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Chemical differentiation of rocky planets occurs by melt segrega-

tion away from the region of melting. The mechanics of this

process, however, are complex and incompletely understood. In

partially molten rocks undergoing shear deformation, melt pock-

ets between grains align coherently in the stress field; it has been

hypothesized that this anisotropy in microstructure creates an

anisotropy in the viscosity of the aggregate. With the inclusion of

anisotropic viscosity, continuum, two-phase-flow models repro-

duce the emergence and angle of melt-enriched bands that form in

laboratory experiments. In the same theoretical context, these

models also predict sample-scale melt migration due to a gradient

in shear stress. Under torsional deformation, melt is expected to

segregate radially inward. Here we present torsional deformation

experiments on partially molten rocks that test this prediction.

Microstructural analyses of the distribution of melt and solid re-

veal a radial gradient in melt fraction, with more melt toward the

center of the cylinder. The extent of this radial melt segregation

grows with progressive strain, consistent with theory. The agree-

ment between theoretical prediction and experimental observa-

tion provides a validation of this theory.
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Shear deformation of partially molten rocks gives rise to melt
segregation into sheets (bands in cross-section) that emerge

at a low angle to the shear plane. This mode of segregation was
predicted with two-phase flow theory (1) and subsequently dis-
covered in experiments (2, 3). It has been proposed that melt-
enriched bands, if present in the mantle of Earth, would permit
rapid extraction of melt (4), produce significant anisotropy in
seismic wave propagation (5), and provide a mechanism for
the seismic discontinuity that is, in some places, associated with
the lithosphere–asthenosphere boundary (6). The emergence (7)
and low angle (8) of melt-enriched bands under simple-shear
deformation can be reproduced using two-phase flow theory with
a non-Newtonian, isotropic viscosity. This theory describes the
flow of a low-viscosity liquid (melt) through a permeable and
viscously deformable solid matrix (grains) (9). However, an
unrealistically strong stress dependence of viscosity was required
to match the low angle of bands observed in experiments (8).
This disagreement between models and experiments found a
possible resolution by the incorporation of anisotropic viscosity
arising from coherent alignment of melt pockets between grains
[i.e., melt-preferred orientation (MPO)] in response to a devia-
toric stress (10–13).
Crucially, with the inclusion of viscous anisotropy, two-phase

flow theory also predicts a simultaneous but distinct mode of melt
segregation driven by large-scale gradients in shear stress. This
mode is termed base-state melt segregation (13–15). Base-state
melt segregation is not predicted if viscosity is isotropic; thus, its
occurrence in experiments represents a test of the hypothesis that
MPO leads to anisotropy in viscosity. Below we explain base-state
melt segregation in more detail; we then present new experimental
results that demonstrate its occurrence.
Fig. 1A illustrates how anisotropy in grain/melt microstructure

(i.e., MPO) produces viscous anisotropy through the mechanics

of diffusion creep (10). For a representative grain in an aggregate
subjected to a deviatoric stress, the contact area with neighboring
grains decreases for grain boundaries that are normal to the di-
rection of the minimum principal stress σ3 (the minimum eigen-
value of the deviatoric stress tensor, compression positive). A
decrease in contact area shortens the diffusion pathway for material
transport along this boundary relative to grain boundaries with
different orientations. Because melt provides a fast pathway for
diffusion, this change in the contiguity between neighboring grains
reduces the timescale of the diffusive response to the σ3 component
of stress. Conversely, an increase in grain–grain contact area normal
to the direction of the maximum principal stress σ1 lengthens the
diffusion pathway on this surface and thus the timescale for diffusive
response to stress in this direction.
To translate these concepts from the microscopic to the con-

tinuum scale, consider a representative element of volume (REV)
that is large enough to contain many microscopic units (grains and
melt pockets) and small enough to define a point property at the
scale of macroscopic features of interest (Fig. 1B). Under devia-
toric stress, melt pockets in the REV coherently align normal to
the σ3 direction and the timescale for the diffusive response to
stress is reduced in this direction. If the dominant deformation
mechanism of the aggregate is diffusion creep, this rapid response
imparts a reduction of the continuum viscosity in the σ3 direction
(10, 16). Likewise, the change in grain contiguity associated with σ1
increases the viscosity in that direction.
Viscous anisotropy can be quantified with a highly symmetric,

fourth-rank tensor (SI Appendix 1). The orientation of this tensor is
described by three angles that rotate it with respect to the system
coordinates. This rotation is used to align anisotropy with the
principle directions of deviatoric stress. As a simplifying
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approximation, we assume that, at each point in the domain, the
imposed shear direction lies in the plane containing σ1 and σ3; this
plane is perpendicular to the imposed shear plane (figures 3 and 5
of ref. 13). This leaves only one angle to be determined, the angle Θ
between the shear plane and the σ3 direction. The magnitude of
anisotropy is parameterized with two scalars: α specifies the vis-
cosity reduction in the σ3 direction; β specifies the viscosity increase
in the σ1 direction. When either α or β or both α and β are nonzero
at a point in the continuum, the viscosity at that point is aniso-
tropic. The associated tensor then has nonzero off-diagonal terms
that couple shear stress to normal strain rate (and vice versa). It is
these terms that give rise to base-state segregation (13, 14).
To clarify the physical mechanism of base-state segregation,

consider a cylindrical sample in a sealed chamber, deformed in
torsion at a constant twist rate (Fig. 1C). Before any deviatoric
stress is applied, the grain/melt microstructure is isotropic and
the rate of (de)compaction is zero everywhere within the sample.
With initiation of twisting, as a consequence of the deviatoric
stress, a MPO develops and the viscosity becomes anisotropic.
The imposed strain rate, aligned melt pockets, and consequent

pattern of stress are shown schematically in Fig. 1 B and C. The
disparity between jσ1j and jσ3j gives rise to a net compression
that, because σ1 and σ3 are everywhere tangent to the cylinder, is
a compressive hoop stress. This compressive hoop stress pushes
the solid grains radially outward and causes a pressure gradient
that drives melt radially inward (13) (details provided in SI Ap-
pendix 2). This differential motion is the base-state melt segre-
gation under torsional deformation.
To test this prediction and hence the hypothesis that viscosity

is anisotropic, we imposed a constant twist rate on cylindrical
samples of partially molten rock that initially had uniform melt
fraction (Table 1). In tangential sections of quenched samples
that were deformed in torsion (Fig. 2), we observe aligned melt
pockets and low-angle, melt-enriched bands. Melt-enriched
bands are also evident in transverse sections (Fig. 3). More im-
portantly, analyses of optical micrographs of transverse sections
reveal a gradient in melt fraction in the radial direction, with
melt concentrated toward the axis of the cylinder. This gradient
in melt fraction corresponds to the base-state melt segregation
predicted if viscosity is anisotropic. Our observations of MPO,
melt-enriched bands, and radial melt segregation are detailed in
subsequent paragraphs.

Results and Discussion

MPO. The rose diagram in Fig. 2B demonstrates that at a local
shear strain of γ = 4.6, melt pockets are aligned at ∼29° to the shear
plane, antithetic to shear direction. In contrast, the expected σ3
direction, based on cylindrical simple shear flow with isotropic
viscosity, is 45° to the shear plane. The observed low angle of melt
alignment means that, at this shear strain, either melt pockets are
not normal to the σ3 direction (17) or σ3 has rotated counter-
clockwise. The reason for this alignment is unknown; it might be
due to the emergence of chains of melt pockets (18) (Fig. 2C) or to
the anisotropic viscosity itself. In the theory of two-phase flow with
viscous anisotropy, elaborated in SI Appendix 1, it is generally as-
sumed that melt pockets align perpendicular to σ3, as suggested by
deformation experiments on an analog material at small strains
(γ < 0.2) (19). The observed MPO, therefore, may represent a
subtle but important discrepancy between observation and theory
that we return to below. Despite this possible discrepancy, the
observed, strong MPO demonstrates the microstructural anisot-
ropy that hypothetically causes viscous anisotropy.

Melt Distribution. Two-phase flow theory with anisotropic vis-
cosity (13) also predicts the emergence of sheets of high-melt
fraction that appear as bands in 2D sections (3). In Fig. 3, these
features appear as radial lines of high-melt fraction where sheets
cross the transverse section. For the sample deformed to an
outer-radius shear strain of γðRÞ= 5.0 (Fig. 3 A and C), the melt-
enriched bands are distributed uniformly around the cylinder,
whereas at a larger strain of γðRÞ= 14.3 (Fig. 3 B and D), the

A

B

C

Fig. 1. Schematic diagrams of the interactions between stress and anisotropic

viscosity. (A) Stress-induced melt redistribution and its influence on diffusion

pathways in 2D. The grain boundaries in contact with a neighboring grain are in

black, and the grain boundaries in contact with melt are in gray. Melt pockets

under isotropic conditions are outlined with dashed lines, and the redistributed

melt pockets under shear deformation are outlined with solid lines. Red arrows

show the lengths of diffusion pathways from the grain-melt boundary (gray

arrows) to the center of a grain boundary (black arrows). The diffusion pathway

shortens from a0 to awith applied deviatoric stress σ3. (B) The coupling between

torsional deformation with zero volumetric strain rate and stress with nonzero

volumetric component associated with viscous anisotropy. The square is a REV

with melt pockets (gray) aligned 45° to the shear plane, antithetic to the shear

direction [modified from a previous study (13)]. (C) A sample-scale view of the

development of the hoop stress from compressive stresses due to cylindrical

geometry. In the cylindrical coordinates, z is the longitudinal axis parallel to the

torsional axis, r is the polar axis along the radius, and ψ is the azimuthal axis.

Table 1. Experiments summary

Sample γðRÞ* _«eq, s
−1† σeq, MPa† ϕmax=ϕmin

‡

PI0767 11.1 2.29 × 10−4 187 1.6

PI0811 5.6 1.84 × 10−4 237 1.2

PI0812 5.8 1.84 × 10−4 163 1.4

PI0817 5.0 2.35 × 10−4 197 1.3

PI0839 7.3 1.84 × 10−4 237 1.7

PI0891 14.3 2.04 × 10−4 179 2.0

*γðRÞ is the outer-radius shear strain, where R is the radius of a sample with

R≈ 6 mm.
†The equivalent strain rate and stress, _«eq and σeq, respectively, are calculated

from shear strain rate and stress, using the Cauchy stress tensor.
‡ϕmax=ϕmin is the ratio of maximum to minimum melt fraction in the profile

of azimuthally averaged melt fraction.
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azimuthal distribution of melt-enriched bands is inhomogeneous,
dominated by several extraordinarily large bands. Because the
total strain decreases toward the center of the cylinder, the re-
gion close to axial center exhibits less banding. More signifi-
cantly, however, Fig. 3 C and D demonstrates a general increase
in melt fraction toward the center of the cylinder, consistent with
the predicted base-state migration of melt radially inward.
Radial profiles of the azimuthally averaged, normalized melt

fraction are presented in Fig. 4A for seven experiments, each
with a different final strain. The melt fraction in an experiment
with no deformation (gray line) varies by less than 10% along a
radius. In all deformed samples, the melt fraction increases to-
ward the center of the cylinder—evidence for base-state segre-
gation. For the three samples deformed to an outer-radius shear
strain of γðRÞ= 5.5± 0.5, each radial profile of melt concentra-
tion reaches its peak at a radius of rpeak ≈ 1mm, corresponding to
a shear strain of γðrpeakÞ≈ 1. Melt fraction decreases from that
point toward the axis of the cylinder; this behavior is expected
because the low-stress/low-strain region at small radius has little
or no MPO and hence has essentially isotropic viscosity
(α= β= 0). For samples deformed to higher outer-radius shear
strains [γðRÞ= 7.3,  11.1, and 14.3], peaks in melt fraction occur
at a radius of rpeak < 0.2 mm. The sample with the highest outer-
radius shear strain [γðRÞ= 14.3] exhibits the largest ratio of

maximum to minimummelt fraction ϕmax=ϕmin (Table 1), a measure
of the strength of base-state melt segregation. Except for the samples
sheared to outer-radius shear strains of γðRÞ= 5.0 and 7.3, the
maximum in melt fraction increases with increasing shear strain. In
summary, the results presented in Fig. 4A demonstrate that, with
increasing strain, the pressure gradient induced by anisotropic vis-
cosity drives melt inward, increasing the maximum value of the az-
imuthally averaged melt fraction and decreasing the radius at which
this maximum occurs.

Comparisons with Model. Fig. 4B compares the azimuthally aver-
aged profiles of normalized melt fraction from three samples
deformed to γðRÞ= 5.5± 0.5 with those derived from numerical
simulations. The data points in Fig. 4B, which are the mean
values of the azimuthal averages at each radius, reach a maxi-
mum normalized melt fraction of ∼1.15 at rpeak ≈ 1 mm and a
minimum of ∼0.95 at r≈ 4 mm. For comparison, radial profiles
of melt fraction from numerical simulations of samples deformed
to γðRÞ= 5.5 at an initial compaction length of δc = 0.1  R and
a bulk-to-shear viscosity ratio of rξ = 10. In the simulations,
two conditions are used for the angle of viscous anisotropy:
(i)Θ= 45°, suggested by previous experiments (19), and (ii)Θ= 60°,
suggested by Fig. 2. For both conditions, if an initial perturbation
in melt fraction is incorporated into the simulation, melt-
enriched bands develop. However, for Θ= 60°, the band angle is
higher than observed in experiments (15); this inconsistency re-
quires further investigation. The other variable in the simulations
is the magnitude of viscous anisotropy. In all four simulations, α
increases from zero at the center of the cylinder to αmax = 2 at
r≈ 1 mm and then remains constant at larger radii. In two of the
simulations, β mimics the behavior of α. In the other two simu-
lations, β is zero at all radii. In the decompaction region (i.e., at
small radii), profiles with Θ= 45° exhibit higher melt fractions than
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Fig. 2. MPO in a sample deformed to a shear strain of 4.6. (A) A sketch il-

lustrating a deformed cylindrical sample with its tangential section marked in

red. Arrows in this sketch illustrate the expected directions of deviatoric

stresses σ1 and σ3 in tangential section. (B) A rose diagram generated from

optical micrographs of the tangential section at a local shear strain of γ = 4.6

(PI0817). The rose diagram was constructed from more than 1,000 melt

pockets with areas larger than 2 μm2. The length of each petal represents the

ratio of melt pockets with this certain orientation, scaled by percentage.

Θ is anisotropy angle, which is the angle between red, dashed lines and 0°.

(C) Optical micrograph from the tangential section of the sample. Olivine grains

are light gray, melt is dark gray, and internal reflections or residual polishing

material are white. The sense of shear is marked by the arrow on top.
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Fig. 3. Optical micrographs and processed images demonstrating base-state

melt segregation. (A and B) Optical micrographs of transverse sections from

samples sheared to γðRÞ= 5.0 (PI0817) and 14.3 (PI0891), respectively. Olivine is

light gray and melt is dark gray. The sketch located between A and B is a de-

formed cylindrical sample with its transverse section marked in red. (C and D)

Melt distribution maps generated from A and B, respectively. The grid size is

100 × 100 μm2. Color bar indicates melt fraction normalized to the average melt

fraction in the image. Due to its high strain, sample PI0891 sheared off axis so

that the torsional axis is to the northwest of the center of the image.
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those with Θ= 60°, whereas profiles with αmax = βmax = 2 exhibit
higher melt fractions than those with αmax = 2 and β= 0. The
profile with Θ= 60° and αmax = βmax = 2 is the most consistent with
the experimental results. However, some clear differences exist
between the simulated and the experimental profiles. First, for
2.6< r< 4.4 mm the simulated profiles lie above the experimen-
tally measured profile. Second, the abrupt decrease in the simu-
lated profiles at r> 4.4 mm was not observed experimentally.
Despite these quantitative discrepancies, all simulated porosity
profiles are in good qualitative agreement with those from ex-
periments, in terms of both the amplitude and the radial position
of the porosity maximum.

Conclusions

In this paper we presented experimental observations of the
radial distribution of melt in partially molten rocks deformed in
torsion to large strain. For this deformation geometry, the theory of
melt segregation with anisotropic viscosity predicts a radial distri-
bution of melt fraction. The inclusion of viscous anisotropy in the
theory is a necessary and sufficient condition for the development
of radially inward, base-state melt segregation. Our experiments test
this prediction, and the results reported here are in general
agreement with theory, validating the viscous-anisotropy hypothesis.
This experimental validation of MPO-induced viscous anisotropy
represents a significant advance in our understanding of the re-
lationship between microstructure and continuum mechanics of
partially molten rocks, and it also exposes details of the linkage
between deformation, MPO, and viscosity that are not captured
by the present model. Although questions remain concerning the
influence of MPO-induced viscous anisotropy on large-scale
mantle dynamics, this study emphasizes its importance to melt
segregation and rheological behavior of partially molten rocks in
laboratory experiments and mantle flow.

Materials and Methods

Samples were fabricated frommixtures of fine-grained powders of olivine from

San Carlos, AZ, plus 10 vol%alkali basalt fromHawaii (20). Olivine powders were

obtained by grinding San Carlos olivine crystals in a fluid-energy mill to produce

a particle size of 2 μm. Before mechanically mixing with alkali basalt powders

with a particle size of ∼10 μm, the olivine powders were dried at 1,373 K for

12 h at an oxygen partial pressure near the Ni-NiO buffer to remove water and

carbon-based impurities introduced during the grinding process. Mixtures were

uniaxially cold-pressed at 100 MPa into nickel capsules and then hydrostatically

hot-pressed at 1,473 K and 300 MPa for 3.5 h in a gas-medium apparatus (21).

After hot-pressing, samples were cut into thin cylinders with a diameter of

2R≈12 mm and a thickness of 3–5 mm. The cut sample was then placed into a

nickel capsule with spacers cored from a coarse-grained natural dunite as end

caps, thus providing nonreactive, impermeable boundaries during deformation

(22). The sample, Al2O3 spacers and pistons, and ZrO2 pistons were enclosed in

an iron jacket for deformation.

Torsion experiments were conducted at a shear strain rate of 10−3.5s−1, a

temperature of 1,473 K, and a confining pressure of 300 MPa in a gas-medium

apparatus fitted with a torsion actuator (21). After achieving the target

strain, each sample was cooled rapidly (∼2 K/s) to 1,300 K under the torque

imposed at the end of the deformation experiment to preserve the de-

formation-produced microstructure and then cooled to room temperature

with no torque applied. After deformation, with the iron jacket and the

nickel capsule dissolved in acid, the deformed sample was cut in half per-

pendicular to the torsional axis, leaving two transverse sections for exami-

nation. Each transverse section was polished on a series of diamond lapping

films down to 0.5 μm, followed by a final step using colloidal silica. The

section was then examined by reflected-light optical microscopy after

chemically etching with diluted HF to highlight melt pockets.

To map the whole transverse section with an area of ∼113 mm2, a mosaic

image consisting of 2,209 high-resolution (0.3 μm per pixel) optical micrographs

was used. A binary image with melt appearing white was created from this

mosaic image, using a combined image segmentation method, which includes

edge detection (23–25) and a threshold of grayscale. Then a profile of melt

fraction was calculated from the area fraction of the white pixels (22).
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