑

m

pmH(σy|ρ
′

m) =
∑

m

pmH(σy|ρm).

Thus, for any point (N,D) ∈ R∗ generated by some ensemble E , there is a point (N ′, D) ∈ R∗ generated by a
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Figure 6: The function f(θ) in Eq. (19).

corresponding pure-state ensemble E ′, with N ′ ≤ N .

Hence, to find the point (N,D) on the lower boundary C∗ of R∗, for any given value of D, one only has to minimise
the variational quantity

J =
∑

m

pmH(σz|ρ
′

m) + κ

[

∑

m

pmH(σy|ρ
′

m)−D

]

+ λ

[

∑

m

pm − 1

]

=
∑

m

pm h(sin θm) + κ

[

∑

m

pm h(cos θm)−D

]

+ λ

[

∑

m

pm − 1

]

(17)

over all pure-state ensembles E ′ = {ρ′m; pm} in the yz-plane. Here κ and λ are Lagrange multipliers, the Bloch vector
is parameterised as r(m)′ = (0, cos θm, sin θm), and h(x) is defined as above.

There are two sets of variational equations, for {pm} and {θm} respectively, which fix the Lagrange multipliers λ
and κ. In particular, ∂J/pm = 0 yields

h(sin θm) + κh(cos θm) = −λ, (18)

while ∂J/θm = 0 yields

pm
[

cos θmh
′(sin θm)− κ sin θmh

′(cos θm)
]

= 0.

The latter reduces to, for all pm 6= 0 (i.e, for those pm which actually contribute to J)

f(θm) :=
h′(sin θm)/ sin θm
h′(cos θm)/ cos θm

= κ. (19)

It may be checked (see Fig. 6) that the function f(θ) in Eq. (19) is symmetric about θ = 0 and θ = π/2, and monotonic
on [0, π/2]. Hence, one has up to four possible solutions of f(θm) = κ, for a given value of κ, of the form θm = ±π/2±θ
for some θ ∈ [0, π/2]. Thus,

sin θm = ± cos θ, cos θm = ∓ sin θ, ∀m : pm 6= 0,
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for some fixed θ ∈ [0, π/2], and κ = f(π/2 − θ). Moreover, noting h(x) = h(−x), Eq. (18) is automatically satisfied,
with λ = −h(cos θ)− κh(sin(θ).

The corresponding extremal value of J follows from Eq. (17) as Jmin = h(cos θ), independently of pm, yielding the
lower boundary of the region R∗ to be

C∗ = { (h(cos θ), h(sin θ)) : θ ∈ [0, π/2] }. (20)

Noting that cos2 θ + sin2 θ = 1, the equation of this curve corresponds to equality in Eq. (15).

Finally, to show that C∗ ≡ C, note that all the points (N,D) ∈ C∗ correspond to the values of noise and disturbance
for the measurements in our experimental scenario (with optimal correction), as per Eqs. (10) and (11) of the main
text. Hence, C∗ ⊂ R, implying C lies on or below C∗. But, by construction, C∗ lies on or below C, and it immediately
follows that C = C∗ as desired.

Similar techniques to the above may be used to derived improved noise-disturbance relations for other observables,
as will be explored elsewhere. We note here that, by restricting attention to single-member ensembles in Eq. (17),
it further follows that C∗ is the lower boundary of the region {H(σz|ρ), H(σy|ρ)}, where ρ ranges over all possible
qubit states ρ. Hence, C∗ also gives the optimal trade-off between the entropies of the mutually complementary qubit
observables σy and σz, improving on the standard Maassen-Uffink relation H(σy) +H(σz) ≥ log 2.

State preparation and measurement in the neutron polarimetric setup

Here, the experimentally interested reader can find more detailed informations on how the neutron’s spin state is
manipulated along our polarimeter beam line in order to prepare the desired initial states (|±z〉 , |±y〉) and successively
measure the observables of interest M = σy sin θ + σz cos θ and B = σy.

State preparation

In order to prepare the eigenstates |αz〉 of A, that is |+z〉 and |−z〉 since α = ±1, the current through the spin turner
coil DC-1 is simply turned off for the former leaving the the spin in the state it possesses after the first supermirror,
i.e. |+z〉, and set to the predetermined flip current generating Bπ

x for the latter. Bπ
x is just the field strength that

causes a rotation of π of the Bloch vector and thus converts |+z〉 to |−z〉. To prepare the eigenstates |βy〉 of B,

the respective currents generating the fields B
±π/2
x , i.e., that cause ±π/2-roations of the Bloch vector, are applied

in DC-1. Each of the two eigenstates of σz and σy is sent with equal probability, experimentally realized by sending
each input state for the same, sufficiently long time period.

Measurement of M

The projective measurement of M consists of two steps. At first, we have to project the initially prepared state
onto the eigenstates of M , then, in order to complete the measurement, we have to prepare the neutron spin in the
eigenstates of M . Since the input eigenstates |±z〉 and |±y〉 and the |±m〉 all lie in the zy-plane of the Bloch sphere,
the distance between DC-1 and DC-2 has to be chosen such that the Bloch vector undergoes integer multiples of
the full rotation period in their intermediate guide field. Then, spin turner DC-2 rotates the spin component to be
measured, which depends on the polar angle θ (M = σy sin θ + σz cos θ), towards the z-direction. For the eigenstate
belonging to eigenvalue µ = +1 the component along +~m and for eigenvalue µ = −1 the spin component along −~m
is rotated in the +z direction. The second supermirror (first analyzer) then selects only the |+z〉 part of the spinor
wave function. The projective measurement is completed by the preparation of the measured spin component with
spin turner DC-3. In analogous manner to the preparation of the initial state, this is accomplished by properly setting
the respective currents in DC-3 required for the fields Bθ

x and Bπ+θ
x . Thus when leaving DC-3 the system is in the

appropriate eigenstate of M .
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Measurement of B

Here we apply the same procedure as for the M measurement, that is to rotate the ±y component towards the
+z-direction with DC-4, followed by another supermirror (second analyzer). A further DC coil for preparing the
measured spin state can be omitted, since the neutron detection is insensitive to the spin.

From intensities to noise and disturbance

In this section, we want to explain in detail how the probabilities needed for the calculation of noise and disturbance
are obtained from the intensities measured in the experiment.

Noise

In order to determine the information-theoretic noise, the eigenstates |±z〉 of A are sent onto the measurement
apparatus which then projectively measures M and B resulting in four different output intensities for each input
eigenstate. We have schematically depicted the measurement process in Fig. 7. The polarimeter setup is adjusted
such that it realizes one of the eight possible ”arms” of Fig. 7 after the other. The output intensities get labeled with

| −z >
α = −1
  

Measurement 

           M  
  

µ = +1

µ = −1

Measurement 

           B  

| +z >
α =+1

Measurement 

           M  
  

β‘ = +1
µ = +1

µ = −1

Measurement 

           B  

β‘ =  -1

β‘ = +1

β‘ =  -1

I Α
+++

I Α
++ −

I Α
+ − +

I Α
+ − +

I Α
− ++

I Α
− + −

I Α
− − +

I Α
− − −
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αµβ’} β‘ = +1

β‘ =  -1

β‘ = +1

β‘ =  -1

Figure 7: Schematic illustration of the complete noise measurement procedure. All probabilities required for the determination
of the information-theoretic noise can be obtained from the output intensities IAαµβ′ .

three lower indices IAαµβ′ having the values ±1 where α gives the sign of |±z〉, µ indicates which projection operator
of M has been realized, and β′ does the same for the projection operator of B. The probabilities are connected to
the intensities via

p(α) =

∑

µ,β′ IAαµβ′

∑

α,µ,β′ IAαµβ′

p(µ|α) =

∑

β′ IAαµβ′

∑

µ,β′ IAαµβ′

. (21)

However, the definition of the information theoretic noise is not in terms of the conditioned probability p(µ|α) but
p(α|µ), since it quantifies how well the observable’s value can be guessed from the outcome and not contrariwise:

N(M, A) := −
∑

α,µ

p(µ)p(α|µ) log p(α|µ) = H(A|M) (22)

Here H(A|M) is the conditional entropy and A and M denote the classical random variables associated with input
α and output µ. The information-theoretic noise thus quantifies how well the value of A can be inferred from the
measurement outcome and only vanishes if an absolutely correct guess is possible. Thus, we have to use Bayes’
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theorem to connect these different conditional probabilities

p(α|µ) =
p(α)p(µ|α)

p(µ)
. (23)

The marginal probability p(µ) is given by summation over α of the joint probability distribution p(α, µ)

p(µ) =
∑

α

p(α, µ) =
∑

α

p(α)p(µ|α). (24)

Now, the information theoretic noise as defined in Eq. (22) can be calculated.

Disturbance

For the determination of the information-theoretic disturbance, the eigenstates |βy〉, that is |±y〉, of the disturbed
observable B = σy are sent onto the apparatus. By labeling the output intensities with IBβµβ′ (see Fig. 8) we get the
required probabilities from

p(β) =

∑

µ,β′ IBβµβ′

∑

β,µ,β′ IBβµβ′

p(β′|β) =

∑

µ I
B
βµβ′

∑

µ,β′ IBβµβ′

. (25)

By again using Bayes theorem we obtain the probabilities as they occur in the definition of the information-theoretic
disturbance.

D(M, B) := −
∑

β,β′

p(β′)p(β|β′) log p(β|β′) = H(B|B′). (26)

as given in the main text, with

h(x) := −
1 + x

2
log

1 + x

2
−

1− x

2
log

1− x

2
. (27)

In our scenario, the measurement operator M is varied over the zy-plane spanned by A and B

A = σz, B = σy, M = ~m · ~σ = σy sin θ + σz cos θ, (28)
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Measurement 

           M  
  

µ = +1

µ = −1

Measurement 

           B  

| +y >
β =+1

Measurement 

           M  
  

β‘ = +1
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           B  

β‘ =  -1

β‘ = +1

β‘ =  -1
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I Β
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− ++
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I Β
− − +
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− − −
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β‘ = +1
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Figure 8: Schematic illustration of the complete disturbance measurement procedure. All probabilities required for the deter-
mination of the information-theoretic disturbance can be obtained from the output intensities IBβµβ′ .
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and the theoretically expected expressions for the probabilities are

p(α) = p(β) = popt(β) =
1

2
, p(µ|α) =

1 + µα cos θ

2
,

p(β′|β) = p(β|β′) =
1 + β′β sin2 θ

2
, popt(β

′|β) = popt(β|β
′) =

1 + β′β| sin θ|

2
. (29)

Here popt is used to denote the probabilities in the case that an optimal correction (see section ) is applied after the
M -measurement. These expressions yield

N(M, A) = h (cos θ) , D0(M, B) = h
(

sin2 θ
)

, Dopt(M, B) = h (sin θ) , (30)

These theoretically expected value of noise and disturbance are depicted here in Fig. 9, along with the corresponding
experimentally measured values.
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Figure 9: Noise N(M,A) (straight blue line), uncorrected disturbance D0(M,B) (dashed green line), and optimally corrected
disturbance Dopt(M,B) (dotted red line) normalized with the apparatus’ efficiency vs. polar angle θ of M . The respective
conditional probabilities are plotted on the right hand side.

Optimal correction procedure for projective qubit measurements

For a spin measurement operator M = ~m · ~σ and an observable B = ~b · ~σ the optimal correction minimizing the
disturbance after the projective measurement of M on B is given by

Copt(|µm〉) :=

{

|µb〉, ~b · ~m ≥ 0

| − µb〉, ~b · ~m < 0
(31)

with µ = ±1 and | ± m〉 being the respective eigenstates of M . The above formula can be intuitively understood
as a sort of maximum likelihood correction procedure: the output |µm〉 of the apparatus is rotated onto the closest

eigenvector of B, which is |µb〉, if M and B are more correlated than anti-correlated (i.e., ~b · ~m ≥ 0), or | − µb〉

otherwise (i.e., ~b · ~m < 0). This guarantees that the outcome obtained from the final measurement of B is perfectly

correlated with the outcome of M , if ~b · ~m ≥ 0, or perfectly anti-correlated otherwise—in either cases, correlations are
kept maximal, by avoiding the occurrence of extra random noise.

The fact that such a simple correction procedure is indeed the optimal one, is a consequence of having an apparatus
performing a sharp measurement (i.e., measurement operators are all rank-one). In such a case, in fact, the apparatus
is necessarily of the form ‘measure-and-prepare,’ in the sense that the apparatus has to completely absorb the input
quantum system in order to produce the outcome. Therefore, the state of the output quantum system emerging from
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the apparatus only depends on the outcome, and all the information about the state of the input quantum system is
encoded on the apparatus outcome only.
This in turns implies that, from an information-theoretic viewpoint, in the case of an apparatus performing a sharp

measurement (as we have here), the best thing to do, in order to minimize the disturbance in Eq. (3) of the main
text, is to have the random output variable B

′ perfectly correlated (or perfectly anti-correlated) with the apparatus’
random variable M, so that all available information about the input system is encoded in B

′. Thus, the minimum
possible disturbance is

Dopt(M, B) = H(B|B′) = H(B|M), (32)

for such measurements, corresponding to the optimal correction operation in the main text.

[1] F. Buscemi, M. J. W. Hall, M. Ozawa, and M. M. Wilde, Phys. Rev. Lett. 112, 050401 (2014).
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