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Abstract

Using a theoretical framework based on the next-to-leading order QCD-improved effective
Hamiltonian and a factorization Ansatz for the hadronic matrix elements of the four-quark
operators, we reassess branching fractions in two-body non-leptonic decays B → PP, PV, V V ,
involving the lowest lying light pseudoscalar (P ) and vector (V ) mesons in the standard model.
We work out the parametric dependence of the decay rates making use of the currently avail-
able information on the weak mixing matrix elements, form factors, decay constants and quark
masses. Using the sensitivity of the decay rates on the effective number of colors, Nc, as a
criterion of theoretical predictivity, we classify all the current-current (tree) and penguin tran-
sitions in five different classes. The recently measured charmless two-body B → PP decays
(B+ → K+η′, B0 → K0η′, B0 → K+π−, B+ → π+K0 and charge conjugates) are dominated
by the Nc-stable QCD penguins (class-IV transitions) and their estimates are consistent with
data. The measured charmless B → PV (B+ → ωK+, B+ → ωh+) and B → V V transition
(B → φK∗), on the other hand, belong to the penguin (class-V) and tree (class-III) transitions.
The class-V penguin transitions are Nc-sensitive and/or involve large cancellations among com-
peting amplitudes making their decay rates in general more difficult to predict. Some of these
transitions may also receive significant contributions from annihilation and/or final state inter-
actions. We propose a number of tests of the factorization framework in terms of the ratios
of branching ratios for some selected B → h1h2 decays involving light hadrons h1 and h2,
which depend only moderately on the form factors. We also propose a set of measurements
to determine the effective coefficients of the current-current and QCD penguin operators. The
potential impact of B → h1h2 decays on the CKM phenomenology is emphasized by analyzing
a number of decay rates in the factorization framework.
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1 Introduction

Recent measurements by the CLEO Collaboration [1,2] of a number of decays of the type
B → h1h2, where h1 and h2 are light hadrons such as h1h2 = ππ, πK, η′K,ωK, have triggered
considerable theoretical interest in understanding two-body non-leptonic B decays. These de-
cays involve the so-called tree (current-current) b → (u, c) and/or b → s (or b → d) penguin
amplitudes with, in general, both the QCD and electroweak penguins participating. The ap-
propriate theoretical framework to study these decays is that of an effective theory based on
the Wilson operator product expansion [3] obtained by integrating out the heavy degrees of
freedom, which in the standard model (SM) are the top quark and W± bosons. This effective
theory allows to separate the short- and long-distance physics and one can implement the per-
turbative QCD improvements systematically in this approach. Leading order corrections have
been known for quite some time [4] and in many cases this program has been completed up to
and including the next-to-leading order corrections [5]. Present QCD technology, however, does
not allow to undertake a complete calculation of the exclusive non-leptonic decay rates from
first principles, such as provided by the lattice-QCD approach, as this requires the knowledge
of the hadronic matrix elements < h1h2|Heff |B >, where Heff is an effective Hamiltonian con-
sisting of the four-quark and magnetic moment operators. These are too complicated objects
to be calculated with the current lattice-QCD methods. Hence, a certain amount of model
building involving these hadronic matrix elements is at present unavoidable.

The approach which has often been employed in non-leptonic heavy hadron decays is based
on factorization [6–8]. With the factorization Ansatz, the matrix elements < h1h2|Heff |B >
can be expressed as a product of two factors < h1|J1|B >< h2|J2|0 >. The resulting matrix
elements of the current operators Ji are theoretically more tractable and have been mostly
calculated in well-defined theoretical frameworks, such as Lattice-QCD [9–11], QCD sum rules
[12–15] and potential models [8],[16–18]; some are also available from data on semileptonic and
leptonic decays [19]. One can then make quantitative predictions in this framework taking into
account the theoretical and experimental dispersion in the input parameters in the decay rates.
Factorization holds in the limit that one ignores soft non-perturbative effects. The rationale of
this lies in the phenomenon of color-transparency [20], in which one expects intuitively that a
pair of fast moving (energetic) quarks in a color-singlet state effectively decouples from long-
wavelength gluons. In the decays B → h1h2, with typically Eh1,2 ∼ O(mB/2), the energy of
the quarks leaving the interaction is large and soft final state interactions should be small and
hence factorization should be a good approximation. Final state interactions generated by hard
gluon exchanges are, however, perturbatively calculable and can be included. Phenomenology
of the factorization hypothesis in the decays B → D(∗)π(ρ), B → J/ψK(∗) and related ones,
involving the so-called current-current amplitudes, has been worked out and compared with
the existing data with the tentative conclusion that data in these decays can be described in
terms of two phenomenological parameters, a1 and a2 [8], whose values seem to be universal
[18,21].

The decays B → h1h2 have been studied repeatedly in the factorization framework [22–26].
However, with the measurements of some of the B → h1h2 decays [1,2], theoretical interest
in this field has resurged. In particular, NLO-improved perturbative framework with updated
phenomenological input has been used in a number of recent papers [27–31] to study the CLEO
data. We would like to take a closer look at the non-leptonic two-body decays B → h1h2, in
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which QCD and/or electroweak penguins are expected to play a significant role.
There are several theoretical issues involved in B → h1h2 decays, which one does not

encounter in the transitions B → H1h2, where H1 is an open (D(∗), D(∗)
s ) or bound (J/ψ, ηc, χc)

charmed hadron, or in decays such as B → D(∗)
s D(∗), which are governed by the current-current

(tree) amplitudes. In the case of the induced b → s and b → d transitions, penguins play an
important role. Of these penguin transitions, the ones involving the top-quark can be reliably
calculated in perturbation theory as they represent genuine short-distance contributions. The
rest of the penguins, which involve both the charm- and light-quarks, also have genuine short-
distance contributions which can be calculated using perturbation theory. Their importance in
the context of direct CP asymmetries has been emphasized repeatedly in the literature [32,33].
However, in principle, such penguin amplitudes may also involve significant non-perturbative
(long-distance) contributions. Arguments for an enhanced role of non-perturbative penguin
effects have been advanced in the literature [34]. In simpler cases, such as the electromagnetic
decays B → Xs + γ and B → K∗ + γ, charm-penguins are likewise present and they introduce
1/m2

c (and higher order) power corrections akin to the long-distance effects being discussed in
non-leptonic decays. In these cases, one finds that the 1/m2

c power corrections are negligible
[35–37]. The same holds for the non-resonant B → Xsℓ

+ℓ− decays [37]. The pattern of
the 1/m2

c-corrections remains to be investigated systematically for non-leptonic b → (s, d)qq̄
decays. However, it is suggestive that the next-to-leading order QCD-improved framework
based on factorization can explain most of the recent CLEO data without invoking a significant
non-perturbative penguin contribution [27,28]. With improved measurements, this aspect will
surely be scrutinized much more quantitatively.

A related issue is that of the current-current b→ cc̄s and b→ cc̄d transitions feeding into the
b → sqq̄ and b → dqq̄ transitions, respectively, by (soft) final state interactions (FSI) [38–42].
While in the oft-studied case of B → Kπ decays, these effects are not found to be overwhelming
for decay rates, yet, in general, it is not difficult to imagine situations where FSI may yield the
dominant contribution to a decay width. There are three ways in which the amplitude for a
decay in the factorization approach can become small: (i) the effective coefficients of the various
operators entering into specific decays are small reflecting either their intrinsic (perturbative)
values, implying they are small for Nc = 3, or their Nc-sensitivity meaning that they are small
for some phenomenologically relevant value of Nc, (ii) due to CKM-suppression, (iii) due to
delicate cancellations among various competing Feynman diagrams, resulting into an amplitude
which is effectively small. Using Nc, the effective number of colors, as a variable parameter, it
becomes immediately clear that some linear combinations of the effective coefficients entering
in specific decays are particularly sensitive to Nc and they indeed become very small for certain
values of ξ = 1/Nc. This then implies that other contributions such as the ones coming from
FSI and/or annihilation may become important. A good case to illustrate this is the decay
B± → K±K, whose decay rate may be enhanced by an order of magnitude due to FSI [40]
and/or annihilation [43] contributions.

In this paper, we undertake a comprehensive study, within the factorization framework, of
all the two-body decay modes of the type B → PP , B → PV and B → V V where P (V ) is a
light pseudoscalar (vector) meson in the flavor U(3) nonet. Concentrating on the lowest lying 0−

and 1− mesons, there are some seventy-six (76) such decays (and an equal number involving the
charge conjugate states). The branching ratios of these decays are found to vary over four orders
of magnitude. We calculate their decay rates (branching ratios) and work out the most sensitive
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parametric dependence of these quantities. In many cases the factorized amplitudes are small
due to the reasons mentioned in the preceding paragraph. While this by itself does not imply
an intrinsic inability to calculate, it becomes difficult to be confident if the rate is additionally
unstable, requiring a good deal of theoretical fine tuning in the factorization approach. We list
all such two-body decay modes here and caution about drawing too quantitative conclusions
on their widths based on the factorized amplitudes alone. We think that the sensitivity of some
of the effective coefficients ai on Nc and the fine tuning required in some amplitudes can be
used as a criterion of predictivity of B → h1h2 decay rates in the factorization approach. The
pattern of color-suppression in current-current amplitudes has been previously used to classify
the Nc-sensitivity of these decays into three classes [8]. We extend this to also include the
penguin-dominated decays, which belong either to Nc-stable (class-IV) or Nc-sensitive (class-
V) decays. In addition, penguin-dominated decay amplitudes involving large cancellations are
also included in class-V. All penguin-dominated B → PP decays belong to class-IV. This class
includes in particular the decays B0 → K+π−, B+ → K+η′, B0 → K0η′ and B+ → π+K0,
measured recently by the CLEO collaboration [1] (here and in what follows, charge conjugate
decays are implied). On the other hand, the recently measured B → PV and B → V V decay
modes by CLEO [2] are in class-V (B+ → ωK+ and B → K∗φ) or tree-dominated class-III
(B+ → ωπ+). Possibly some of these, and many more examples of class-V decays worked out
by us here, indicate that the factorization-based approach is rather uncertain in these decays
and one may have to develop more powerful methods to make theoretically stable predictions
in this class. Factorization approach is expected to do a better job in accounting for class-IV
decays - a claim which is pursued here and which is supported by present data.

We propose tests of factorization in B → h1h2 decays through measuring a number of ratios
of the branching ratios which depend only on the form factors but are otherwise insensitive to
other parameters, such as the effective coefficients ai and hence Nc, quark masses, QCD-scale
parameter and CKM matrix elements. The residual model dependence of these ratios on the
form factors is worked out in two representative cases: (i) the Bauer-Stech-Wirbel (BSW) model
[8] and (ii) a hybrid approach, based on Lattice-QCD/Light-cone QCD sum rules, specifically
making use of the results obtained in the frameworks of lattice-QCD [10,11] and the Light-
Cone QCD sum rules [12,15]. The proposed ratios will test factorization and determine the
form factors.

A quantitative test of the factorization approach lies in a consistent determination of the
effective coefficients ai of this framework. The QCD perturbative contributions to ai can be
calculated in terms of the renormalized Wilson coefficients in the effective Hamiltonian gov-
erning the decays B → h1h2. Then, there are non-perturbative contributions which have to
be determined phenomenologically. Of these a1 and a2 govern the current-current amplitudes
and they should be determined in B → h1h2 decays without any prior prejudice. Four of
the ai’s (a3, ..., a6) govern the QCD-penguin amplitudes and four more (a7, ..., a10) govern the
electroweak-penguin amplitudes. We propose measurements of selected branching ratios (and
their ratios) to determine the effective coefficients a1, a2, a4 and a6 from the first six from data
on B → h1h2 decays in the future. Since the Wilson coefficients of the electroweak penguin
operators in the SM are rather small in magnitude (except for C9), which in turn yield very
small branching ratios for these decays, a determination of a7, ..., a10 is a formidable proposi-
tion. The coefficient a9 can be determined and we propose several decays to measure this. We
also list decay modes in which electroweak penguins (hence a7, ..., a10) do play a noticeable role,
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and work out their corresponding branching ratios.
Finally, we explore the potential impact of the B → h1h2 decays on the phenomenology of

the Cabibbo-Kobayashi-Maskawa (CKM) matrix [44]. Here, we discuss relations of the type put
forward by Fleischer and Mannel [45] (see, also [46]) involving the decay rates of B0 → K+π−

and B+ → K0π+, which can be used to determine cos γ, where γ is one of the angles of the
CKM unitarity triangle, in terms of the ratio of the tree-to-penguin amplitudes z ≡ T/P and δ,
the strong phase shift difference involving these amplitudes. A bound on sin2 γ can be obtained,
assuming that there are just the tree and QCD-penguin amplitudes:

R ≡ Γ(B0 → π∓K±)

Γ(B± → π±K0)
= 1 − 2 z cos γ cos δ + z2 ≥ sin2 γ . (1)

From this, constraints on γ of the form

0◦ ≤ γ ≤ γ0 ∨ 180◦ − γ0 ≤ γ ≤ 180◦ (2)

follow, where γ0 is the maximum value of γ, which are complementary to the ones from the
CKM unitarity fits [47,48]. There are similar relations involving the decays B → PV and
B → V V , where P = π,K and V = ρ,K∗. A determination of the angle γ, however, requires
the knowledge of zi and δi in these processes. Also, the effect of the electroweak penguins has to
be included. Having a definite model, whose consistency can be checked in a number of decays,
one could determine (within a certain range) the values of zi and δi. Given data, this would
allow us in turn to determine γ in a number of two-body non-leptonic B decays. We draw
inferences on the angle γ based on existing data on R, and in line with [27], we show that the
allowed values of γ (or the CKM-Wolfenstein [49] parameters ρ and η) from this analysis are
consistent with the ones following from the CKM unitarity fits. Similar analysis can be carried
out for the decays B → PP, PV, V V , where now P = π0, π± and V = ρ0, ρ±. Measurements
of these decays and their ratios would allow to draw inferences on the angle α. We illustrate
this in the context of our model. The other kind of relations discussed by us involve ratios of
the decay rates dominated by the b → s and b → d penguins, respectively. As pointed out in
ref. [50], these ratios can be used to determine the ratio of the CKM matrix elements |Vtd/Vts|.
Since this CKM-ratio will, in principle, be measured also in B0 - B0 mixings and radiative
and semileptonic rare B decays [47,51], one could check the consistency of such determinations
to reach quantitative conclusions about the QCD dynamics at work in non-leptonic decays.
However, it is conceivable that some of the non-leptonic decays may already provide interesting
information on Vtd before the other mentioned processes are actually measured. While not
competitive in terms of eventual theoretical precision, non-leptonic decays are nevertheless
quite instructive in this respect for the current CKM phenomenology.

This paper is organized as follows: In section 2, we discuss the effective Hamiltonian together
with the quark level matrix elements and the numerical values of the Wilson coefficients Ceff

i in
the effective Hamiltonian approach. In section 3, we introduce the factorization Ansatz, define
the relevant matrix elements and discuss their evaluation in the BSW model and in the hybrid
lattice QCD/QCD sum rule approach. The matrix elements for the three classes B → PP ,
B → PV and B → V V , obtained in the factorization approach, are relegated to Appendix A,
B and C, respectively. Section 4 contains a discussion of the various input parameters (CKM
matrix elements, quark masses, hadronic form factors and mesonic constants). The numerical
input we use in the estimates of branching ratios are collected in various tables. In section 5,
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we tabulate the values of the phenomenological parameters ai for three values of the effective
number of colors (Nc = 2, 3,∞) for the four cases of interest b → s, b̄ → s̄, b → d and b̄ → d̄.
This serves to show both the relative magnitude of the effective coefficients of the various
operators in B → h1h2 decays in the factorization approach and also the stability of these
coefficients against Nc. The classification of the B → h1h2 decays is also discussed here. We
also discuss the contribution of the annihilation amplitudes and list some decays of potential
interest. Section 6 contains the numerical results for the branching ratios which we tabulate for
three specific values of the effective number of colors Nc = 2, 3,∞. The parametric dependence
on ξ = 1/Nc is shown for some representative cases in various figures and compared with data,
whenever available. In section 7, we list a number of ratios of branching ratios to test the
hypothesis of factorization and give their values for the two sets of form factors (in the BSW
and the hybrid Lattice-QCD/QCD sum rule approaches). We also discuss the determination of
the effective coefficients a1, ..., a6 here through a number of relations. We estimate these ratios
and make comparisons with data, whenever available. Potential impact of the B → h1h2 decay
rates on CKM phenomenology are also discussed here. Finally, we conclude in section 8 with
a summary and outlook.

2 The Effective Hamiltonian

2.1 Short-distance QCD corrections

We write the effective Hamiltonian Heff for the ∆B = 1 transitions as

Heff =
GF√

2

[

VubV
∗
uq (C1O

u
1 + C2O

u
2 ) + VcbV

∗
cq (C1O

c
1 + C2O

c
2) − VtbV

∗
tq

(

10
∑

i=3

CiOi + CgOg

)]

,

(3)
where q = d, s and Ci are the Wilson coefficients evaluated at the renormalization scale µ. We
specify below the operators in Heff for b → s transitions (for b → d transitions, one has to
make the replacement s→ d):

Ou
1 = s̄αγ

µLuα · ūβγµLbβ , Ou
2 = s̄αγ

µLuβ · ūβγµLbα ,
Oc

1 = s̄αγ
µLcα · c̄βγµLbβ , Oc

2 = s̄αγ
µLcβ · c̄βγµLbα ,

O3 = s̄αγ
µLbα ·∑q′ q̄

′
βγµLq

′
β , O4 = s̄αγ

µLbβ ·∑q′ q̄
′
βγµLq

′
α ,

O5 = s̄αγ
µLbα ·∑q′ q̄

′
βγµRq

′
β , O6 = s̄αγ

µLbβ ·∑q′ q̄
′
βγµRq

′
α ,

O7 = 3
2
s̄αγ

µLbα ·∑q′ eq′ q̄
′
βγµRq

′
β , O8 = 3

2
s̄αγ

µLbβ ·∑q′ eq′ q̄
′
βγµRq

′
α ,

O9 = 3
2
s̄αγ

µLbα ·∑q′ eq′ q̄
′
βγµLq

′
β , O10 = 3

2
s̄αγ

µLbβ ·∑q′ eq′ q̄
′
βγµLq

′
α ,

Og = (gs/8π
2)mb s̄α σ

µν R (λA
αβ/2) bβ G

A
µν .

(4)

Here α and β are the SU(3) color indices and λA
αβ , A = 1, ..., 8 are the Gell-Mann matrices; L

and R are the left- and right-handed projection operators with L(R) = 1 − γ5 (1 + γ5), and
GA

µν denotes the gluonic field strength tensor. The sum over q′ runs over the quark fields that
are active at the scale µ = O(mb), i.e., (q′ǫ{u, d, s, c, b}). The usual tree-level W -exchange
contribution in the effective theory corresponds to O1 (with C1(MW ) = 1 + O(αs)) and O2

emerges due to the QCD corrections. The operators O3, . . . , O6 arise from the QCD-penguin
diagrams which contribute in order αs through the initial values of the Wilson coefficients at
µ ≈ MW [52] and operator mixing due to the QCD corrections [53]. Similarly, the operators
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O7, . . . , O10 arise from the electroweak-penguin diagrams. Note that we neglect the effects of
the electromagnetic penguin operator which we did not list explicitly. The effect of the weak
annihilation and exchange diagrams will be discussed later.

The renormalization group evolution from µ ≈ MW to µ ≈ mb has been evaluated in
leading order in the electromagnetic coupling and in the NLL precision in the strong coupling
αs [54]. Working consistently to the NLL precision, the coefficients C1, ..., C10 are needed in
NLL precision, while it is sufficient to use the LL value for Cg. These coefficients depend on
the renormalization scheme used. To obtain numerical values for the Ci we must specify the
input parameters. We fix αs(Mz) = 0.118, αew(Mz) = 1/128 and µ = 2.5 GeV . Then in the
naive dimensional regularization (NDR) scheme, we have:

C1 = 1.117 , C2 = −0.257 ,
C3 = 0.017 , C4 = −0.044 ,
C5 = 0.011 , C6 = −0.056 ,
C7 = −1 × 10−5 , C8 = 5 × 10−4 ,
C9 = −0.010 , C10 = 0.002 ,
Ceff

g = −0.158 .

(5)

Here, Ceff
g = Cg + C5. From the electroweak coefficients C7, ..., C10, only C9 has a sizable

value compared to the coefficients of the QCD penguins; its major contribution arises from
the Z penguin. Note that the scale (µ) and scheme-dependence of the Wilson coefficients
will cancel against the corresponding dependences in the matrix elements of the operators in
Heff , as shown explicitly in [54]. Since, the matrix elements given below are obtained in the
NDR-scheme, we have listed the values of the Wilson coefficients Ci also in this scheme.

2.2 Quark-level Matrix Elements

In the NLL precision, the matrix elements of Heff are to be treated at the one-loop level. The
one-loop matrix elements can be rewritten in terms of the tree-level matrix elements of the
effective operators

〈sq′q̄′|Heff |b〉 =
∑

i,j

Ceff
i (µ)〈sq′q̄′|Oj|b〉tree. (6)

In the NDR renormalization scheme and for SU(3)C , the effective coefficients multiplying

the matrix elements < sq′q̄′|O(q)
j |b >tree become ( rT

V and γT
V are the transpose of the matrices

given below)

Ceff
1 = C1 +

αs

4π

(

rT
V + γT

V log
mb

µ

)

1j

Cj + · · · ,

Ceff
2 = C2 +

αs

4π

(

rT
V + γT

V log
mb

µ

)

2j

Cj + · · · ,

Ceff
3 = C3 −

1

6

αs

4π
(Ct + Cp + Cg) +

αs

4π

(

rT
V + γT

V log
mb

µ

)

3j

Cj + · · · ,

Ceff
4 = C4 +

1

2

αs

4π
(Ct + Cp + Cg) +

αs

4π

(

rT
V + γT

V log
mb

µ

)

4j

Cj + · · · ,
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Ceff
5 = C5 −

1

6

αs

4π
(Ct + Cp + Cg) +

αs

4π

(

rT
V + γT

V log
mb

µ

)

5j

Cj + · · · ,

Ceff
6 = C6 +

1

2

αs

4π
(Ct + Cp + Cg) +

αs

4π

(

rT
V + γT

V log
mb

µ

)

6j

Cj + · · · ,

Ceff
7 = C7 +

αew

8π
Ce ,

Ceff
8 = C8 ,

Ceff
9 = C9 +

αew

8π
Ce ,

Ceff
10 = C10 . (7)

We have separated the contributions Ct, Cp, and Cg arising from the penguin-type diagrams
of the current-current operators O1,2, the penguin-type diagrams of the operators O3-O6, and
the tree-level diagram of the dipole operator Og, respectively. Note also that we follow the
procedure of ref. [27] of including the tree-level diagrams b → sg → sq′q̄′ associated with the
operator Og into the contribution Cg appearing in the expressions for Ceff

i . So, we have the
hadronic matrix elements of four-quark operators only. The process-independent contributions
from the vertex-type diagrams are contained in the matrices rV and γV . Here γV is that part of
the anomalous matrix which is due to the vertex (and self-energy) corrections. This part can
be easily extracted from γ̂(0) in ref. [54]:

γV =





















−2 6 0 0 0 0
6 −2 0 0 0 0
0 0 −2 6 0 0
0 0 6 −2 0 0
0 0 0 0 2 −6
0 0 0 0 0 −16





















. (8)

The matrix rV contains constant, i.e., momentum-independent, parts associated with the vertex
diagrams. This matrix can be extracted from the matrix r̂ defined in eqn. (2.12) (and given
explicitly in eqn. (4.6)) by Buras et al. in ref. [54]:

rV =





















7
3

−7 0 0 0 0
−7 7

3
0 0 0 0

0 0 63
27

−7 0 0
0 0 −7 7

3
0 0

0 0 0 0 −1
3

1
0 0 0 0 −3 35

3





















. (9)

Note that the µ dependence and the scheme dependence of the vertex correction diagrams are
fully taken into account in eqn. (7) by the terms involving the matrices γV and rV , respectively.
There are, however, still scheme-independent, process-specific terms omitted as indicated by
the ellipses, and we refer to [27] for a discussion of these omitted terms in exclusive two-body
B decays.

The quantities Ct, Cp, and Cg are given in the NDR scheme (after MS renormalization) by

Ct = −
∑

q′=u,c

Vq′bV
∗
q′q

VtbV
∗
tq

[

2

3
+

2

3
log

m2
q′

µ2
− ∆F1

(

k2

m2
q′

)]

C1 , (10)
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Cp = C3

[

4

3
+

2

3
log

m2
s

µ2
+

2

3
log

m2
b

µ2
− ∆F1

(

k2

m2
s

)

− ∆F1

(

k2

m2
b

)]

+(C4 + C6)
∑

i=u,d,s,c,b

[

2

3
log

m2
i

µ2
− ∆F1

(

k2

m2
i

)]

. (11)

Cg = − 2mb√
< k2 >

Ceff
g , (12)

with Ceff
g = Cg + C5. The function ∆F1(z) is defined as

∆F1(z) = −4
∫ 1

0
dx x(1 − x) log [1 − z x(1 − x) − iǫ] . (13)

The corresponding electroweak coefficient Ce is given by

Ce = −8

9
(3C2 + C1)

∑

q′=u,c

Vq′bV
∗
q′q

VtbV
∗
tq

(

2

3
+

2

3
ln
m2

q′

µ2
− ∆F1

(

k2

m2
q′

))

. (14)

Note that the quantities Ct and Ce depend on the CKM matrix elements. In addition, the
coefficients Ceff

i depend on k2, where k is the momentum transferred by the gluon, photon or Z
to the quark-antiquark pair q′q′ in b→ qq′q′. In two-body decays any information on k2 is lost in
the factorization assumption. However, given a specific model for the momentum distributions
of the quark-antiquark pair inside the hadron, the partonic distributions calculated here can be
folded with this distribution, as, for example, has been done in [55]. Since, we are interested
here in the decays B → h1h2, where h1, h2 are light mesons, it is not unreasonable to assume
that this smearing will be very similar in all the decays being considered. In particular, 〈k2〉
is expected to be comparable in these decays. However, the actual value of 〈k2〉 is model
dependent. From simple two-body kinematics [56] or from the investigations in ref. [55] one
expects k2 to be typically in the range

m2
b

4
<∼ k2 <∼ m2

b

2
. (15)

As we shall see later, branching ratios considered here are not sensitive to the value of k2 if it
is varied in a reasonable range.

3 Factorization Ansatz for the hadronic matrix elements

of the four-quark operators

We have now to calculate the hadronic matrix elements of the type 〈h1h2|Oi|B〉, where Oi

are the four-quark operators listed in the preceding section. These will be calculated in the
factorization assumption, which in the present context has been explained in a number of papers
(see, for example, ref. [27]). To recapitulate briefly, the hadronic matrix elements involving four-
quark operators are split into a product of two matrix elements of the generic type 〈h1|q̄b|B〉
and 〈h2|q̄′q′|0〉, where Fierz transformation is used so that the flavor quantum numbers of the
quark currents match those of the hadrons. Since fierzing yields operators which are in the color
singlet-singlet and octet-octet forms, this procedure results in general in matrix elements which
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have the right flavor quantum numbers but involve both the singlet-singlet and octet-octet
operators. No direct experimental information is available on the latter. In the factorization
approximation, one discards the color octet-octet piece and compensates this by introducing a
phenomenological parameter which determines the strength of the singlet-singlet contribution,
renormalizing it from its perturbative value. The hadronic matrix elements resulting from the
factorization are calculated in a model or determined from data, if available.

To set our notation and introduce some auxiliary quantities which we shall need for numeri-
cal calculations, we illustrate the salient features of our framework below. When a pseudoscalar
meson is a decay product, such as in the decay B → PP , there are additional contributions
from the (V + A) penguin operator O6 and O8. After Fierz reordering and factorization they
contribute terms which involve a matrix element of the quark-density operators between a pseu-
doscalar meson and the vacuum. For O6 involving b → s transition (in b → d transition s is
replaced by d), for example, this is given by

< P1P2|O6|B >= −2
∑

q

(

< P1|s̄Rq|0 >< P2|q̄Lb|B > +[P1 ↔ P2]
)

. (16)

Using the Dirac equation, the matrix elements entering here can be rewritten in terms of
those involving the usual (V −A) currents,

< P1P2|O6|B >= R[P1, P2] < P1P2|O4|B > +[P1 ↔ P2] , (17)

with

R[P1, P2] ≡
2M2

P1

(mq +ms)(mb −mq)
. (18)

Here, ms and mq are the current masses of the quarks in the mesons P1 and P2. The same
relations work for O8. Finally, one arrives at the form

< P1 P2|Heff |B > = Z1 < P1|jµ|0 >< P2|jµ|B >

+ Z2 < P2|j′µ|0 >< P1|j′µ|B > , (19)

where jµ and j′µ are the corresponding (neutral or charged) V −A currents. The quantities Z1

and Z2 involve the effective coefficients, CKM factors and GF . The 0− → 0− form factors are
defined as follows:

〈P1(p1)|q̄γµLb|B(pB)〉 =

[

(pB + p1)µ − m2
B −m2

1

q2
qµ

]

F1(q
2) +

m2
B −m2

1

q2
qµF0(q

2), (20)

where q = pB − p1. In order to cancel the poles at q2 = 0, we must impose the condition

F1(0) = F0(0).

The pseudoscalar decay constants are defined as:

〈P (p)|q̄γµLq′|0〉 = ifP pµ. (21)

With this, we can write the required matrix element in its factorized form

〈P1P2|Heff |B〉 = i
GF√

2
VqbV

∗
qq′

(

1

Nc

Ci + Cj

)

fP2(m
2
B −m2

1)F
B→P1
0 (m2

2) + (1 ↔ 2). (22)
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The dynamical details are coded in the quantities ai, which we define as

ai ≡ Ceff
i +

1

Nc

Ceff
i+1 (i = odd); ai ≡ Ceff

i +
1

Nc

Ceff
i−1 (i = even), (23)

where i runs from i = 1, ..., 10. Thus, we see that there are ten such quantities. They depend
on the SM-input parameters, including the CKM matrix elements. The non-factorizing contri-
butions in the matrix elements 〈h1h2|Oi|B〉 are modeled by treating Nc as a phenomenological
parameter. Note, that this is the only place where Nc is treated as a phenomenological param-
eter. In particular, in the calculation of Ceff

i , we have used the QCD value Nc = 3. Insisting
that there are no non-factorization effects present amounts to setting Nc = 3 in calculating
ai. This is also referred to as “naive factorization’ and is known not to work in decays such
as B → (D,D∗)(π, ρ), J/ψK(∗) [18,21]. In these decays only the coefficients a1 and a2 are
determined. Note that QCD does not demand the equality of a1 and a2 from these decays and
from the ones B → h1h2, though their values may come out to be close to each other. Hence,
all the ten quantities ai should be treated as phenomenological parameters and fitted from data
on B → h1h2 decays.

Returning to the discussion of the hadronic matrix elements, we recall that when a vector
meson is involved in a decay, such as in B → PV and B → V V decays, we need also the
B → V form factors, which are defined as follows:

〈V (pV )|Vµ − Aµ|B̄0(pB)〉 = −ǫµναβǫ
ν∗pα

Bp
β
V

2V (q2)

(mB +mV )

− i

(

ǫ∗µ − ǫ∗ · q
q2

qµ

)

(mB +mV )A1(q
2)

+ i

(

(pB + pV )µ − (m2
B −m2

V )

q2
qµ

)

(ǫ∗ · q) A2(q
2)

mB +mV

− i
2mV (ǫ∗ · q)

q2
qµA0(q

2), (24)

where q = pB − pV , and ǫ∗ is the polarization vector of V . To cancel the poles at q2 = 0, we
must have

2mVA0(0) = (mB +mV )A1(0) − (mB −mV )A2(0). (25)

The decay constants of the vector mesons are defined as follows:

< V |q̄γµq|0 >= fV mV ǫµ. (26)

This completes the discussion of the factorization Ansatz. The various input parameters
needed to do numerical calculations, including the form factors and meson decay constants, are
discussed in the next section.

4 Input parameters

The matrix elements for the decay B → h1h2 derived in the preceding section depend on the
effective coefficients a1, ..., a10, quark masses, various form factors, decay constants, the CKM
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parameters, the renormalization scale µ and the QCD scale parameter ΛMS. We have fixed ΛMS

using the central value of the present world average αs(MZ) = 0.118 ± 0.003 [57]. The scale µ
is varied between µ = mb and µ = mb/2, but due to the inclusion of the NLL expressions the
dependence of the decay rates on µ is small and hence not pursued any further. To be specific,
we use µ = 2.5 GeV in the following. The dependence on the rest of the parameters is more
pronounced and we discuss them below giving the present status of these quantities.

4.1 CKM Matrix Elements

The CKM matrix will be expressed in terms of the Wolfenstein parameters [49], A, λ, ρ and η.

VCKM ≃







1 − 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1 − 1
2
λ2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1





 (27)

Since the first two are well-determined with A = 0.81±0.06, λ = sin θC = 0.2205±0.0018 [19],
we fix them to their central values. The other two are correlated and are found to lie (at 95%
C.L.) in the range 0.25 ≤ η ≤ 0.52 and −0.2 ≤ ρ ≤ 0.35 from the CKM unitarity fits [47]. We
shall show the dependence of the decay rates on the parameters ρ and η in the allowed domain.
However, for illustrative purposes and if not stated otherwise, we shall use ρ = 0.12, η = 0.34,
which are the “best-fit” values from the CKM unitarity fits [47]3.

4.2 Quark masses

The quark masses enter our analysis in two different ways. First, they arise from the contribu-
tions of the penguin loops in connection with the function ∆F1(k

2/m2
i ). We treat the internal

quark masses in these loops as constituent masses rather than current masses. For them we
use the following (renormalization scale-independent) values:

mb = 4.88 GeV, mc = 1.5 GeV, ms = 0.5 GeV, mu = md = 0.2 GeV . (28)

Variation in a reasonable range of these parameters does not change the numerical results of
the branching ratios in question, as also investigated in [27]. The value of mb is fixed to be the
current quark mass value mb(µ = 2.5 GeV) = 4.88 GeV, given below. Second, the quark masses
mb, ms, md and mu appear through the equations of motion when working out the (factorized)
hadronic matrix elements. In this case, the quark masses should be interpreted as current
masses. It is worthwhile to discuss the spread in the quark masses, as determined from various
calculational techniques and experiment. The top quark mass is now known rather precisely
mt(mt) = 168 ± 6 GeV. Typical uncertainty on the b-quark mass δ(mb(µ = 2.5 GeV)) = ±0.2
GeV [58,59] is also small. Likewise, the mass difference mb −mc = (3.39 ± 0.06) GeV [59] is
well determined, which can be used to determine mc reasonably accurately for the calculations
being done here. Hence, to the accuracy of the present framework, the uncertainties in the
decay rates related to δmt, δmb and δmc are small and ignored.

Light quark mass ratios have been investigated in chiral perturbation theory [60] and up-
dated in [61], yielding: mu/md = 0.553 ± 0.043, ms/md = 18.9 ± 0.9, ms/mu = 34.4 ± 3.7.

3The corresponding “best-fit” values obtained in [48] ρ ≃ 0.15 and η ≃ 0.34 are very close to the ones being
used here.
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Table 1: Input values in numerical calculations.
names Values
αs(mZ) 0.118

µ 2.5 GeV
A 0.81
λ 0.2205

τ(B+) 1.62 ps
τ(B0) 1.56 ps
mt(mt) 168 GeV

mb(2.5GeV ) 4.88 GeV
mc(2.5GeV ) 1.5 GeV
ms(2.5GeV ) 122 MeV
md(2.5GeV ) 7.6 MeV
mu(2.5GeV ) 4.2 MeV

These ratios were converted into the quark masses by using the QCD sum rule estimates of
the s-quark mass of the somewhat older vintage [62]: ms(1 GeV) = 175 ± 25 MeV, yielding
mu(1 GeV) = 5.1 ± 0.9 MeV, md(1 GeV) = 9.3 ± 1.4 MeV [61]. Improved estimates based on
QCD sum rules have been reported during the last year, which include O(α3

s)-perturbative im-

provements [63], improved estimates of Λ
(3)

MS
yielding Λ

(3)

MS
≃ 380 MeV, and improvements in the

estimates of the spectral functions [64,65] lowering the s-quark mass. A contemporary repre-
sentative values of the s−quark mass in the QCD sum rule approach is: ms(1 GeV) = 150±30
MeV [65].

The corresponding estimates in the quenched lattice-QCD approach have been recently
reported in a number of papers [66–68]. The lattice community likes to quote the light quark
masses at the scale µ = 2 GeV, and in comparing them with the QCD-sum rule results, quoted
above for 1 GeV, one should multiply the lattice numbers by a factor 1.3. Representative
lattice-QCD values are: ms(2 GeV) = 100± 12 MeV [66], ms(2 GeV) = 130± 2± 18 MeV [67],
and ms(2 GeV) = 110 ± 20 ± 11 MeV [68]. The error due to unquenching is largely unknown
and for a discussion of the given lattice-specific errors, we refer to the original literature. Taking
the last of these values as fairly representative, one now has the central value ms(1 GeV) ≃ 140
MeV with a typical error of ±25 MeV – in reasonably good agreement with the QCD sum rule
estimates. Using mb(µ = mb) = 4.45 GeV from the central value in [58] and

ms(1 GeV) = 150 MeV , md(1 GeV) = 9.3 MeV , mu(1 GeV) = 5.1 MeV , (29)

from the discussion above, the corresponding values at the scale µ = 2.5 GeV used in our
calculations are given in Table 1.

Varying the light quark masses by ±20% yields variation of up to ±25% in some selected
decay rates (such as in B± → η′K± and B0 → η′K0, as also noted in [28]). While this
dependence should be kept in mind in fitting the quantities ai from precise data, this is clearly
not warranted by present data. Also, fitting the values of the quantities ai is not the aim of
this paper. Hence, we shall fix all the current quark masses to their values in Table 1.
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Table 2: Form factors at zero momentum transfer in the BSW model [8].
Decay F1 = F0 V A1 A2 A0

B → π 0.33
B → K 0.38
B → η 0.145
B → η′ 0.135
B → ρ 0.33 0.28 0.28 0.28
B → K∗ 0.37 0.33 0.33 0.32
B → ω 0.33 0.28 0.28 0.28

Table 3: Values of pole masses in GeV.
Current m(0−) m(1−) m(1+) m(0+)
ūb 5.2789 5.3248 5.37 5.73
d̄b 5.2792 5.3248 5.37 5.73
s̄b 5.3693 5.41 5.82 5.89

4.3 Form factors and hadronic coupling constants

Finally, we discuss the numerical values of the form factors and coupling constants introduced
in the previous section. Concerning the form factors, we shall use two different theoretical
approaches. The first is based on the quark model due to Bauer, Stech and Wirbel [8], which
has been found to be rather successful in accommodating data on a number of exclusive decays.
In the BSW model, the meson-meson matrix elements of the currents are evaluated from the
overlap integrals of the corresponding wave functions. The dependence of the form factors on
the momentum transfer squared Q2 (which in B → h1h2 decays equals the mass squared of
the light meson) is modeled by a single-pole Ansatz. The values of the form factors in the
transitions B → π, B → K, B → η, B → η′, B → ρ, B → K∗ and B → ω, evaluated at
Q2 = 0 are given in Table 2. We assume ideal mixing for the (ω, φ) complex. This amounts to
using in the quark language φ = ss̄ and ω = 1√

2
(uū + dd̄). Note, that to implement the η-η′

mixing, we shall use the two-mixing-angle formalism proposed recently in [69,70], in which one
has:

|η〉 = cos θ8|η8〉 − sin θ0|η0〉 , |η′〉 = sin θ8|η8〉 + cos θ0|η0〉 . (30)

Here, η8 and η0 are, respectively, the flavor SU(3)-octet and -singlet components. The relations
for the pseudoscalar decay constants in this mixing formalism involving the axial-vector currents
A8

µ and A0
µ are:

〈0|A8
µ|η(p)〉 = if 8

ηpµ, 〈0|A8
µ|η′(p)〉 = if 8

η′pµ,

〈0|A0
µ|η(p)〉 = if 0

η pµ, 〈0|A0
µ|η′(p)〉 = if 0

η′pµ . (31)

The best-fit values of the (η-η′) mixing parameters from [71] yields: θ8 = −22.2◦, θ0 = −9.1◦,
f8 = 168 MeV, and f0 = 157 MeV, which are used to calculate the decay rates in which η
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Table 4: Form factors at zero momentum transfer from Lattice QCD and Light-cone QCD sum
rules.

Decay F1 = F0 V A1 A2 A0

B → π [15] 0.30 ± 0.04
B → K[15] 0.35 ± 0.05

B → η (see text) 0.13 ± 0.02
B → η′ (see text) 0.12 ± 0.02

B → ρ [11] 0.35 ± 0.05 0.27 ± 0.04 0.26 ± 0.04 0.30 ± 0.05
B → K∗ [12] 0.48 ± 0.09 0.35 ± 0.07 0.34 ± 0.06 0.39 ± 0.10

B → ω ([11] & SU(3)) 0.35 ± 0.05 0.27 ± 0.04 0.26 ± 0.04 0.30 ± 0.05

and/or η′ are involved. In deriving the expressions for the decays involving η and η′, we include
the anomaly term in ∂µA

µ and the contributions of b → sgg → s(η, η′) as calculated in [28].
Definitions of the various matrix elements can be seen in the appendix and we refer to [27,28]
for further discussions. The values of the input pole masses used in calculating the form factors
are given in Table 3. However, in the decays B → h1h2, only small extrapolations from Q2 = 0
are involved, hence the error due to the assumed Q2-dependence and/or the specific values for
the pole masses is small.

The second and more modern approach to calculating decay form factors is a hybrid ap-
proach, in which often lattice-QCD estimates in the so-called heavy → light mesons, calculated
at high-Q2, are combined with the Q2-dependence following from the light-cone QCD sum rule
analysis [12,13]. We refer to [10] for detailed discussions, compilation of the lattice-QCD anal-
ysis and references to the literature, and quote here the results from the UKQCD analysis
[11]. For the B → π form factor: F1(0) = F0(0) = 0.27 ± 0.11; for B → ρ form factors:
V (0) = 0.35+0.06

−0.05, A1(0) = 0.27+0.05
−0.04, A2(0) = 0.26+0.05

−0.03, and A0(0) = 0.30+0.06
−0.04. The results

from an improved light-cone QCD sum rule calculation [15] for F1(B → π) = F0(B → π) and
F1(B → K) = F0(B → K) are given in Table 4. The results for F1(B → η) = F0(B → η) and
F1(B → η′) = F0(B → η′) are calculated from the B → π form factors from [15] taking into
account additionally the (η, η′) mixing, as discussed earlier and further detailed in Appendix
A. The results for the B → K∗ form factors have been obtained in the light-cone QCD sum
rule in ref. [12], which yield:

A1(0)B→ρ

A1(0)B→K∗
= 0.76 ± 0.05 , (32)

V (0)B→ρ

V (0)B→K∗
= 0.73 ± 0.05 ,

which, in turn, lead to the estimates A1(0)B→K∗

= 0.35 ± 0.07 and V (0)B→K∗

= 0.48 ± 0.09.
Assuming similar SU(3)-breaking in the remaining two form factors, and using the estimates
for the corresponding form factors in B → ρ quoted above, one gets: A2(0)B→K∗

= 0.34± 0.06
and A0(0)B→K∗

= 0.39±0.10. The values from this hybrid approach are collected in Table 4. As
for the form factors in the BSW model, we use a simple pole approximation for calculating the
form factors at Q2 different from Q2 = 0. However, for the decays of interest, this extrapolation
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Table 5: Values of decay constants in MeV.
fπ fK f8 f0 f c

η f c
η′ fρ fK∗ fω fφ

133 158 168 157 −0.9 −2.3 210 214 195 233

is small and one does not expect any significant error from this source. For example, for the
B → P form factors, using the parameterization of F0,1(Q

2) given in eq. (12) of ref. [15], the
resulting difference in the form factors is found to be less than 2%.

The values for the pseudoscalar and vector decay constants are given in Table 5. The values
for fω, fK , fK∗ and fπ coincide with the central values quoted in [18] extracted from data on the
electromagnetic decays of ω and τ decays, respectively [19]. The decay constants fu

η′ , f s
η′ , fu

η

and f s
η defined in the appendix A are obtained from the values for f0 and f8, θ8 and θ0 for the

(η, η′) mixing, given earlier. The errors on the decay constants in Table 5 are small (typically

(1− 3)%), except on f
(c)
η′ and f (c)

η for which we use here the estimates from [28] obtained using
the QCD-anomaly method. These quantities have also been determined from the ηc − η′ − η-
mixing formalism and radiative decays J/ψ → (ηc, η

′, η)γ and the two-photon decay widths
(ηc, η

′, η) → γγ in ref. [27] with results similar to the corresponding values obtained using the
QCD-anomaly method [28]. For some recent determinations of these quantities, see also [72,73].

5 Effective coefficients ai and a classification of B → h1h2

decays

5.1 Effective coefficients ai

The effective coefficients ai, which are specific to the factorization approach, are the quantities
of principal phenomenological interest. Note that there are four types of transitions that one
encounters in the current-current and penguin-induced decays B → h1h2: b → s [̄b → s̄],
and b → d [̄b → d̄]. Numerical values of ai (i = 1, ..., 10) for representative values of the
phenomenological parameter Nc are displayed in Table 6 and Table 7 for the b→ s [̄b → s̄] and
b → d [̄b → d̄] cases, respectively. A number of remarks on the entries in these tables is helpful
for a discussion of the branching ratios worked out later.

• The determination of a1 and a2 in the b → c current-current transitions has received a
lot of attention. It remains an open and interesting question if a1 and a2 in the b → u
transitions are close to their b→ c counterparts, which have the phenomenological values
a1 ≃ 1 and a2 ≃ 0.2 [18,21]. These values correspond to the parameter ξ ≡ 1/Nc having a
value around 0.4. The decays B → ππ, B → ρπ and B → ωπ are well suited to determine
these coefficients.

• The coefficients a3 and a5 in the QCD-penguin sector are smaller compared to a4 and a6.
In particular, the combination a3+a5 has a perturbative value of 3×10−4, i.e., for Nc = 3,
in all four cases resulting from large cancellations between a3 and a5. This coefficient also
shows extreme sensitivity to the parameter Nc, which in the present model is a measure
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Table 6: Numerical values of effective coefficients ai for b → s [ b̄ → s̄] at Nc = 2, 3,∞, where
Nc = ∞ corresponds to Ceff

i . The penguin coefficients Ceff
3 , ..., Ceff

7 and Ceff
9 are calculated

for the Wolfenstein parameters ρ = 0.12 and η = 0.34. Note that the entries for a3,...,a10 have
to be multiplied with 10−4.

Nc = 2 Nc = 3 Nc = ∞
a1 0.99 [0.99] 1.05 [1.05] 1.16 [1.16]
a2 0.25 [0.25] 0.053 [0.053] −0.33 [−0.33]
a3 −37 − 14i [−36 − 14i] 48 [48] 218 + 29i [215 + 29i]
a4 −402 − 72i [−395 − 72i] −439 − 77i [−431 − 77i] −511 − 87i [−503 − 87i]
a5 −150 − 14i [−149 − 14i] −45 [−45] 165 + 29i [162 + 29i]
a6 −547 − 72i [−541 − 72i] −575 − 77i [−568 − 77i] −630 − 87i [−622 − 87i]
a7 1.3 − 1.3i [1.4 − 1.3i] 0.5 − 1.3i [0.5 − 1.3i] −1.2 − 1.3i [−1.1 − 1.3i]
a8 4.4 − 0.7i [4.4 − 0.7i] 4.6 − 0.4i [4.6 − 0.4i] 5.0 [5.0]
a9 −91 − 1.3i [−91 − 1.3i] −94 − 1.3i [−94 − 1.3i] −101 − 1.3i [−101 − 1.3i]
a10 −31 − 0.7i [−31 − 0.7i] −14 − 0.4i [−14 − 0.4i] 20 [20]

of non-factorizing effects. Hence, for decays whose decay widths depend dominantly on
these coefficients, the factorization framework is not reliable. The reason is simply that
the neglected contributions, such as the weak annihilation diagrams and/or feed down
from final state interactions to these channels, could easily overwhelm the perturbative
factorizable contributions.

• Concerning the effective coefficients of the electroweak operators, we note that a7, a8

and a10 are numerically very small. This again reflects their perturbative magnitudes,
i.e. the coefficients Ceff

i , as can be seen in the columns for Nc = 3. Varying Nc, one
sees no noticeable enhancement in these coefficients (except for a10 but it remains phe-
nomenologically small to have any measurable effect). Hence, electroweak penguins enter
dominantly through the operator O9, barring rather drastic enhancements (of O(100)) in
the matrix elements of the operators O7, O8 and O10, which we discount. No attempts will
be made to determine these coefficients here. In fact, in the context of the SM one could
as well work with a much reduced basis in the effective theory in which the coefficients
a7, a8 and a10 are set to zero.

• The dominant coefficients are then a1, a2 (current-current amplitudes), a4, a6 (QCD
penguins) and a9 (electroweak penguin), which can be eventually determined from exper-
iments and we discuss this programmatically later. Of these a1, a2 (and to a very high
accuracy also a9) do not depend on the CKM matrix elements. The dependence of a4 and
a6 (likewise, the smaller parameters a3 and a5) on the CKM factors enters through the
function Ct. The numbers given in the tables for ai are obtained for the CKM parameters
having the values ρ = 0.12 and η = 0.34. Note that a2 depends strongly on Nc.

This sets the stage for discussing the various branching ratios numerically and comparison
with the available data.
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Table 7: Numerical values of effective coefficients ai for b → d [ b̄ → d̄] at Nc = 2, 3,∞, where
Nc = ∞ corresponds to Ceff

i . The penguin coefficients Ceff
3 , ..., Ceff

7 and Ceff
9 are calculated

for the Wolfenstein parameters ρ = 0.12 and η = 0.34. Note that the entries for a3,...,a10 have
to be multiplied with 10−4.

Nc = 2 Nc = 3 Nc = ∞
a1 0.99 [0.99] 1.05 [1.05] 1.16 [1.16]
a2 0.25 [0.25] 0.053 [0.053] −0.33 [−0.33]
a3 −33 − 7i [−42 − 23i] 48 [48] 208 + 14i [226 + 47i]
a4 −377 − 34i [−423 − 116i] −412 − 36i [−461 − 124i] −481 − 41i [−536 − 140i]
a5 −145 − 14i [−154 − 14i] −45 [−45] 155 + 14i [173 + 47i]
a6 −523 − 34i [−568 − 116i] −548 − 36i [−597 − 124i] −600 − 41i [−655 − 140i]
a7 1.5 − 1.0i [1.1 − 1.8i] 0.7 − 1.0i [0.3 − 1.8i] −1.0 − 1.0i [−1.4 − 1.8i]
a8 4.5 − 0.5i [4.3 − 0.9i] 4.7 − 0.3i [4.5 − 0.6i] 5.0 [5.0]
a9 −91 − 1.0i [−91 − 1.8i] −94 − 1.0i [−95 − 1.8i] −101 − 1.0i [−101 − 1.8i]
a10 −30 − 0.5i [−31 − 0.9i] −14 − 0.3i [−14 − 0.6i] 20 [20]

Before discussing the numerical results and their detailed comparison with experiment and
existing results in the literature, it is worthwhile to organize the decays B → h1h2 in terms of
their sensitivity on Nc and anticipated contributions due to the annihilation diagrams in some
of these decays.

5.2 Classification of factorized amplitudes

In the context of the tree (T ) decays, a classification was introduced in [8], which is used
widely in the literature in the analysis of B decays involving charmed hadrons. These classes,
concentrating now on the B → h1h2 decays, are the following

• Class-I decays, involving those decays in which only a charged meson can be generated
directly from a singlet current, as in B0 → π+π−, and the relevant coefficient for these
decays is a1. This coefficient is stable against variation of Nc (see Tables 6 and 7). There
are just five class-I decays: B0 → π−π+, B0 → ρ−π+, B0 → ρ+π−, B0 → ρ−ρ+, and
exceptionally also B0 → ρ−K+.

• Class-II decays, involving those transitions in which the meson generated directly from
the current is a neutral meson, like B0 → π0π0, and the relevant coefficient for these
decays is a2, which shows a strong Nc-dependence (see Tables 6 and 7). There are twelve
such decays B0 → h0

1h
0
2, where h0

1 and h0
2 are mesons from the set π0, η, η′, ρ0 and ω. The

decays B0 → π0η(′) exceptionally do not belong to this class, as their decay amplitudes
proportional to a2 almost cancel due to the destructive interference in two tree diagrams
having to do with the configuration π0 ∼ uū− dd̄ and η(′) ∼ (uū+ dd̄) + .... Note that as
a2 has the smallest value at Nc = 3, all class-II decays have their lowest values at Nc = 3.

• Class-III decays, involving the interference of class-I and Class-II decays, as in this case
both a charged and a neutral meson is present both of which can be generated through the
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currents involved in Heff . An example of these decays is B+ → π+π0, and the relevant
coefficient is a1 + ra2, where r is process-dependent (but calculable in terms of the ratios
of the form factors and decay constants). For r ≤ 1, the Nc-dependence of the class-III
amplitudes is below ±20% w.r.t. the perturbative value. As we shall see, the quantity r
may considerably enhance the Nc-dependence if r is well in excess of 1. This, in particular,
is the case in B+ → ρ0π+ and B+ → ωπ+ decays, where r ≃ 2; hence these Class-III
decays show marked Nc-dependence. However, one should note that the decay rates for
this class do not have their minima at Nc = 3, but rather at Nc = ∞, reflecting the
behavior of a1 +a2. There are eleven such decays involving B+ → (π+, ρ+)(π0, η, η′, ρ0, ω)
and exceptionally also the decay B+ → K∗+η′, in which case the penguin amplitudes
interfere destructively. Its decay rate is, however, rather stable w.r.t. the variation in Nc

but small due to the CKM suppression.

However, when QCD (P ) and electroweak penguins (PEW) are also present, as is the case in
the decays B → h1h2 being considered, in general, the above classification has to be extended.
In this case, the generic decay amplitude depends on T + P + PEW. If the amplitude is still
dominated by the tree amplitude, the BSW-classification given above can be applied as before.
For those decays which are dominated by penguin amplitudes, i.e., T +P +PEW ≃ P +PEW,
the above classification used for the tree amplitude is no longer applicable.

For the penguin-dominated decays, we introduce two new classes:

• Class-IV decays, consisting of decays whose amplitudes involve one (or more) of the
dominant penguin coefficients a4, a6 and a9, with constructive interference among them.
They are stable against variation in Nc (see tables 6 and 7) and have the generic form:

M(B0 → h±1 h
∓
2 ) ≃ α1a1 +

∑

i=4,6,9

αiai + ..., (33)

M(B0 → h0
1h

0
2) ≃ α2a2 +

∑

i=4,6,9

αiai + ...,

M(B± → h±1 h
0
2) ≃ α1(a1 + ra2) +

∑

i=4,6,9

αiai + ...,

with the second (P +PEW) term dominant in each of the three amplitudes. The ellipses
indicate possible contributions from the coefficients a3, a5, a7, a8 and a10 which can be
neglected for this class of decays. The coefficients αj are process-dependent and contain
the CKM matrix elements, form factors etc. The decays where α1 and α2 are zero are pure
penguin processes and are obviously included here. The tree-dominated decays, discussed
earlier, also have a generic amplitude of the type shown above. However, in this case the
penguin-related coefficients αj are numerically small due to the CKM factors (specifically
due to Vtd ≪ Vts).

Examples of Class-IV decays are quite abundant. In our classification, all twelve B → PP
decays dominated by penguin amplitudes are class-IV decays. They include decays such as
B+ → K+π0, B+ → K+η(′), which involve a1 + ra2 as the tree amplitude, and B0 → K0π0,
and B0 → K0η(′), which involve a2 from the tree amplitude. Finally, the pure-penguin decays,
such as B+ → π+K0, B+ → K+K̄0 and B0 → K0K̄0 naturally belong here. There are
altogether twenty nine such decays. The decay B0 → K∗0η′, in contrast to its B+-counterpart,
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is not a class-IV decay due to the destructive interference in the QCD-penguin amplitude. The
variation in the decay rates belonging to class-IV decays is less than ±30% compared to their
perturbative (Nc = 3) value.

• Class-V decays, involve penguins with strong Nc-dependent coefficients a3, a5, a7 and a10,
interfering significantly with one of the dominant penguin coefficients a4, a6 and a9 (anal-
ogous to the class-III decays a1 + ra2 dominated by tree amplitudes). Then, there are
decays in which the dominant penguin coefficients (a4, a6, a9) interfere destructively. Their
amplitudes can be written much like the ones in eq. (33), except that the sum in the sec-
ond term now goes over all eight penguin coefficients. Since these amplitudes involve
large and delicate cancellations, they are generally not stable against Nc.

Examples of this class are present in B → PV and B → V V decays, such as B± → π±φ,
B0 → π0φ, B0 → η(′)φ, B0 → ωφ, B± → ρ±φ, B0 → ρ0φ, etc. In all these cases, the
amplitudes are proportional to the linear combination [a3 + a5 − 1/2(a7 + a9)] (see Appendix
B and C). Examples of those where the amplitudes proportional to the dominant penguin
coefficients interfere destructively are: B+ → K+φ, B0 → K0φ etc. The above five classes
exhaust all cases, though clearly there are some amplitudes where comparable T and penguin
(P + PEW) contributions are present. They can be assigned to one of the classes depending
on their tree and/or penguin coefficients, the criterion being the Nc-dependence of the decay
rates.

Summarizing the classification, Class-I and Class-IV decays are relatively large, unless sup-
pressed by the CKM factors, and stable against variation of Nc, which is a measure of non-
factorizing effects in the present model. Class-III decays are mostly stable, except for the
already mentioned B → PV decays. Many Class-II and Class-V decays are rather unstable
against variation of Nc either due the dependence on the Nc-sensitive coefficients or due to del-
icate cancellations. Many decays in Class-II and Class-V may receive significant contribution
from the annihilation diagrams which we discuss now.

5.3 Contribution of annihilation amplitudes

Annihilation (by which are meant here both W±-exchange and W±-annihilation) contributions
are present in almost all decays of the type B → h1h2 being considered here. However, their
contribution should be understood as power corrections in inverse powers of mb (equivalently
in 1/mB) in B decays. In inclusive B decays, their contribution to the decay width relative to
that of the parton model is determined by the factor

4π2f
2
BmB

m3
b

≃
(

2πfB

mb

)2

≃ 5%, (34)

where fB ≃ 200 MeV is the B-meson decay constant. The near equality of the lifetimes of
B±, B̄0(B0) and B̄0

s (B
0
s ) mesons shows that the above crude estimate is largely correct, and

that annihilation contributions are sufficiently power-suppressed in B-meson decays. For more
sophisticated but in their spirit essentially similar calculations, see, for example, [74].

However, in exclusive two-body B-decays, the contribution to a particular channel depends
on the CKM factors and the dynamical quantities ai, and in some cases the non-annihilation
contribution is enormously suppressed. In these channels, the annihilation diagrams, despite
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being power suppressed in 1/m2
b , may yield the dominant contributions to the decay and must

therefore be included in the rate estimates and CP-asymmetries. Instead of working out the
annihilation contribution in all the channels discussed here, which necessarily introduces un-
known hadronic quantities, we do a classification of annihilation diagrams and list only those
decays in which they are anticipated to be important.

For the decays B → h1h2, we need to consider the following annihilation amplitudes:

• W±-Exchange: M(b̄d→ ūu) =⇒ M(B0 → (ūq)(q̄u)) ∝ a2λ
3 ,

• W±-Annihilation: M(b̄u→ d̄u) =⇒ M(B+ → (d̄q)(q̄u)) ∝ a1λ
3 ,

• W±-Annihilation: M(b̄u→ s̄u) =⇒ M(B+ → (s̄q)(q̄u)) ∝ a1λ
4,

where λ = sin θC . Here, qq̄ is a light quark-antiquark pair. These amplitudes can be termed
as the tree-annihilation contributions. In addition, there are also the penguin-annihilation
contributions which are important for certain decays. For example, they feed dominantly to
the decay B0 → φφ.

There are yet more decays which can be reached via annihilation followed by rearrange-
ment of the quark-antiquark pairs in the final state. Representative of these are the decays
B± → φπ±, B± → φρ± and B0(B̄0) → φπ0, B0(B̄0) → φη(′), B0(B̄0) → φω and B0(B̄0) → φρ0.
However, these rescattering effects (final state interactions) are expected to suffer from sup-
pression due to the color-transparency argument used in defense of the factorization Ansatz.
Since we have neglected these rescattering contributions in the factorization amplitudes worked
out in this paper, it is only consistent that we also drop the annihilation contributions which
feed into other channels through rescattering.

We specify below those two-body B decays which are accessible directly in annihilation
processes and hence may have significant annihilation contributions:

• B → PP decays: B0 → π0η(′), B0 → ηη′.

• B → PV decays: B0 → ρ0π0, B0 → ρ0η(′), B0 → ωπ0, B0 → ωη(′), B+ → K∗+K̄0,
B+ → K+φ, B0 → K∗+K−, B0 → K+K∗−.

• B → V V decays: B0 → ρ0ρ0, B0 → ρ0ω, B0 → ωω, B0 → φφ, B+ → K∗+K̄∗0,
B+ → K∗+φ, B0 → K∗+K∗−.

Note, that in addition to the decay modes listed above, there are quite a few others in the Class-
I, Class-III and Class-IV decays given in the tables, which also have annihilation contributions
but in view of the large T and/or P + PEW contributions in these decays, the annihilation
contributions are not expected to alter the decay rates in these channels significantly and hence
we have not listed them.

The annihilation amplitude can be written as

< h1h2|Heff |B >a= Z < h1h2|jµ|0 >< 0|jµ|B > . (35)

If h1 and h2 are two pseudoscalars, the annihilation form factors are defined as

< P1P2|jµ|0 >=

[

(p1 − p2)
µ − m2

1 −m2
2

Q2
Qµ

]

F P1P2
1 (Q2) +

m2
1 −m2

2

Q2
QµF P1P2

0 (Q2), (36)
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where Q = p1 + p2. With this, we can write the required matrix element from the annihilation
contribution (denoted here by a subscript) in its factorized form

< P1P2|Heff |B >a= i
GF√

2
VqbV

∗
qq′aifB(m2

1 −m2
2)F

P1P2
0 (m2

B) , (37)

where ai, i = 1, 2. Note that the annihilation amplitude in the decay B → P1P2 is proportional
to the mass difference of the two mesons in the final state. Hence, in the present framework,
there is no annihilation contribution to the decays such as B0 → π0π0, B0 → K+K− etc.
Comparing this amplitude with the non-annihilation contributions given in eqn (22), one finds
that the annihilation amplitude in B → P1P2 decays is indeed suppressed by a hefty factor

(m2
1 −m2

2)F
P1P2
0 (m2

B)

(m2
B −m2

1)F
B→P1
0 (m2

2)
. (38)

The annihilation form factors are difficult to relate directly to experimental measurements but
they can be modeled. We expect F P1P2

0 (0) to have a similar magnitude as the the corresponding
form factors FB→P1

0 (0), to which they are related by crossing, and which we have listed in Tables
2 and 4. Based on this, the annihilation form factors appearing in eqs. (37) and (38) are
suppressed due to large momentum transfer at q2 = m2

B, at which they have to be evaluated.
The total suppression factor in B → PP decays is then O(m4

1,2/m
4
B). However, the effective

coefficients ai, i = 1, 2 entering in the annihilation amplitude are much larger than aj , j =
3, ..., 10 governing the penguin-amplitudes. So, a part of the power suppression is offset by the
favorable effective coefficients.

In the decays B → PV and B → V V , we do not anticipate the annihilation suppression as
severe as in the decay B → PP . Concentrating on the decays B → PV , the annihilation form
factors are

< PV |jµ|0 > = ǫµναβǫ
∗νpα

Pp
β
V

2V (Q2)

mP +mV

−i
[

ǫ∗µ − (ǫ∗ ·Q)

Q2
Qµ

]

(mP +mV )A1(Q
2)

+i

[

(pP − pV )µ − m2
P −m2

V

Q2
Qµ

]

(ǫ∗ ·Q)
A2(Q

2)

mP +mV

−i2mV

Q2
Qµ(ǫ∗ ·Q)A0(Q

2). (39)

The annihilation matrix element in the factorization approximation can now be written as
follows:

< PV |Heff |B >a= i
√

2GFVqbV
∗
qq′aifBmV (ǫ∗ · pB)A0(m

2
B). (40)

From this, it is easy to see that for this class of decays the suppression factor is only due to
the large momentum transfer involved in the form factors A0(m

2
B). Hence, the annihilation

diagrams can contribute more significantly in the decay amplitude. For some of the channels
for which the non-annihilation contributions are highly suppressed, the annihilation diagram
can be easily dominant. For example, the annihilation amplitude to the decay B+ → K∗+K̄0

is
< K∗+K̄0|Heff |B+ >a= i

√
2GFV

∗
ubVuda1fBmK∗(ǫ∗ · pB)A0(m

2
B). (41)
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If we take A0(0) = 0.4, fB = 200 MeV, the annihilation branching ratio is of the order 10−8

which is an order of magnitude higher than the branching ratio calculated with the penguin
contribution alone. Other channels where the annihilation channel may play a significant role
have been listed above.

For B → V V decays, the conclusion is quite similar to the one for the B → PV decays.
However, as these decays involve yet more untested form factors, their numerical estimates
require a model for these form factors. The suspected channels in B → V V decays sensitive to
annihilation contribution have been listed above. We conclude that the decays most sensitive to
the annihilation channel are indeed the Class-II and Class-V decays, mostly involving B̄0(B0)
decays.

6 Branching Ratios and Comparison with Data

Table 8: B → PP Branching Ratios (in units of 10−6) using the BSW [Lattice QCD/QCD sum
rule] form factors, with k2 = m2

b/2, ρ = 0.12, η = 0.34, and Nc = 2, 3,∞ in the factorization
approach. The last column contains measured branching ratios and upper limits (90% C.L.)
[1].

Channel Class Nc = 2 Nc = 3 Nc = ∞ Exp.
B0 → π+π− I 9.0 [11] 10.0 [12] 12 [15] < 15
B0 → π0π0 II 0.35 [0.42] 0.12 [0.14] 0.63 [0.75] < 9.3
B0 → η′η′ II 0.05 [0.07] 0.02 [0.02] 0.09 [0.10] < 47
B0 → ηη′ II 0.19 [0.22] 0.08 [0.10] 0.29 [0.34] < 27
B0 → ηη II 0.17 [0.20] 0.10 [0.11] 0.24 [0.29] < 18
B+ → π+π0 III 6.8 [8.1] 5.4 [6.4] 3.0 [3.6] < 20
B+ → π+η′ III 2.7 [3.2] 2.1 [2.5] 1.1 [1.4] < 31
B+ → π+η III 3.9 [4.7] 3.1 [3.7] 1.9 [2.2] < 15
B0 → π0η′ IV 0.06 [0.07] 0.07 [0.09] 0.11 [0.13] < 11
B0 → π0η IV 0.20 [0.24] 0.23 [0.27] 0.30 [0.36] < 8
B+ → K+π0 IV 9.4 [11] 10 [12] 12 [15] < 16
B0 → K+π− IV 14 [16] 15 [18] 18 [21] 15+5

−4 ± 1
B0 → K0π0 IV 5.0 [5.9] 5.7 [6.8] 7.4 [8.9] < 41
B+ → K+η′ IV 21 [25] 25 [29] 35 [41] 65+15

−14 ± 9
B0 → K0η′ IV 20 [24] 25 [29] 35 [41] 47+27

−20 ± 9
B+ → K+η IV 2.0 [2.3] 2.4 [2.7] 3.4 [3.9] < 14
B0 → K0η IV 1.7 [1.9] 2.0 [2.2] 2.6 [3.0] < 33
B+ → π+K0 IV 14 [17] 16 [20] 22 [26] 23+11

−10 ± 4
B+ → K+K̄0 IV 0.82 [0.95] 0.96 [1.1] 1.3 [1.5] < 21
B0 → K0K̄0 IV 0.79 [0.92] 0.92 [1.1] 1.2 [1.4] < 17

The decay branching ratios are shown in Tables 8 - 11 for the decays B → PP , B →
PV (involving b → d transitions), B → PV (involving b → s transitions) and B → V V ,
respectively, for the two sets of form factors given in Tables 2 and 4. The numbers shown

23



for the hybrid Lattice-QCD/QCD sum rules correspond to using FB→π
1,0 = 0.36, FB→K

1,0 =

0.41, FB→η
1,0 = 0.16 and FB→η′

1,0 = 0.145. The first two are slightly above the range determined
in [15] but within the (larger) range as determined from the lattice-QCD calculations [11]. This
choice is dictated by data, as discussed in detail below. The k2-dependence of the branching
ratios in the range k2 = m2

b/2 ± 2 GeV2 is small and hence the numbers in these tables are
shown only for the case k2 = m2

b/2. The CKM parameters are fixed at their “best-fit” values:
ρ = 0.12, η = 0.34. All other parameters have their central values, discussed in the preceding
section. In these tables we give the averages of the branching fractions of B̄0 and B0, and of B+

and B−, respectively. Hence, when we refer to branching fractions in the following sections we
always mean the averages over the B and anti-B decays. The CP-asymmetries are, however,
in general quite sensitive to k2 [33,32]. We shall discuss this point in a forthcoming paper on
CP asymmetries [75].

A number of observations are in order:

• There are so far five measured B → h1h2 decay modes in well-identified final states: B0 →
K+π−, B+ → K+η′, B0 → K0η′, B+ → π+K0, and B+ → ωK+, with their branching
ratios (averaged over the charge conjugate modes) given in Tables 8 and 10. In addition,
the decay modes B+ → π0h+(h+ = π+, K+) with a branching ratio B(B+ → π0h+) =
(1.6+0.6

−0.5 ± 0.4) × 10−5 [1], the decay mode B+ → ωh+(h+ = π+, K+) with a branching
ratio B(B+ → ωh+) = (2.5+0.8

−0.7±0.3)×10−5 [2] and the decay modes B → K∗φ, averaged
over B+ and B0 decays with a branching ratio B(B → K∗φ) = (1.1+0.6

−0.5 ± 0.2)× 10−5 [2],
have also been measured.

• The branching ratios for B0 → K+π− and B+ → π+K0 are in good agreement with the
CLEO data. Moreover, being class-IV decays, they show only a small sensitivity on ξ.
The estimated branching ratios for B+ → π+π0 and B+ → K+π0 are in agreement with
the respective upper bounds. The latter being a class-IV decay is again stable w.r.t. the
variation of Nc; the former (a class-III decay) varies by approximately a factor 2.3 as Nc is
varied. The branching ratio for the sum B+ → π0h+ is plotted as a function of ξ = 1/Nc

in Fig. 1 for the BSW model form factors (dashed-dotted curve) and two different sets,
corresponding to the central values of the hybrid Lattice QCD/QCD-SR form factors
(dashed curve) and for values which are closer to their theoretical range given in Table 4
(dotted curve). We see that data for this mode is well explained.

• We estimate the branching ratio for B0 → π+π− to be around 1 × 10−5 for the central
values of the CKM parameters, which could go down to about 5×10−6 for Vub/Vcb = 0.06.
The present CLEO upper limit is in comfortable accord with our estimates but we expect
that this decay mode should be measured soon. However, the decay B0 → π0π0 is
not expected to go above 10−6, which makes it at least a factor 10 below the present
experimental sensitivity.

• We show the dependence of the branching ratios on the input form factors and the param-
eter ξ = 1/Nc for the decays B+ → K+η′ and B0 → K0η′ in Figs. 2 and 3, respectively.
As can be seen in these figures, data tends to prefer somewhat larger values for the form
factors F1,0 than the central values given by the Lattice-QCD/QCD sum rules in Table 4.
However, the experimentally preferred values of the form factors all lie within the range
allowed by the present theoretical estimates. Likewise, the branching ratio increases as
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Table 9: B → PV Branching Ratios (in units of 10−6) involving b→ d (or ∆S = 0) transitions
using the BSW [Lattice QCD/QCD sum rule] form factors, with k2 = m2

b/2, ρ = 0.12, η = 0.34,
and Nc = 2, 3,∞ in the factorization approach. The last column contains upper limits (90%
C.L.) from [1]. The upper limit on the branching ratio for B+ → ρ+π0 is taken from the PDG
tables [19].

Channel Class Nc = 2 Nc = 3 Nc = ∞ Exp.
B0 → ρ−π+

B0 → ρ+π−
I
I

5.7 [6.6]
21 [25]

6.4 [7.3]
23 [28]

7.8 [9.0]
28 [34]

} < 88

B0 → ρ0π0 II 0.75 [0.88] 0.07 [0.08] 1.4 [1.7] < 18
B0 → ωπ0 II 0.28 [0.33] 0.08 [0.10] 0.10 [0.12] < 14
B0 → ρ0η II 0.02 [0.03] 0.02 [0.02] 0.06 [0.07] < 13
B0 → ρ0η′ II 0.01 [0.01] 0.001 [0.001] 0.03 [0.04] < 23
B0 → ωη II 0.46 [0.54] 0.05 [0.06] 0.63 [0.74] < 12
B0 → ωη′ II 0.29 [0.34] 0.02 [0.02] 0.46 [0.54] < 60
B+ → ρ0π+ III 6.3 [7.3] 3.9 [4.5] 0.89 [0.98] < 58
B+ → ρ+π0 III 14 [16] 13 [15] 11 [13] < 77
B+ → ωπ+ III 6.8 [7.9] 4.2 [4.9] 1.0 [1.1] < 23
B+ → ρ+η III 6.3 [7.4] 5.5 [6.5] 4.2 [5.0] < 32
B+ → ρ+η′ III 4.5 [5.3] 4.0 [4.7] 3.0 [3.7] < 47
B0 → K̄∗0K0 IV 0.31 [0.36] 0.38 [0.44] 0.55 [0.64] −
B+ → K̄∗0K+ IV 0.32 [0.37] 0.40 [0.46] 0.57 [0.67] −
B+ → K∗+K̄0 V 0.001 [0.002] 0.0005 [0.0007] 0.002 [0.002] −
B+ → φπ+ V 0.040 [0.047] 0.005 [0.005] 0.36 [0.43] < 5.0
B0 → φπ0 V 0.019 [0.023] 0.002 [0.003] 0.17 [0.21] < 5.0
B0 → φη V 0.008 [0.010] 0.0009 [0.001] 0.073 [0.087] < 9
B0 → φη′ V 0.006 [0.007] 0.0007 [0.0008] 0.053 [0.064] < 3.1
B0 → K∗0K̄0 V 0.001 [0.002] 0.0004 [0.0006] 0.002 [0.002] −

the s-quark mass decreases, as already noted in [27,28]. Thus, for ms (µ = 2.5 GeV)

= 100 MeV, and FB→η′

1,0 = 0.15, there is no problem to accommodate the CLEO data
within the measured ±1σ range. As already discussed at length in refs. [27,28], these
decay modes are dominated by the QCD penguin, and while the contributions of the
anomaly terms are included in the rate estimates, their role numerically is subleading.
The decay modes B+ → K+η′ and B0 → K0η′ show some preference for smaller values
of ξ, though this is correlated with other input parameters and at this stage one can not
draw completely quantitative conclusions. Summarizing the B → PP decays, we stress
that the factorization-based estimates described here are consistent with the measured
decay modes. All other estimated branching ratios are consistently below their present
experimental limits. However, we do expect the modes B0 → π+π−, B+ → π+π0, and
B+ → K+π0 to be measured soon.

• The two observed B → PV decays, B+ → ωK+ and B+ → ωh+, h+ = π+, K+, show
strong Nc-dependence as anticipated. The decay B+ → ωπ+, a class-III decay, has not
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Figure 1: Branching ratio for the decays B+ → π0h+ (h+ = π+, K+) as a function of ξ for three
different sets of form factors: BSW Model (dashed-dotted curve), Lattice-QCD/QCD-sum rules
with central values in Table 4 (dashed curve), with the values FB→π

0,1 = 0.36 and FB→K
0,1 = 0.41

(dotted curve). The horizontal solid lines are the ±1σ measurements from experiment [1].

Figure 2: Branching ratio for B+ → K+η′ as a function of ξ = 1/Nc. The dash-dotted and

dashed curves correspond to the choice FB→η′

1 (0) = FB→η′

0 (0) = 0.15, ms(µ = 2.5 GeV) = 100

MeV, and FB→η′

1 (0) = FB→η′

0 (0) = 0.135, ms(µ = 2.5 GeV) = 122 MeV, respectively. The
horizontal solid lines are the ±1σ measurements from experiment [1].
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Table 10: B → PV Branching Ratios (in units of 10−6) involving b → s (or |∆S| = 1)
transitions using the BSW [Lattice QCD/QCD sum rule] form factors, with k2 = m2

b/2, ρ =
0.12, η = 0.34, and Nc = 2, 3,∞ in the factorization approach. The last column contains the
measured branching ratio and upper limits (90% C.L.) [1].

Channel Class Nc = 2 Nc = 3 Nc = ∞ Exp.
B0 → ρ−K+ I 0.40 [0.46] 0.45 [0.52] 0.56 [0.64] < 33
B+ → K∗+η′ III 0.28 [0.39] 0.24 [0.29] 0.33 [0.33] < 130
B0 → K∗+π− IV 6.0 [7.2] 6.6 [7.8] 7.8 [9.3] < 67
B0 → K∗0π0 IV 1.8 [2.0] 2.2 [2.5] 3.2 [3.6] < 20
B0 → ρ0K0 IV 0.50 [0.58] 0.49 [0.57] 0.62 [0.73] < 30
B+ → K∗+π0 IV 4.4 [5.4] 4.7 [5.9] 5.6 [6.9] < 80
B+ → ρ0K+ IV 0.58[0.67] 0.50[0.58] 0.47[0.55] < 14
B+ → K∗+η IV 2.2 [2.8] 2.2 [2.7] 2.0 [2.4] < 30
B0 → K∗0η IV 2.0 [2.5] 2.1 [2.7] 2.6 [3.1] < 30
B+ → K∗0π+ IV 5.6 [6.7] 6.9 [8.3] 10 [12] < 39
B+ → ρ+K0 IV 0.03 [0.03] 0.01 [0.01] 0.01 [0.02] < 64
B0 → K∗0η′ V 0.06 [0.12] 0.07 [0.07] 0.41 [0.39] < 39
B+ → φK+ V 16 [18] 8.3 [9.6] 0.45 [0.53] < 5.0
B0 → φK0 V 15 [18] 8.0 [9.3] 0.44 [0.51] < 31
B0 → ωK0 V 2.8 [3.3] 0.02 [0.02] 8.9 [10] < 57
B+ → ωK+ V 3.2 [3.7] 0.25 [0.28] 11 [13] 15+7

−6 ± 2

yet been measured and the mode B+ → K+ω (a class-V decay) has a 3.9σ experimental
significance. The branching ratios of B+ → ωK+ and B+ → ωπ+ are plotted as functions
of ξ in Figs. 4 and 5, respectively, showing the variations on other parameters (form factors
and CKM matrix elements) as well. Taking the CLEO measurement B(B+ → ωK+) =
(1.5+0.7

−0.6 ± 0.2) × 10−5 on face value, this mode suggests that ξ ≤ 0.1 or ξ ≥ 0.6. The
present CLEO upper limit B(B+ → ωπ+) < 2.3× 10−5 is not yet restrictive enough. The
branching ratio for the combined decay B+ → ωh+(h+ = π+, K+) is shown in Fig 6 as a
function of ξ for two values of the form factors FB→K

1 and FB→π
1 and two sets of values for

the CKM parameters ρ and η. The values of these form factors correspond to the BSW
model and the upper limit in Table 4 to the Lattice-QCD/QCD sum rule case. Again,
one sees that there is a tendency in the data to prefer larger values of the form factors.
We note that both small values ξ ≃ 0 and ξ ≥ 0.5 are compatible with data in this decay,
with the theoretical branching ratio rising above 1 × 10−5. The value corresponding to
the naive factorization, Nc = 3 (or ξ = 0.33) is definitely too low compared to the data
on the two measured B → PV decays. This is in line with earlier observations in the
literature [27,29,31].

• No other B → PV decays have been measured yet. However, an interesting upper bound
B(B+ → K+φ) < 0.5 × 10−5 (at 90% C.L.) has been put by the CLEO collaboration
[2]. This and the related decay B0 → K0φ are both penguin dominated and their decay
rates are expected to be almost equal. The only worthwhile CKM-dependence is on the
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Figure 3: Branching ratio for B0 → K0η′ as a function of ξ. The legends are the same as in
Figure 2.

Figure 4: Branching ratio for B+ → K+ω and as a function of ξ. The legends are as follows:
ρ = 0.30, η = 0.42, FB→K

1 = 0.44 (dashed-dotted curve), ρ = 0.12, η = 0.34, FB→K
1 = 0.38

(dashed curve). The horizontal solid lines are the ±1σ measurements from experiment [2].
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Table 11: B → V V Branching Ratios (in units of 10−6) using the BSW [Lattice QCD/QCD sum
rule] form factors, with k2 = m2

b/2, ρ = 0.12, η = 0.34, and Nc = 2, 3,∞ in the factorization
approach. The last column contains upper limits (90% C.L.) mostly from [1] except for the
branching ratios for B0 → ρ+ρ−, B0 → ρ0ρ0, B+ → ρ+ρ0, B0 → K∗0ρ0 and B+ → K∗+ρ0,
which are taken from the PDG tables [19].

Channel Class Nc = 2 Nc = 3 Nc = ∞ Expt.
B0 → ρ+ρ− I 18 [20] 20 [22] 24 [27] < 2200
B0 → ρ0ρ0 II 1.3 [1.3] 0.59 [0.59] 2.5 [2.5] < 280
B0 → ωω II 0.87 [0.96] 0.15 [0.17] 0.86 [0.96] < 19
B+ → ρ+ρ0 III 14 [15] 11 [12] 6.1 [6.8] < 1000
B+ → ρ+ω III 15 [16] 12 [13] 6.6 [7.3] < 67
B0 → K∗+ρ− IV 5.4 [6.0] 5.9 [6.6] 7.0 [7.8] −
B0 → K∗0ρ0 IV 1.1 [1.2] 1.3 [1.4] 1.9 [1.9] < 460
B+ → K∗+ρ0 IV 5.0 [5.8] 5.5 [6.3] 6.6 [7.6] < 900
B+ → ρ+K∗0 IV 5.1 [5.6] 6.3 [6.9] 9.1 [10] −
B+ → K∗+K̄∗0 IV 0.29 [0.38] 0.37 [0.47] 0.53 [0.68] −
B0 → K∗0K̄∗0 IV 0.28 [0.36] 0.35 [0.45] 0.51 [0.65] −
B0 → ρ0ω V 0.018 [0.020] 0.005 [0.006] 0.23 [0.26] < 11
B0 → K∗0ω V 10 [12] 3.6 [4.0] 0.63 [1.1] < 23
B+ → K∗+ω V 11 [13] 3.7 [4.1] 1.7 [2.4] < 87
B+ → K∗+φ V 16 [20] 8.2 [10] 0.45 [0.57] < 41
B0 → K∗0φ V 15 [19] 7.9 [10] 0.43 [0.55] < 21
B+ → ρ+φ V 0.039 [0.043] 0.004 [0.005] 0.35 [0.38] < 16
B0 → ρ0φ V 0.019 [0.021] 0.002 [0.002] 0.17 [0.18] < 13
B0 → ωφ V 0.019 [0.020] 0.002 [0.002] 0.17 [0.18] < 21

Wolfenstein parameter A (hence weak). However, being class-V decays, their branching
ratios depend strongly on ξ, with both having their lowest values at ξ = 0. The branching
ratio B(B+ → K+φ) is shown as a function of ξ in Fig. 7 for A = 0.81 (dashed curve) and
A = 0.75 (dashed-dotted curve) and the CLEO 90% C.L. upper bound is also indicated.
This shows that values ξ ≥ 0.4 are disfavored by the present data. In fact, taken the data
on their face value the measured branching ratios for the decays B+ → ωh+(h+ = π+, K+)
and B+ → ωK+, as well as the upper bounds on the branching ratios for B+ → K+φ
and B+ → ωπ+ can be accommodated for a value of ξ, close to ξ = 0. All other decay
modes in Tables 9 and 10 (for the B → PV case) are consistent with their respective
upper limits. However, we do expect that the decay modes B+ → ρ+η, B+ → ρ+η′,
B0 → K∗0π0, B+ → K∗0π+ and B+ → ρ+ω should be observed in the next round of
experiments at CLEO and at B factories.

• There is one B → V V decay mode B → φK∗, for which some experimental evidence
exists, and an averaged branching ratio B(B → φK∗) = (1.1+0.6

−0.5 ± 0.2) × 10−5 has been
posted by the CLEO collaboration [2]. The decay modes B+ → φK∗+ and B0 → φK∗0

are dominated by penguins and are expected to be almost equal (see Table 11). They also
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Figure 5: Branching ratio for B+ → π+ω as a function of ξ. The legends are as follows:
ρ = 0.30, η = 0.42, FB→π

1 = 0.38 (dashed-dotted curve), ρ = 0.12, η = 0.34, FB→K
1 = 0.34

(dashed curve). The horizontal solid line is the 90% C.L. upper limit from experiment [2].

belong to class-V decays, showing very strong ξ-dependence (almost a factor 35!), with
the branching ratios having their smallest values at ξ = 0. A comparison of data and
factorization-based estimates is shown in Fig. 8. In this case, data favors 0.4 ≤ ξ ≤ 0.6,
apparently different from the values of ξ suggested by the B → PV decays discussed
earlier. In fact, the branching ratios of the decays B+ → φK+, B0 → φK0, B+ → φK∗+

and B0 → φK∗0 are almost equal in the factorization approach and they all belong to
class-V. Hence, their measurements will be rather crucial in testing this framework.

• Based on the present measurements of the B → PV and B → V V decay modes, we
summarize that all of them belong to the class-V (and one to class-III) decays, for which
the factorization-based estimates show strong sensitivity to ξ. This implies that they
are harder to predict. The classification given above, however, does not imply that the
class-V decays are necessarily small. In fact for Nc = 2, the measured class-IV decays and
a number of class-V B → PV and B → V V decays such as the ones mentioned above
are comparable in rates (within a factor 2). For the class-V decays, the amplitudes can
become very small in some range of ξ, implying large non-perturbative renormalizations
which are harder to quantify in this framework. Also, many class-V penguin decays may
have significant contributions from annihilation and/or FSI, as the factorization-based
amplitudes, depending on ξ, may not dominate the decay rates. This is generally not
foreseen for the class-I (tree-dominated) and class-IV (penguin-dominated) decays and
most of the class-III decays. Hence, these decays can be predicted with greater certainty.

• Concerning comparison of our results with the earlier ones in [27,28], we note that we
have made use of the theoretical work presented in these papers. We reproduce all the
numerical results for the same values of the input parameters. Our decay amplitudes
agree with the ones presented in [31], though our estimates of the matrix elements of
pseudoscalar densities 〈0|ūγ5u|η(′)〉 and 〈0|d̄γ5d|η(′)〉 differ from the ones used in [31]. Our
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Figure 6: Branching ratio for B+ → h+ω as a function of ξ. The legends are as follows:
ρ = 0.30, η = 0.42, FB→π

1 = 0.38, FB→K
1 = 0.44 (dashed-triple dotted curve), ρ = 0.30, η =

0.42, FB→π
1 = 0.33, FB→K

1 = 0.38 (dotted curve), ρ = 0.12, η = 0.34, FB→π
1 = 0.38, FB→K

1 =
0.44 (dashed-dotted curve), ρ = 0.12, η = 0.34, FB→π

1 = 0.33, FB→K
1 = 0.38 (dashed curve).

The horizontal solid lines are the ±1σ measurements from experiment [1].

Figure 7: Branching ratio for B+ → K+φ as a function of ξ. The legends are as follows: Upper
curve: Wolfenstein parameter A = 0.81, FB→K

1 = 0.38. Lower curve: Wolfenstein parameter
A = 0.75, FB→K

1 = 0.31. The horizontal solid line is the 90% C.L. upper limit from experiment
[1].
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Figure 8: Branching ratio for B → K∗φ as a function of ξ, after averaging over the B+ and
B0 decay rates. The legends are as follows: Upper curve: Wolfenstein parameter A = 0.81.
Lower curve: Wolfenstein parameter A = 0.75. For the form factors, we use the BSW model.
The horizontal solid lines represent the CLEO measurement with ±1σ errors. [1].

expressions are given explicitly in Appendix A. The disagreement in the decay rates for
B0 → ρ0η and B0 → ρ0η′ between our results and the ones given in [31] has now been
resolved 4. However, we do not subscribe to the notion that Nc(V + A) induced by the
(V −A)(V +A) penguin operators is different from the Nc(V −A) arising from the (V −
A)(V −A) operators, advocated in [31] and continue to use the same Nc irrespective of the
chiral structure of the four-quark operators. We have discussed at length the difficulties in
predicting class-V decays some of which, in our opinion, may require annihilation and/or
FSI effects.

Comparison of our numerical results in the branching ratios for the B → PV modes
with the ones presented in [29] requires a more detailed comment. First of all, our
input parameters are significantly different from those of [29]. For the same values of
input parameters, our results in charged B+ → (PV )+ decays are in reasonable accord.
However, significant differences exist in the neutral B0 → (PV )0 decay rates, which persist
also if we adopt the input values used in [29]. In particular, in this case we find forNc = ∞:
B(B0 → ρ0η) = 2.7 × 10−7 compared to 6.7 × 10−6 [29], B(B0 → ρ0η′) = 1.2 × 10−7

compared to 3.6 × 10−6 [29], B(B0 → ωη) = 6.9 × 10−7 compared to 7.1 × 10−6 [29],
and B(B0 → ωη′) = 1.3 × 10−7 compared to 3.6 × 10−6 [29]. For our input values, the
differences in branching ratios are even more drastic, as can be seen by comparing our
results with the ones in [29] for these decays. We have given sufficient details in our paper
to enable a comparison of the formulae, including matrix elements of the pseudoscalar
densities, and hence it should not be too difficult to figure out the source of the present
discrepancy. Such details are not given in [29].

4We thank Hai-Yang Cheng for a correspondence on this point.
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• Within the present framework, we have calculated the relative importance of electroweak
penguins in all the B → PP , B → PV and B → V V decays studied in this paper. The
decay modes where the electroweak penguins may make a significant contribution are
shown in Table 12 where we give the ratio

RW ≡ B(B → h1h2)(with a7, ..., a10 = 0)

B(B → h1h2)
. (42)

In the B → PP case, there are five such decays whose rates show moderate dependence on
the electroweak penguins. The decay B0 → π0π0 receives significant electroweak penguin
contribution for Nc = 3. In the class-IV B → PP decays, three decays, namely B0 → K0π0,
B0 → K0η and B+ → K+η (all having branching ratios in excess of 10−6) have significant
electroweak contributions. The presence of electroweak penguins in these decays reduces the
decay rate by about ∼ 20% to ∼ 40%.

In the B → PV decays, the three class-II decays which may have significant electroweak
penguin amplitudes are B0 → ρ0π0 and B0 → ρ0η(′). Most striking among the class-IV decays
is B0 → ρ0K0, which is completely dominated by the electroweak penguins for all values of Nc.
This decay is estimated to have a branching ratio of O(10−6). Measurement of this decay mode
will enable us to determine the largest electroweak-penguin coefficient a9. In the B → V V
decays, the class-II decay B0 → ρ0ρ0 is sensitive to the electroweak penguins. Likewise, the
two class-IV decays, B0 → ρ0K∗0 and B+ → ρ0K∗+ are sensitive to electroweak penguins. All
of them are expected to have branching ratios of O(10−6) or larger, and can in principle all be
used to determine the coefficients of the electroweak penguins. Once again, a large number of
class-V decays show extreme sensitivity to the electroweak penguins, as can be seen in Table
12.

7 Stringent tests of the factorization approach and de-

termination of form factors

In the preceding section, we have compared available data with estimates based on the fac-
torization approach and have already commented on the tendency of data to favor somewhat
higher values of the form factors FB→P

0,1 , than, for example, the central values given in Table 4.
However, as the decay rates depend on a number of parameters and the various parametric de-
pendences are correlated, it is worthwhile, in our opinion, to measure some ratios of branching
ratios in which many of the parameters endemic to the factorization framework cancel. In line
with this, we propose three different types of ratios which can be helpful in a quantitative test
of the present framework:

• Ratios which do not depend on the effective coefficients ai, and which will allow to deter-
mine the form factors more precisely in the factorization framework.

• Ratios which depend on the parameters ai, and whose measurements will determine these
effective coefficients.

• Ratios whose measurements will impact on the CKM phenomenology, i.e., they will help
determine the CKM parameters ρ and η (equivalently sinα, sin β and sin γ).
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Table 12: Ratios of branching ratios RW defined in eq. (42) for Nc = 2, 3,∞ for the form factors
in the BSW model [Lattice-QCD/QCD sum rule method]. The horizontal lines demarcate the
decays B → PP , B → PV and B → V V .

Channel Class Nc = 2 Nc = 3 Nc = ∞
B0 → π0π0 II 1.2 [1.2] 1.5 [1.5] 1.1 [1.1]
B0 → π0η′ II 1.3 [1.3] 1.3 [1.3] 1.4 [1.4]
B0 → K0π0 IV 1.5 [1.4] 1.4 [1.4] 1.3 [1.3]
B0 → K0η IV 1.5 [1.5] 1.5 [1.5] 1.4 [1.4]
B+ → K+η IV 1.6 [1.6] 1.5 [1.5] 1.3 [1.3]
B0 → ρ0π0 II 1.0 [1.0] 1.9 [1.9] 1.1 [1.1]
B0 → ρ0η II 1.4 [1.4] 1.5 [1.5] 1.1 [1.1]
B0 → ρ0η′ II 1.1 [1.2] 4.7 [4.9] 1.3 [1.2]
B0 → K∗0π0 IV 1.7 [1.8] 1.6 [1.7] 1.4 [1.5]
B0 → ρ0K0 IV 0.077 [0.077] 0.008 [0.008] 0.11 [0.11]
B0 → K∗0η IV 0.69 [0.66] 0.70 [0.67] 0.71 [0.69]
B+ → K∗+π0 IV 0.63 [0.61] 0.68 [0.66] 0.78 [0.75]
B+ → ρ0K+ IV 0.83 [0.83] 0.59 [0.59] 0.13 [0.13]
B+ → K∗+η IV 0.60 [0.58] 0.66 [0.63] 0.78 [0.76]
B+ → ρ+K0 IV 0.45 [0.45] 0.60 [0.60] 0.66 [0.66]
B0 → K∗0η′ V 0.97 [0.54] 1.8 [1.6] 1.1 [1.2]
B0 → ωK0 V 0.83 [0.83] 0.42 [0.42] 1.2 [1.2]
B0 → φπ0 V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B0 → φη V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B0 → φη′ V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B0 → φK0 V 1.2 [1.2] 1.3 [1.3] 2.1 [2.1]
B0 → K∗0K̄0 V 0.46 [0.46] 0.84 [0.84] 0.73 [0.73]
B+ → K∗+K̄0 V 0.46 [0.46] 0.84 [0.84] 0.73 [0.73]
B+ → φπ+ V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B+ → φK+ V 1.2 [1.2] 1.3 [1.3] 2.1 [2.1]
B0 → ρ0ρ0 II 0.58 [0.58] 0.31 [0.31] 1.0 [1.0]
B0 → ρ0K∗0 IV 2.5 [2.7] 2.4 [2.6] 2.1 [2.2]
B+ → ρ0K∗+ IV 0.54 [0.52] 0.61 [0.58] 0.74 [0.72]
B0 → ρ0ω V 1.9 [1.9] 0.08 [0.08] 0.77 [0.77]
B0 → ρφ V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B0 → ωφ V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B0 → K∗0ω V 0.93 [0.92] 0.84 [0.82] 1.7 [1.6]
B0 → K∗0φ V 1.2 [1.2] 1.3 [1.3] 2.1 [2.1]
B+ → ρ+φ V 1.7 [1.7] 0.002 [0.002] 0.78 [0.78]
B+ → K∗+φ V 1.2 [1.2] 1.3 [1.3] 2.1 [2.1]
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7.1 Ratios of branching ratios independent of the coefficients ai

We start with the ratios of branching ratios in which the effective coefficients a1, ..., a10 cancel. In
the present approach, these ratios depend on the form factors and hadronic coupling constants.
Their measurements will allow us to discriminate among models, determine some of the hadronic
quantities and improve the quality of theoretical predictions for a large number of other decays
where these hadronic quantities enter.

In what follows, we shall illustrate this by giving complete expressions for the relative decay
widths of the decay modes in question. These expressions can be derived in a straightforward
way from the matrix elements given in the Appendices. Then, we shall present simple formulae,
which are approximate but instructive, and highlight the particular form factors which play
dominant roles in these decays. Finally, we shall compare the numerical results for these ratios
obtained from the complete expressions, which have been used in calculating the entries in
Tables 8 - 11, and the corresponding ones obtained from the simple formulae to judge the
quality of the approximation in each case. As practically an almost endless number of ratios
can be formed from the seventy six branching ratios given in Tables 8 - 11, some thought has
gone into selecting the eleven ratios which we discuss below. Our criterion is based on the
theoretical simplicity and experimental feasibility of these ratios. To be specific, these ratios
involve those decays whose branching ratios are expected to be O(10−6) or higher, with the
ratios of branching ratios of order one so that a reasonable experimental accuracy could be
achieved, and whose decay widths are dominated by a single form factor.

We start with the discussion of decay modes involving the final states ππ, ρπ and ρρ. These
ratios are listed below:

P1 ≡ B(B0 → ρ+π−)

B(B0 → ρ+ρ−)
(43)

=
x2f(π, ρ)3|FB→π

1 (m2
ρ)|2

f(ρ, ρ)3
[

1
4
( 3x4

f(ρ,ρ)2
+ 1)(1 + x)2A2

1 +
f(ρ,ρ)2A2

2

(1+x)2
+ 2x4V 2

(1+x)2
− (1

2
− x2)A1A2

] ,

where x = mρ/mB. The form factors A1, A2 and V involve the B → ρ transition. The function
f(a, b) is the momentum fraction carried by the final particles, f(a, b) < 1/2.

f(a, b) =

√

(m2
B −m2

a −m2
b)

2 − 4m2
am

2
b

2m2
B

.

Since f(π, ρ) ≃ f(ρ, ρ) ≃ 1/2−x2, and in almost all models one expects A1 ≃ A2, the expression
given in eq. (43) gets considerably simplified. Neglecting the terms proportional to x4 in the
denominator, one has:

P1 ≃
|FB→π

1 (m2
ρ)|2

(1 + x)|AB→ρ
1 (m2

ρ)|2
, (44)

which is essentially determined by the ratios of the form factors FB→π
1 and AB→ρ

1 . We show
the values of the ratio P1 in Table 13 for the BSW model and the lattice-QCD/QCD sum rules
method for both the full widths and following from the approximate relation given in eq. (44).
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Table 13: Values of Pi’s calculated with the form factors from the BSW model and the hybrid
lattice-QCD/QCD-sum rule method. The numbers in square brackets are calculated using the
approximate formulae derived in the text.

Ratio BSW model Lattice-QCD/QCD-Sum rules
P1 1.19 [1.21] 1.27 [1.55]
P2 0.43 [0.39] 0.43 [0.39]
P3 0.28 [0.28] 0.27 [0.27]
P4 0.49 [0.47] 0.53 [0.61]
P5 0.52 [0.47] 0.55 [0.61]
P6 1.11 [1.21] 1.19 [1.55]
P7 1.11 [1.21] 1.19 [1.55]
P8 1.08 [1.14] 0.99 [1.18]
P9 1.09 [1.14] 0.99 [1.18]
P10 1.01 [1.15] 0.92 [1.19]
P11 1.01 [1.15] 0.92 [1.19]

There are various other relations of a similar kind. For example, neglecting the small QCD
penguin contribution and the very small difference in phase space, we get the relations:

P2 ≡
B(B0 → π−π+)

B(B0 → ρ+π−)
≃
(

fπF
B→π
0 (m2

π)

fρF
B→π
1 (m2

ρ)

)2

, (45)

P3 ≡
B(B0 → π+ρ−)

B(B0 → ρ+π−)
≃
(

fπA
B→ρ
0 (m2

π)

fρFB→π
1 (m2

ρ)

)2

. (46)

As can be seen in Table 13, both eqs. (45) and (46) are excellent approximations and, for the
two models in question, we get an almost form-factor independent prediction, namely P2 ≃ 0.4
and P3 ≃ 0.28. It must be remarked here that one must disentangle B0 decays from the B0

decays as both P2 and P3 are defined for the decays of B0.
In the same vein, we define the ratios P4 and P5 involving the ππ and ρρ modes:

P4 ≡
B(B+ → π+π0)

B(B+ → ρ+ρ0)
, (47)

P5 ≡
B(B0 → π−π+)

B(B0 → ρ−ρ+)
. (48)

Neglecting the QCD penguin contribution in P4 and the EW penguin in P5, which are excellent
approximations (see Table 13), we can obtain these ratios as:

P4 ≃ P5 ≃
(

fπ

fρ

)2
x2(1 −m2

π/m
2
B)f(π, π)|FB→π

0 (m2
π)|2

f(ρ, ρ)3
[

1
4
( 3x4

f(ρ,ρ)2
+ 1)(1 + x)2A2

1 +
f(ρ,ρ)2A2

2

(1+x)2
+ 2x4V 2

(1+x)2
− 1

2
(1 − 2x2)A1A2

] .

(49)
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Neglecting higher order terms in x, we get:

P4 ≃ P5 ≃
(

fπ

fρ

)2 |FB→π
1 (m2

π)|2
(1 + x)|AB→ρ

1 (m2
ρ)|2

, (50)

very similar to the relation for P1, except for the ratio of the decay constants.
The next ratios are defined for the final states involving K∗π and K∗ρ.

P6 ≡ B(B0 → K∗+π−)

B(B0 → K∗+ρ−)
,

P7 ≡ B(B+ → π+K∗0)

B(B+ → ρ+K∗0)
. (51)

One can express these ratios as:

P6 = P7 (52)

=
x2f(π,K∗)3|FB→π

1 (m2
K∗)|2

f(ρ,K∗)3
[

1
4
( 3x2y2

f(ρ,K∗)2
+ 1)(1 + x)2A2

1 +
f(ρ,K∗)2A2

2

(1+x)2
+ 2x2y2V 2

(1+x)2
− 1

2
(1 − x2 − y2)A1A2

] ,

where y = mK∗/mB, and we have neglected the small phase space difference. Similar to the
expression for P1, we can derive a simple formula by dropping higher powers in x

P6 = P7 ≃
|FB→π

1 (m2
K∗)|2

(1 + x)|AB→ρ
1 (m2

K∗)|2
. (53)

Again, neglecting the small phase space factor and the extrapolations of the form factors
between q2 = m2

ρ and q2 = m2
K∗ , the near equality P1 ≃ P6 ≃ P7 holds in the factorization

assumption.
The next ratios, called P8 and P9, involve the final states KK̄∗ and K∗K̄∗, respectively.

Defining

P8 ≡ B(B+ → K+K̄∗0)

B(B+ → K∗+K̄∗0)
,

P9 ≡ B(B0 → K0K̄∗0)

B(B0 → K∗0K̄∗0)
, (54)

we now have

P8 ≃ P9 =
y2|FB→K

1 (m2
K∗)|2|f(K,K∗)/f(K∗, K∗)|3

1
4
( 3y4

f(K∗,K∗)2
+ 1)(1 + y)2|AK∗

1 |2 +
f(K∗,K∗)2|AK∗

2 |2
(1+y)2

+ 2y4|V K∗ |2
(1+y)2

− 1
2
(1 − 2y2)AK∗

1 AK∗

2

.

(55)
The form factors AK∗

1 , AK∗

2 , V K∗

are abbreviations for AB→K∗

1 etc., and again small phase space
differences have been neglected. Expanding in y and dropping higher order terms, we get:

P8 ≃ P9 ≃
|FB→K

1 (m2
K∗)|2

(1 + y)|AB→K∗

1 (m2
K∗)|2 , (56)
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which involves ratios of the form factors FB→K
1 and AB→K∗

1 .
Finally, in this series we define the ratio P10 and P11 involving the states Kφ and K∗φ,

respectively:

P10 ≡ B(B+ → K+φ)

B(B+ → K∗+φ)
,

P11 ≡ B(B0 → K0φ)

B(B0 → K∗0φ)
. (57)

Ignoring the small phase space difference, we get

P10 ≃ P11 =
y2|FB→K

1 (m2
φ)|2|f(K,φ)/f(K∗, φ)|3

1
4
( 3y2z2

f(K∗,φ)2
+ 1)(1 + y)2|AK∗

1 |2 +
f(K∗,φ)2|AK∗

2 |2
(1+y)2

+ 2y2z2|V K∗ |2
(1+y)2

− 1
2
(1 − y2 − z2)AK∗

1 AK∗

2

,

(58)
where z = mφ/mB. Expanding in y and z and again neglecting higher order terms in y and z,
we get:

P10 ≃ P11 ≃
|FB→K

1 (m2
φ)|2

(1 + y)|AB→K∗

1 (m2
φ)|2

. (59)

So, in the factorization approximation and ignoring the small extrapolation between q2 = m2
K∗

and q2 = m2
φ, in the form factors, we have the near equality P8 ≃ P9 ≃ P10 ≃ P11. These ratios

are all proportional to the ratios of the form factors FB→K
1 and AB→K∗

1 .
The ratios P1, ..., P11 involve decays in which at least one of the 0− mesons is replaced by

the corresponding vector 1− particle. If these particles in the decay B → h1h2 were heavy,
such as D,D∗, Ds, D

∗
s , one could use the large energy (1/E) expansion to derive the ratios

Pi. We have not investigated this point and hence can not claim that these ratios are at the
same theoretical footing as the corresponding relations involving the decays B → D(D∗)π(ρ),
studied, for example, in [18]. However, as the energy released in B → h1h2 decays is large,
and no fine tuning among the various amplitudes is involved, which is the case in class-V
decays, we think that the above relations are likely to hold. The ratios of branching ratios
are also independent of the CKM matrix elements, therefore they constitute good test of the
factorization hypotheses. In Table 13, we have presented the numerical values of the ratios Pi,
i = 1, ..., 11. This table shows that almost all the ratios are remarkably close for the two models
used for the form factors. This, however, reflects our choice of the specific values of the form
factors, which is influenced by the present CLEO data. In general, the ratios Pi are measures
of the ratios of the form factors, which could vary quite significantly from model to model, and
hence they can be used to distinguish between them. It can also be seen that in most cases, the
simple formulae are good approximations and would enable us to draw quantitative conclusions
about the ratios of dominant form factors in these decays.

7.2 Determination of the effective coefficients ai

In this section, we aim at measuring the effective coefficients ai of the factorization framework.
To that end, we shall study some ratios of branching ratios which are largely free of hadronic
form factors and decay constants. In general, these ratios depend on the effective coefficients ai
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and the CKM parameters in a rather entangled fashion. To disentangle this and gain some in-
sight, we will have to make approximations, whose accuracy, however, we specify quantitatively
within the present framework.

7.2.1 Determination of the tree coefficients a1 and a2

We start with a discussion of the decays B0 → π+π− and B+ → π+π0, which are on the verge
of measurements [1]. Neglecting the electroweak contributions, which we have checked is a
very good approximation in these decays, we can derive from eqs. (78) and (80) the following
relation:

S1 ≡
B(B0 → π+π−)

2B(B+ → π+π0)
≃ τB0

τB+

[

(

a1

a1 + a2

)2

− 2
a1

a1 + a2

z1 cosα cos δ1 + z2
1

]

, (60)

where

z1 =

∣

∣

∣

∣

∣

VtbV
∗
td

VubV ∗
ud

∣

∣

∣

∣

∣

∣

∣

∣

∣

a4 + a6R1

a1 + a2

∣

∣

∣

∣

.

Here, the quantities τB0 and τB+ are the lifetimes of the B0 and B+ mesons, which, within
present experimental accuracy, are equal to each other. The implicit dependence on the CKM
matrix elements in the quantity a4 +a6R1 is not very marked (see section 2). The explicit CKM
factor is bounded from the unitarity fits in the range (at 95% C.L.): 1.4 < |VtbV

∗
td|/|VubV

∗
ud| <

4.6. Varying then Nc from Nc = 2 to Nc = ∞, we get 0.08 < z1 < 0.50. This would suggest
that one might be able to determine the quantity cosα from this ratio. However, the value of
z1 is strongly correlated with that of the product y1 ≡ cos δ1 cosα, as shown in Fig. 9 where
the dependence of this product is shown as a function of z1, indicating the allowed range of
z1 for assumed values of the ratio S1. As a result of this correlation, which is specific to the
factorization approach, the ratio z1 cos δ1 cosα remains small in the entire allowed parameter
space. The quantity z1 cos δ1 cosα is bounded from above to lie below 0.16, which corresponds
to using Nc = 2 and |Vub/Vcb| = 0.06. This is then bad news for determining the quantity
cosα from the ratio S1 but good news as far as the determination of the effective coefficients
a1/(a1 +a2) from S1 is concerned. Taking this as a generic case for other decays of interest, our
best bet in the determination of the effective coefficients is to find ratios of branching ratios in
which the quantity zi cos δi cosφi (here φi = α, β or γ) as well as z2

i are both small. Within the
factorization framework, and using the present constraints on the CKM parameters, this can be
systematically studied. With this in mind, we shall present a number of approximate formulae
for the ratios Si, which are expected to hold in the limit: zi cos δi cosφi ≪ 1 and z2

i ≪ 1.
To quantify the quality of our approximation, we shall make detailed numerical comparisons
between the numerical results for Si, obtained with the complete expressions for the respective
decay widths, and the ones following from our approximate formulae.

There are some ratios of branching ratios in which, within our theoretical framework, the
factors zi cos δi cosφi are large, or else the CKM dependence of the ratios factorizes in a simple
way. We shall use these ratios to determine the CKM parameters in non-leptonic two-body
decays B → h1h2. This kind of analysis has already been suggested in the literature [45,27,50].
We add a number of interesting decay modes to the cases already studied in the literature and
make quantitative predictions for them in the present model.

39



Figure 9: y1 = cos δ1 cosα as a function of z1 in the factorization approach. The dotted,
dashed-dotted and dashed curves correspond to Nc = ∞ and |Vub/Vcb| = 0.11, Nc = 3 and
|Vub/Vcb| = 0.08 and Nc = 2 and |Vub/Vcb| = 0.06, yielding in the BSW model the values
S1 = 2.07, S1 = 0.94 and S1 = 0.59, respectively. The two vertical lines indicate the bounds on
z1 from our model and the CKM unitarity fits 0.08 < z1 < 0.50.

Returning to the determination of the coefficients ai, we note that a ratio similar to S1 can
be defined with the ρρ final states:

S2 ≡
B(B0 → ρ+ρ−)

2B(B+ → ρ+ρ0)
≃ τB0

τB+

[

(

a1

a1 + a2

)2

− 2
a1

a1 + a2
z2 cosα cos δ2 + z2

2

]

, (61)

where

z2 =

∣

∣

∣

∣

∣

VtbV
∗
td

VubV ∗
ud

∣

∣

∣

∣

∣

∣

∣

∣

∣

a4

a1 + a2

∣

∣

∣

∣

.

This is not expected to exceed its maximum value zmax
2 = 0.26, the central value being around

z2 ≃ 0.08. Hence, one could use an approximate formulae for S1 and S2 by keeping the dominant
term arising from the tree contributions (setting τB0 = τB+):

S1 ≡
B(B0 → π+π−)

2B(B+ → π+π0)
≃
(

a1

a1 + a2

)2

, (62)

S2 ≡
B(B0 → ρ+ρ−)

2B(B+ → ρ+ρ0)
≃
(

a1

a1 + a2

)2

. (63)

Likewise, neglecting the penguin contributions, which give only several percent uncertainties,
the value a2/a1 can also be measured from the following ratios,

S3 ≡
2B(B+ → ρ+π0)

B(B0 → ρ+π−)
≃
(

1 +
1

x

a2

a1

)2

, (64)

S4 ≡
2B(B+ → π+ρ0)

B(B0 → π+ρ−)
≃
(

1 + x
a2

a1

)2

, (65)

where the quantity x = (fρF
B→π
1 )/(fπA

B→ρ
0 ) can be measured by measuring the ratio P3.
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Table 14: The ratios Si calculated using the indicated values of Nc and different values of ρ
and η. The values are calculated using the approximate formula (Approx.) derived in the text
also.

Nc Nc = 2 Nc = 3 Nc = ∞
|Vub/Vcb| 0.06 0.08 0.11 0.06 0.08 0.11 0.06 0.08 0.11

S1 Exact 0.59 0.66 0.68 0.83 0.94 0.95 1.81 2.03 2.07
Approx. 0.64 0.64 0.64 0.91 0.91 0.91 1.97 1.97 1.97

S2 Exact 0.60 0.64 0.65 0.85 0.90 0.91 1.84 1.95 1.98
Approx. 0.64 0.64 0.64 0.91 0.91 0.91 1.97 1.97 1.97

S3 Exact 1.33 1.32 1.32 1.09 1.09 1.09 0.74 0.75 0.75
Approx. 1.29 1.29 1.29 1.06 1.06 1.06 0.71 0.71 0.71

S4 Exact 2.41 2.20 2.13 1.40 1.23 1.17 0.32 0.23 0.19
Approx. 2.13 2.13 2.13 1.20 1.20 1.20 0.22 0.22 0.22

S5 Exact 0.55 0.97 1.96 0.37 0.66 1.33 0.16 0.28 0.56
Approx. 0.55 0.95 1.89 0.38 0.66 1.31 0.17 0.29 0.58

S6 Exact 3.07 5.46 11.01 1.95 3.47 7.00 0.75 1.34 2.71
Approx. 3.10 5.30 10.56 2.06 3.53 7.03 0.86 1.46 2.92

S7 Exact 1.97 3.73 7.62 1.77 3.35 6.84 1.49 2.82 5.76
Approx. 1.99 3.40 6.78 1.87 3.19 6.36 1.68 2.88 5.74

S8 Exact 1.84 3.47 7.10 1.65 3.12 6.37 1.39 2.62 5.36
Approx. 1.99 3.40 6.78 1.87 3.19 6.36 1.68 2.88 5.74

S9 Exact 0.32 0.65 1.33 0.31 0.62 1.27 0.28 0.57 1.17
Approx. 0.36 0.61 1.22 0.35 0.59 1.18 0.33 0.57 1.13

S10 Exact 0.22 0.18 0.13 0.15 0.14 0.13 0.09 0.12 0.18
Approx. 0.14 0.14 0.14 0.13 0.13 0.13 0.11 0.11 0.11

S11 Exact 0.37 0.17 0.06 0.28 0.15 0.07 0.20 0.16 0.12
Approx. 0.26 0.15 0.07 0.25 0.14 0.07 0.23 0.13 0.07

7.2.2 Determining the penguin coefficients

Concerning the coefficients a3, ..., a6, we recall that the dominant QCD penguin amplitudes are
proportional to a4 and a6. The others (a3 and a5) enter either as small corrections in class-IV
decays, or else enter in class-V decays, which in most cases are highly unstable due to large
cancellations in the respective amplitudes, hence rendering this exercise not very trustworthy
for determining the smaller coefficients. In view of this we concentrate on relations involving
the QCD-penguin coefficients a4 and a6. For this purpose, quite a few class-IV decays listed in
Tables 8 - 11 suggest themselves. Here, we take the ratios between some of the representative
decays from this class and from class-I or class-III decays. These ratios and their approximate
dependence on the coefficients of interest are as follows:

S5 ≡
2B(B+ → π+π0)

B(B+ → π+K0)
≃
(

fπ

fK

)2 ∣
∣
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∣
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∗
ts

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣
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a4 + a6R5

∣

∣

∣

∣

2

, (66)
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S6 ≡
2B(B+ → ρ+ρ0)

B(B+ → ρ+K∗0)
≃
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∣

∣

∣
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, (67)

S7 ≡
B(B0 → π−ρ+)

B(B+ → π+K∗0)
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∣
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∣
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, (68)

S8 ≡
B(B0 → ρ−ρ+)

B(B+ → ρ+K∗0)
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, (69)

S9 ≡
B(B0 → π+π−)

B(B+ → π+K0)
≃
(

fπ

fK

)2 ∣
∣

∣
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∣
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a4 + a6R5
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. (70)

Here, the quantity R5 is defined as R5 ≡ 2m2
K0/(mb − md)(md + ms). As is obvious from

the formulae given above, the determination of the effective coefficients through these ratios is
correlated with the values of the CKM factors, which in all cases are given essentially by the
ratio |Vub/Vts| ≃ |Vub/Vcb| ≃ 0.08 ± 0.02. We expect that the CKM matrix element |Vub/Vcb|
will be very precisely measured in forthcoming experiments. Hence, a better use of these ratios
is to determine the effective coefficients. To give a quantitative content to the approximations
made in reaching the simple expressions for Si, i = 1, ..., 9, we display in Table 14 the numerical
values of these ratios, together with the ratios S10 and S11 discussed below, as a function of
|Vub/Vcb|, taking a rather generous error on this quantity in the range 0.06 ≤ |Vub/Vcb| ≤ 0.11,
for three values of Nc. The rows labeled as “Exact” are the results obtained by using the
complete amplitudes and the rows labeled as “Approx.” are the results following from the
simple relations given above for these ratios. As one can see, these formulae are quite accurate
over a large parameter space, with the deviations mostly remaining well within 10%. One can
also check that the ratios S5 - S9 for the complete result scale almost quadratically with Vub/Vcb,
as follows from the simple formulae, which shows that the CKM dependence displayed in the
approximate formulae is actually quite accurate.

Concerning the measurements of the electroweak coefficients, a7, ..., a10, we recall that the
dominant contribution of the electroweak penguin amplitudes is proportional to a9. The rest of
the electroweak coefficients are either small or they enter in combinations which render them
very sensitive to the variation in Nc. It is instructive to consult Table 12, where the decays
in which electroweak penguins may make a significant contribution to the branching ratios are
listed. In line with our argument, we will concentrate only on class-IV penguin-decays, and
pick up the decay mode B0 → ρ0K0 as an illustrative example. To that end, we define the
following two ratios involving a class-I and a class-IV processes, dominated by the tree and
QCD-penguins, respectively.:

S10 ≡ 2B(B0 → ρ0K0)
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. (71)

We show the numerical values of these ratios in Table 14 for the three indicated values of
the ratio |Vub/Vcb|, both for the exact and approximate cases. The approximate relations are
reliable over most part of the parameter space. Other similar ratios can be written down in
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Figure 10: y12 = cos δ12 cos γ as a function of z12 in the factorization approach. The dotted,
dashed-dotted and dashed curves correspond to Nc = ∞ and |Vub/Vcb| = 0.11, Nc = 3 and
|Vub/Vcb| = 0.08, and Nc = 2 and |Vub/Vcb| = 0.06, yielding in the BSW model the values
S12 = 0.46, S12 = 0.91 and S12 = 1.12, respectively. The two vertical lines indicate the bounds
on z12 from our model and the CKM factors discussed in the text, yielding 0.15 < z12 < 0.29.

a straightforward way. Measurements of the ratios S1 - S11 will overconstrain the coefficients
a4, a6 and a9, testing both the factorization hypothesis and determining these crucial penguin
coefficients. Note that S10 depends only slightly on the CKM factors, compared to the others
discussed above, and S1 to S4 do not depend on |Vub/Vcb| when we use the approximations in
eqs. (62) - (65).

7.3 Potential impact of B → h1h2 decays on CKM phenomenology

(i) B → πK channels:
In this subsection, we consider the ratios of branching ratios which can be gainfully used

to get information on the CKM parameters. The most celebrated one in this class is the
ratio discussed by Fleischer and Mannel recently [45], involving the decays B0 → K+π− and
B+ → K0π+. Ignoring the electroweak penguin contribution, which is estimated to be small
in our model, one can write this ratio as:

S12 ≡
B(B0 → K+π−)

B(B+ → K0π+)
≃ 1 − 2z12 cos δ12 cos γ + z2

12, (72)

with
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The branching ratios involved in S12 have been measured by the CLEO collaboration and
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their values can be seen in Table 8. The ratio S12 itself has the following value:

S12 = 0.65 ± 0.39 . (73)

For the central values of the CKM parameter (ρ = 0.12, η = 0.34), the value of S12 is found
to be 0.80 ≤ S12 ≤ 1.0 varying Nc and using the two form factor models displayed in Table 8.
However, varying the CKM parameters in their presently allowed range, we find 0.46 ≤ S12 ≤
1.12, where the lower and upper values correspond to |Vub/Vcb| = 0.11 and |Vub/Vcb| = 0.06,
respectively. The ratio S12 is, formally speaking, very similar to the one defined for the ratio
S1. However, the difference between S1 and S12 is that the product z12 cos δ12 cos γ, as opposed
to the corresponding quantity z1 cos δ1 cosα in S1, is not small in the allowed region of z12. The
range 0.15 ≤ z12 ≤ 0.29 is estimated in the factorization approach varying the CKM matrix
element ratio in the range 0.013 < |VubV

∗
us|/|VtbV

∗
ts| < 0.023 and Nc. This is shown in Fig. 10.

Hence, the ratio S12 and its kinds, discussed below, do provide, in principle, a constraint on
cos γ. This figure also shows that the ratio S12 is in quite good agreement with the measured
ratio by CLEO.

In the context of the factorization models, the CLEO data was analyzed in [27] and it was
shown that theoretical estimates in this framework are in agreement with data. The ratio S12

(called R1 in [27]) provides a constraint on the CKM parameter ρ (equivalently cos γ). Taking
data at ±1σ value, the CLEO data disfavored the negative-ρ region. The allowed values of this
parameter resulting from the measurement of S12 were found to be in comfortable agreement
with the ones allowed by the CKM unitarity fits. In addition, the dependence of S12 on the
CKM parameter η was found to be weak. This overlap in the value of ρ following from the
analysis of the ratio S12 in the factorization approach and from the CKM unitarity fits has
also been confirmed recently in [48]. We show here the ratio S12 plotted as a function of
cos γ for Nc = 2, 3 and ∞ and fixed value of the ratio |Vub/Vcb| = 0.08 in Fig. 11. The form
factor dependence of this ratio is rather weak (as can be seen in Table 8) and for the sake of
definiteness we display the result for the BSW form factors. It is seen that for all values of Nc,
the CLEO data provides a constraint on cos γ, which is compatible with the one allowed by the
CKM fits, yielding 32◦ ≤ γ ≤ 122◦ [47]. This is in line with what has already been reported in
[27].

The ratio S12 given in eq. (72) is a generic example of the kind of relations that one can get
from the ratios of branching ratios in which the quantity zi cos δi cos γ is not small. We have
argued, in line with [27], that the factorization model gives an adequate account of S12. We
discuss below some related ratios, which, once measured, could be used to determine cos γ as
well as further test the consistency of the factorization approach.

(ii) Ratios for B → πK∗ modes:
One can define analogous to eq. (72), the ratio S13, involving the decays B0 → π−K∗+ and

B+ → K∗0π+:

S13 ≡
B(B0 → π−K∗+)

B(B+ → π+K∗0)
≃ 1 − 2z13 cos δ13 cos γ + z2

13, (74)

with

z13 =
|T |
|P | =

∣

∣

∣

∣

∣

VubV
∗
us

VtbV
∗
ts

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1

a4

∣

∣

∣

∣

Using 0.013 < |VubV
∗
us|/|VtbV

∗
ts| < 0.023, and from Nc = 2 to Nc = ∞, we get 0.30 < z13 < 0.60,

indicated in Fig.12. The ratio S13 is plotted in Fig. 13 as a function of cos γ for three different
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Figure 11: S12 as a function of cos γ in the factorization approach. The dotted, dashed-dotted
and dashed curves correspond to Nc = ∞, Nc = 3 and Nc = 2, respectively. The horizontal lines
are the CLEO (±1σ) measurements of S12. The two vertical lines correspond to 32◦ < γ < 122◦.

Figure 12: y13 = cos δ13 cos γ as a function of z13 in the factorization approach. The dotted,
dashed-dotted and dashed curves correspond to Nc = ∞ and |Vub/Vcb| = 0.11, Nc = 3 and
|Vub/Vcb| = 0.08, and Nc = 2 and |Vub/Vcb| = 0.06, yielding in the BSW model the values
S13 = 0.49, S13 = 0.95 and S13 = 1.37, respectively. The two vertical lines indicate the bounds
on z13 from our model and the CKM factors 0.30 < z13 < 0.60.

values of Nc and |Vub/Vcb|. When measured, this ratio will provide a constraint on the phase
cos γ. Varying the CKM parameters and Nc in the indicated range, we find the ratio S13 to lie
in the range 0.49 ≤ S13 ≤ 1.37. The upper bound is larger than the one for S12 given earlier,
reflecting that the QCD-penguin contributions in the two ratios are similar but not identical.

(iii) Ratios for B → ρK modes
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Figure 13: S13 = S15 as a function of cos γ. The dotted, dashed-dotted and dashed lines
correspond to results with Nc = ∞, Nc = 3 and Nc = 2, respectively. The two vertical lines
correspond to 32◦ < γ < 122◦.

S14 ≡
B(B0 → ρ−K+)

B(B+ → ρ+K0)
≃ 1 − 2z14 cos δ14 cos γ + z2

14, (75)

with

z14 =
|T |
|P | =

∣

∣

∣

∣

∣

VubV
∗
us

VtbV ∗
ts

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1

a4 + a6Q4

∣

∣

∣

∣

∣

.

The central value of the quantity z14 is z14 ≃ 5.07. However, being very large, the ratio S14

implies that the branching ratio in the denominator is appreciably smaller and perhaps lot
more difficult to measure. In view of this, we are less sure of its utility of the ratio S14 in the
foreseeable future.

(iv) Ratios for B → ρK∗ modes
Finally, we note that the ratio S15 defined below provides, within our model, a very similar

constraint on cos γ as the one following from the ratio S13:

S15 ≡
B(B0 → ρ−K∗+)

B(B+ → ρ+K∗0)
≃ 1 − 2z15 cos δ15 cos γ + z2

15 , (76)

where z15 = z13 and δ15 = δ13. This will be a further test of the factorization Ansatz.
Finally, in conclusion of this section, we mention that a method of measuring the CKM

matrix element ratio |Vtd/Vts| using exclusive non-leptonic B decays has been proposed in
ref. [50]. Some of these ratios have modest theoretical uncertainties due to SU(3) breaking
effects. These relations hold in the factorization framework as well, and we list a few of them
below:

B(B+ → K+K̄0)

B(B+ → π+K0)
≃ B(B+ → K+K̄∗0)

B(B+ → π+K∗0)
≃ B(B+ → K∗+K̄0)

B(B+ → ρ+K0)
(77)

≃ B(B+ → K∗+K̄∗0)

B(B+ → ρ+ K∗0)
≃
∣

∣

∣

∣

Vtd

Vts

∣

∣

∣

∣

2

.

46



8 Summary and Conclusions

We have presented estimates of the decay rates in two-body non-leptonic decays B → h1h2

involving pseudoscalar and vector light hadrons in which QCD and electroweak penguins play
a significant role. This work partly overlaps with studies done earlier along these lines on
branching ratios, in particular in [27–31]. We make use of the theoretical framework detailed in
[27,28] but we think that this is the most comprehensive study of its kind in the factorization
framework.

Using the sensitivity on Nc as a criterion of theoretical stability, we have classified all the
decays B → h1h2 into five different classes involving penguin and tree amplitudes. This extends
the classification of tree amplitudes en vogue in the literature [8,18]. We hope that the detailed
anatomy of the decays B → h1h2 presented here, in particular concerning the QCD and elec-
troweak penguins, will serve to have a more critical view of what can be reasonably calculated in
the factorization framework and what involves a good deal of theoretical fine tuning. Following
the classification discussed here, we think that class-I and class-IV decays, and probably also
class-III decays, can be calculated with a reasonable theoretical uncertainty, typically a factor
2. However, most class-II and class-V decays deserve a careful theoretical reappraisal to es-
tablish the extent of non-factorizing contributions. In particular, we have outlined the pattern
of power suppression in annihilation contributions to two-body non-leptonic B decays. Being
suppressed by m4

h/m
4
B, the annihilation contributions are small in the decays B → PP but

since this suppression is only m2
h/m

2
B in B → PV and B → V V decays, in specific cases this

can be easily overcome by the favorable effective coefficients. Hence, annihilation contributions
can be significant in some B → h1h2 decays involving vector mesons.

Our results can be summarized as follows.

• The recently measured decay modes B0 → K+π−, B+ → K+η′, B0 → K0η′, B+ →
π+K0, and B+ → ωK+ can be explained in the factorization framework. The first four
of these belong to the QCD-penguin dominated class-IV decays, which we argue can
be reliably calculated. The last belongs to the Nc-unstable class-V decays, which may
receive significant FSI and/or annihilation contributions. Taken the present theory and
data on face value, all measured decay modes are consistently accommodated, with some
preference for ξ = 1/Nc ≤ 0.2. Data on the combined decay modes B → φK∗ prefers
somewhat higher value for ξ. However, we caution against drawing too quantitative
conclusions at this stage.

• A number of decays is tantalizingly close to the present experimental upper limits. We
think that with O(108) B/B̄ hadrons, available in the next three to five years, a good
fraction of the seventy six decay modes worked out here will be measured providing a
detailed test of the factorization approach.

• To further quantify these tests, we have put forward numerous proposals which involve
measurements of the ratios of branching ratios. Carefully selecting the decay modes, one
could determine the effective coefficients a1, a2, a4, a6 and a9 from data on B → h1h2

decays in the future. A consistent determination of these coefficients will greatly help
in developing a completely quantitative theory of non-leptonic B decays. Leaving out
a2 from this list, which depends significantly on Nc, we do not expect that the rest
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will be greatly modified by non-perturbative effects. It will be difficult to quantitatively
determine the smaller penguin coefficients not listed explicitly.

• We have proposed a number of ratios involving the decays B → h1h2, relating the final
states in which a pseudoscalar meson is replaced by a vector meson. They will help in
determining the form factors for the various decays considered here. While these relations
are derived in the factorization approach, perhaps their validity is more general.

• The current and impending interest in two-body non-leptonic decays for the CKM phe-
nomenology is illustrated, arguing that they provide potentially non-trivial constraints on
the CKM parameters. While ultimately not competitive to more precise determinations
of the CKM parameters from B0-B0 mixings and radiative and semileptonic B decays,
they are of current phenomenological interest as the constraints following from them are
already complementary to the ones from the CKM unitarity fits.

• Finally, within the factorization framework which gives an adequate account of the present
data on decay rates, it will be instructive to study direct and indirect CP violation in
all two-body non-leptonic B decays discussed here. We hope to return to this in a
forthcoming publication [75].
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A Matrix elements for B decays to two pseudo-scalar

mesons

(1) b→ d processes:

M(B̄0 → π−π+) = −iGF√
2
fπF

B→π
0 (m2

π)(m2
B −m2

π)

× {VubV
∗
uda1 − VtbV

∗
td[a4 + a10 + (a6 + a8)R1]} , (78)

with R1 = 2m2
π

(mb−mu)(mu+md)
.

M(B̄0 → π0π0) = i
GF√

2
fπF

B→π
0 (m2

π)(m2
B −m2

π) {VubV
∗
uda2

+VtbV
∗
td[a4 −

1

2
a10 +

3

2
a7 −

3

2
a9 + (a6 −

1

2
a8)R2]

}

, (79)

with R2 =
2m2

π0

(mb−md)(md+md)
. After squaring of the matrix element, the decay rate should be

divided by 2, for the symmetric factor of identical particles in the final states.

M(B− → π−π0) = −iGF

2
fπF

B→π
0 (m2

π)(m2
B −m2

π)

×
{

VubV
∗
ud(a1 + a2) − VtbV

∗
td ×

3

2
[a9 + a10 − a7 + a8R2]

}

. (80)
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M(B− → π−η(′)) = −iGF√
2
fπF

B→η(′)

0 (m2
π)(m2

B −m2
η(′)) {VubV

∗
uda1

−VtbV
∗
td[a4 + a10 + (a6 + a8)R1]} (81)

− i
GF√

2
fu

η(′)F
B→π
0 (m2

η(′))(m
2
B −m2

π)







VubV
∗
uda2 + VcbV

∗
cda2

f c
η(′)

fu
η(′)

−VtbV
∗
td



a4 −
1

2
a10 + 2a3 − 2a5 +

1

2
(a9 − a7) + (a6 −

1

2
a8)R

(′)
3



1 −
fu

η(′)

f s
η(′)





+(a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η(′)

fu
η(′)











,

with R
(′)
3 =

m2

η(′)

(mb−md)ms
. The definitions of the decay constants involving η and η′ are as follows:

〈0|ūγµγ5u|η(′)(p)〉 = ifu
η(′)pµ , 〈0|s̄γµγ5s|η(′)(p)〉 = if s

η(′)pµ , 〈0|c̄γµγ5c|η(′)(p)〉 = if c
η(′)pµ . (82)

The quantities fu
η(′) and f s

η(′) in the two-angle mixing formalism are:

fu
η′ =

f8√
6

sin θ8 +
f0√
3

cos θ0, f s
η′ = −2

f8√
6

sin θ8 +
f0√
3

cos θ0; (83)

fu
η =

f8√
6

cos θ8 −
f0√
3

sin θ0, f s
η = −2

f8√
6

cos θ8 −
f0√
3

sin θ0. (84)

We shall also need the matrix elements of the pseudoscalar densities for which we use the
following equations:

〈0|ūγ5u|η〉
〈0|s̄γ5s|η〉

=
fu

η

f s
η

,

〈0|ūγ5u|η′〉
〈0|s̄γ5s|η′〉

=
fu

η′

f s
η′

, (85)

which differ from the corresponding equations in [76], which have been sometimes used in the
literature. In the approximation of setting f8 = f0, and θ8 = θ0, the relations given above,
however, agree with the results derived in [77]. The results for the densities 〈0|s̄γ5s|η′〉 and
〈0|s̄γ5s|η〉 have been derived in [27] which we use here:

〈0|s̄γ5s|η′〉 = −i
(f s

η′ − fu
η′)m2

η′

2ms

,

〈0|s̄γ5s|η〉 = −i(f
s
η − fu

η )m2
η

2ms

. (86)

We point out that the anomaly contributions have been taken into account in deriving these
expressions. They are numerically important. The relevant form factors for the B → η′ and
B → η transitions are:

FB→η′

0,1 = F π
0,1

(

sin θ8√
6

+
cos θ0√

3

)

, FB→η
0,1 = F π

0,1

(

cos θ8√
6

− sin θ0√
3

)

. (87)
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The mixing angles that we have used in the numerical calculations are θ8 = −22.2◦, θ0 = −9.1◦

[71].

M(B̄0 → π0η(′)) = −iGF

2
fπF

B→η(′)

0 (m2
π)(m2

B −m2
η(′)) {VubV

∗
uda2

−VtbV
∗
td

[

−a4 +
1

2
a10 + (−a6 +

1

2
a8)R2 +

3

2
(a9 − a7)

]}

(88)

+ i
GF

2
fu

η(′)F
B→π
0 (m2

η(′))(m
2
B −m2

π)







VubV
∗
uda2 + VcbV

∗
cda2

f c
η(′)

fu
η(′)

−VtbV
∗
td



a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)R

(′)
3



1 −
fu

η(′)

f s
η(′)





+(a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η(′)

fu
η(′)











.

M(B̄0 → ηη′) = −iGF√
2
fu

η F
B→η′

0 (m2
η)(m

2
B −m2

η′)

{

VubV
∗
uda2 + VcbV

∗
cda2

f c
η

fu
η

(89)

−VtbV
∗
td

[

a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)R3

(

1 −
fu

η

f s
η

)

+(a3 − a5 + a9 − a7)
f c

η

fu
η

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η

fu
η

]}

− i
GF√

2
fu

η′F
B→η
0 (m2

η′)(m2
B −m2

η)

{

VubV
∗
uda2 + VcbV

∗
cda2

f c
η′

fu
η′

−VtbV
∗
td

[

a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)R

′
3

(

1 − fu
η′

f s
η′

)

+(a3 − a5 + a9 − a7)
f c

η′

fu
η′

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η′

fu
η′

]}

.

M(B̄0 → η′η′) = −i2GF√
2
fu

η′F
B→η′

0 (m2
η′)(m2

B −m2
η′)

{

VubV
∗
uda2 + VcbV

∗
cda2

f c
η′

fu
η′

(90)

− VtbV
∗
td

[

a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)R

′
3

(

1 −
fu

η′

f s
η′

)

+(a3 − a5 + a9 − a7)
f c

η′

fu
η′

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η′

fu
η′

]}

.

The matrix elements for M(B̄0 → ηη) are the same with the above equation with η′ → η.
(2) b→ s processes:

M(B̄0 → K−π+) = −iGF√
2
fKF

B→π
0 (m2

K)(m2
B −m2

π)

× {VubV
∗
usa1 − VtbV

∗
ts[a4 + a10 + (a6 + a8)R4]} , (91)

50



with R4 =
2m2

K

(mb−mu)(mu+ms)
.

M(B̄0 → K̄0π0) = −iGF

2
fKF

B→π
0 (m2

K)(m2
B −m2

π)VtbV
∗
ts

[

a4 −
1

2
a10 + (a6 −

1

2
a8)R5

]

(92)

− i
GF

2
fπF

B→K
0 (m2

π)(m2
B −m2

K)
{

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 − a7)

}

,

with R5 =
2m2

K0

(mb−md)(md+ms)
.

M(B− → K−π0) = −iGF

2
fKF

B→π
0 (m2

K)(m2
B −m2

π) {VubV
∗
usa1

−VtbV
∗
ts[a4 + a10 + (a6 + a8)R4]} (93)

− i
GF

2
fπF

B→K
0 (m2

π)(m2
B −m2

K)
{

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 − a7)

}

.

M(B− → K−η(′)) = −iGF√
2
fKF

B→η(′)

0 (m2
K)(m2

B −m2
η(′)) {VubV

∗
usa1

−VtbV
∗
ts[a4 + a10 + (a6 + a8)R4]} (94)

− i
GF√

2
fu

η(′)F
B→K
0 (m2

η(′))(m
2
B −m2

K)







VubV
∗
usa2 + VcbV

∗
csa2

f c
η(′)

fu
η(′)

−VtbV
∗
ts

[

2a3 − 2a5 +
1

2
(a9 − a7) − (a6 −

1

2
a8)R

(′)
6

+ (a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+

(

a3 − a5 + a4 +
1

2
(a7 − a9 − a10) + (a6 −

1

2
a8)R

(′)
6

) f s
η(′)

fu
η(′)











,

with R
(′)
6 =

2m2

η(′)

(mb−ms)(ms+ms)
.

M(B̄0 → K̄0η(′)) = i
GF√

2
fKF

B→η(′)

0 (m2
K)(m2

B −m2
η(′))VtbV

∗
ts

[

a4 −
1

2
a10 + (a6 −

1

2
a8)R5

]

− i
GF√

2
fu

η(′)F
B→K
0 (m2

η(′))(m
2
B −m2

K)







VubV
∗
usa2 + VcbV

∗
csa2

f c
η(′)

fu
η(′)

−VtbV
∗
ts

[

2a3 − 2a5 +
1

2
(a9 − a7) − (a6 −

1

2
a8)R

(′)
6 (95)

+ (a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+

(

a3 − a5 + a4 +
1

2
(a7 − a9 − a10) + (a6 −

1

2
a8)R

(′)
6

) f s
η(′)

fu
η(′)











.
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(3) Pure penguin processes:

M(B− → π−K̄0) = i
GF√

2
fKF

B→π
0 (m2

K)(m2
B −m2

π)VtbV
∗
ts

{

a4 −
1

2
a10 + (a6 −

1

2
a8)R5

}

. (96)

M(B− → K−K0) = i
GF√

2
fKF

B→K
0 (m2

K0)(m2
B −m2

K)VtbV
∗
td

{

a4 −
1

2
a10 + (a6 −

1

2
a8)R7

}

, (97)

with R7 =
2m2

K0

(mb−ms)(md+ms)
.

M(B̄0 → K0K̄0) = i
GF√

2
fKF

B→K
0 (m2

K0)(m2
B −m2

K0)VtbV
∗
td

{

a4 −
1

2
a10 + (a6 −

1

2
a8)R7

}

. (98)

B Matrix elements for B decays to a vector and a pseudo-

scalar meson

(1) b→ d processes:

M(B̄0 → ρ−π+) =
√

2GFfρF
B→π
1 (m2

ρ)mρ(ǫ · pπ) {VubV
∗
uda1 − VtbV

∗
td[a4 + a10]} . (99)

M(B̄0 → ρ+π−) =
√

2GFfπA
B→ρ
0 (m2

π)mρ(ǫ · pπ) {VubV
∗
uda1

−VtbV
∗
td[a4 + a10 + (a6 + a8)Q1]} , (100)

with Q1 = −2m2
π

(mb+mu)(mu+md)
.

M(B̄0 → π0ρ0) = −GF√
2
mρ(ǫ · pπ)

(

fπA
B→ρ
0 (m2

π) {VubV
∗
uda2

+VtbV
∗
td

[

a4 −
1

2
a10 + (a6 −

1

2
a8)Q2 +

3

2
(a7 − a9)

]}

(101)

+ fρF
B→π
1 (m2

ρ)
{

VubV
∗
uda2 + VtbV

∗
td[a4 −

1

2
a10 −

3

2
(a7 + a9)]

})

,

with Q2 =
−2m2

π0

(mb+md)(md+md)
.

M(B− → π−ρ0) = GFmρ(ǫ · pπ)
(

fπA
B→ρ
0 (m2

π) {VubV
∗
uda1 − VtbV

∗
td[a4 + a10 + (a6 + a8)Q1]}

+ fρF
B→π
1 (m2

ρ)
{

VubV
∗
uda2 − VtbV

∗
td[−a4 +

1

2
a10 +

3

2
(a7 + a9)]

})

. (102)

M(B− → ρ−π0) = GFmρ(ǫ · pπ)
(

fπA
B→ρ
0 (m2

π)
{

VubV
∗
uda2 − VtbV

∗
td

[

−a4 +
1

2
a10

+(−a6 +
1

2
a8)Q2 +

3

2
(a9 − a7)

]}

+ fρF
B→π
1 (m2

ρ) {VubV
∗
uda1 − VtbV

∗
td[a4 + a10]}

)

. (103)
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M(B̄0 → π0ω) =
GF√

2
mω(ǫ · pπ)

(

fπA
B→ω
0 (m2

π) {VubV
∗
uda2

−VtbV
∗
td

[

−a4 +
1

2
a10 + (

1

2
a8 − a6)Q2 +

3

2
(a9 − a7)

]}

− fωF
B→π
1 (m2

ω) {VubV
∗
uda2

−VtbV
∗
td

[

a4 + 2(a3 + a5) +
1

2
(a7 + a9 − a10)

]})

. (104)

M(B− → π−ω) = GFmω(ǫ · pπ)
(

fπA
B→ω
0 (m2

π) {VubV
∗
uda1 − VtbV

∗
td[a4 + a10 + (a6 + a8)Q1]}

+ fωF
B→π
1 (m2

ω) {VubV
∗
uda2

−VtbV
∗
td

[

a4 + 2(a3 + a5) +
1

2
(a7 + a9 − a10)

]})

. (105)

M(B− → ρ−η(′)) =
√

2GFmρ(ǫ · pη(′))
(

fρF
B→η(′)

1 (m2
ρ) {VubV

∗
uda1 − VtbV

∗
td[a4 + a10]}

+ fu
η(′)A

B→ρ
0 (m2

η(′))







VubV
∗
uda2 + VcbV

∗
cda2

f c
η(′)

fu
η(′)

−VtbV
∗
td



a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)Q

(′)
3



1 −
fu

η(′)

f s
η(′)





+(a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η(′)

fu
η(′)













 , (106)

where Q
(′)
3 = −

m2

η(′)

ms(mb+md)
.

M(B̄0 → ρ0η(′)) = GFmρ(ǫ · pη(′))
(

fρF
B→η(′)

1 (m2
ρ) {VubV

∗
uda2

−VtbV
∗
td

[

−a4 +
1

2
a10 +

3

2
(a9 + a7)

]}

− fu
η(′)A

B→ρ
0 (m2

η(′))







VubV
∗
uda2 + VcbV

∗
cda2

f c
η(′)

fu
η(′)

−VtbV
∗
td



a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)Q

(′)
3



1 −
fu

η(′)

f s
η(′)





+(a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η(′)

fu
η(′)













 . (107)

M(B̄0 → ωη(′)) = GFmω(ǫ · pη(′))
(

fωF
B→η(′)

1 (m2
ω) {VubV

∗
uda2
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−VtbV
∗
td

[

a4 + 2(a3 + a5) +
1

2
(a7 + a9 − a10)

]}

+ fu
η(′)A

B→ω
0 (m2

η(′))







VubV
∗
uda2 + VcbV

∗
cda2

f c
η(′)

fu
η(′)

−VtbV
∗
td



a4 + 2a3 − 2a5 +
1

2
(a9 − a7 − a10) + (a6 −

1

2
a8)Q

(′)
3



1 −
fu

η(′)

f s
η(′)





+(a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+
(

a3 − a5 −
1

2
(a9 − a7)

) f s
η(′)

fu
η(′)













 . (108)

(2) b→ s processes:

M(B̄0 → K∗−π+) =
√

2GFfK∗FB→π
1 (m2

K∗)mK∗(ǫ · pπ) {VubV
∗
usa1 − VtbV

∗
ts[a4 + a10]} . (109)

M(B̄0 → K−ρ+) =
√

2GFfKA
B→ρ
0 (m2

K)mρ(ǫ · pK) {VubV
∗
usa1

−VtbV
∗
ts[a4 + a10 + (a6 + a8)Q4]} , (110)

with Q4 =
−2m2

K

(mb+mu)(mu+ms)
.

M(B̄0 → K̄∗0π0) = GFmK∗0(ǫ · pπ)
{

fπA
B→K∗

0 (m2
π)
[

VubV
∗
usa2 − VtbV

∗
ts

3

2
(a9 − a7)

]

+ fK∗FB→π
1 (m2

K∗0)VtbV
∗
ts

[

a4 −
1

2
a10

]}

. (111)

M(B̄0 → K̄0ρ0) = GFmρ(ǫ · pK)
{

fKA
B→ρ
0 (m2

K0)VtbV
∗
ts

[

a4 −
1

2
a10 + (a6 −

1

2
a8)Q5

]

+ fρF
B→K
1 (m2

ρ)
[

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 + a7)

]}

, (112)

with Q5 =
−2m2

K0

(mb+md)(md+ms)
.

M(B− → K∗−π0) = GFmK∗(ǫ · pπ)
[

fπA
B→K∗

0 (m2
π)
{

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 − a7)

}

+ fK∗FB→π
1 (m2

K∗) {VubV
∗
usa1 − VtbV

∗
ts(a4 + a10)}

]

. (113)

M(B− → K−ρ0) = GFmρ(ǫ · pK)
[

fKA
B→ρ
0 (m2

K) {VubV
∗
usa1

−VtbV
∗
ts[a4 + a10 + (a6 + a8)Q4]} (114)

+ fρF
B→K
1 (m2

ρ)
{

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 + a7)

}]

.
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M(B̄0 → K̄0ω) = GFmω(ǫ · pK)
(

−fKA
B→ω
0 (m2

K0)VtbV
∗
ts

[

a4 −
1

2
a10 + (a6 −

1

2
a8)Q5

]

+ fωF
B→K
1 (m2

ω) {VubV
∗
usa2

−VtbV
∗
ts

[

2(a3 + a5) +
1

2
(a9 + a7)

]})

. (115)

M(B− → K−ω) = GFmω(ǫ · pK)
[

fKA
B→ω
0 (m2

K) {VubV
∗
usa1

−VtbV
∗
ts(a4 + a10 + (a6 + a8)Q4)} (116)

+ fωF
B→K
1 (m2

ω)
{

VubV
∗
usa2 − VtbV

∗
ts

(

2(a3 + a5) +
1

2
(a9 + a7)

)}]

.

M(B− → K∗−η(′)) =
√

2GFmK∗(ǫ · pB)
(

fK∗FB→η(′)

1 (m2
K) {VubV

∗
usa1 − VtbV

∗
ts(a4 + a10)}

+ fu
η(′)A

B→K∗

0 (m2
η(′))







VubV
∗
usa2 + VcbV

∗
csa2

f c
η(′)

fu
η(′)

−VtbV
∗
ts

[

2(a3 − a5) +
1

2
(a9 − a7) − (a6 −

1

2
a8)Q

(′)
6 (117)

+ (a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+

(

a3 − a5 −
1

2
(a9 − a7) + a4 −

1

2
a10 + (a6 −

1

2
a8)Q

(′)
6

) f s
η(′)

fu
η(′)













 ,

with Q
(′)
6 = −

2m2

η(′)

(mb+ms)(ms+ms)
.

M(B̄0 → K̄∗0η(′)) =
√

2GFmK∗(ǫ · pB)
(

−fK∗FB→η(′)

1 (m2
K)VtbV

∗
ts

[

a4 −
1

2
a10

]

+ fu
η(′)A

B→K∗

0 (m2
η(′))







VubV
∗
usa2 + VcbV

∗
csa2

f c
η(′)

fu
η(′)

−VtbV
∗
ts

[

2(a3 − a5) +
1

2
(a9 − a7) − (a6 −

1

2
a8)Q

(′)
6 + (118)

+ (a3 − a5 + a9 − a7)
f c

η(′)

fu
η(′)

+

(

a3 − a5 −
1

2
(a9 − a7) + a4 −

1

2
a10 + (a6 −

1

2
a8)Q

(′)
6

) f s
η(′)

fu
η(′)













 .

(3) Pure penguin processes:

M(B− → π−K̄∗0) = −
√

2GFfK∗FB→π
1 (m2

K∗)mK∗(ǫ · pπ)VtbV
∗
ts

[

a4 −
1

2
a10

]

. (119)
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M(B− → ρ−K̄0) = −
√

2GFfKA
B→ρ
0 (m2

K0)mρ(ǫ ·pK)VtbV
∗
ts

[

a4 −
1

2
a10 + (a6 −

1

2
a8)Q5

]

. (120)

M(B− → K−K∗0) =

M(B̄0 → K̄0K∗0) = −
√

2GFfK∗FB→K
1 (m2

K∗)mK∗(ǫ · pK)VtbV
∗
td

[

a4 −
1

2
a10

]

. (121)

M(B− → K∗−K0) =

M(B̄0 → K̄∗0K0) = −
√

2GFfKA
B→K∗

0 (m2
K0)mK∗(ǫ · pK)

× VtbV
∗
td

[

a4 −
1

2
a10 + (a6 −

1

2
a8)Q7

]

, (122)

with Q7 =
−2m2

K0

(mb+ms)(md+ms)
.

M(B̄0 → π0φ) = GFfφF
B→π
1 (m2

φ)mφ(ǫ · pπ)VtbV
∗
td

{

a3 + a5 −
1

2
(a7 + a9)

}

. (123)

M(B− → π−φ) = −
√

2M(B̄0 → π0φ). (124)

M(B̄0 → η(′)φ) = −
√

2GFfφF
B→η(′)

1 (m2
φ)mφ(ǫ · p(′)

η )VtbV
∗
td

{

a3 + a5 −
1

2
(a7 + a9)

}

. (125)

M(B− → K−φ) =

M(B̄0 → K̄0φ) = −
√

2GFfφF
B→K
1 (m2

φ)mφ(ǫ · pK)VtbV
∗
ts

×
{

a3 + a4 + a5 −
1

2
(a7 + a9 + a10)

}

. (126)

C Matrix elements for B decays to two vector mesons

(1) b→ d processes:

M(B̄0 → ρ−ρ+) = −iGF√
2
fρmρ

{

(ǫ+ · ǫ−)(mB +mρ)A
B→ρ
1 (m2

ρ)

−(ǫ+ · pB)(ǫ− · pB)
2AB→ρ

2 (m2
ρ)

(mB +mρ)
− iǫµναβǫ

µ
−ǫ

ν
+p

α
Bp

β
+

2V B→ρ(m2
ρ)

(mB +mρ)







× {VubV
∗
uda1 − VtbV

∗
td[a4 + a10]} . (127)

56



M(B̄0 → ρ0ρ0) = i
GF√

2
fρmρ

{

(ǫ1 · ǫ2)(mB +mρ)A
B→ρ
1 (m2

ρ)

−(ǫ1 · pB)(ǫ2 · pB)
2AB→ρ

2 (m2
ρ)

(mB +mρ)
− iǫµναβǫ

µ
1ǫ

ν
2p

α
Bp

β
2

2V B→ρ(m2
ρ)

(mB +mρ)







×
{

VubV
∗
uda2 + VtbV

∗
td[a4 −

1

2
a10 −

3

2
a7 −

3

2
a9]
}

. (128)

M(B− → ρ−ρ0) = −iGF

2
fρmρ

[

(ǫ0 · ǫ−)(mB +mρ)A
B→ρ
1 (m2

ρ)

−(ǫ0 · pB)(ǫ− · pB)
2AB→ρ

2 (m2
ρ)

(mB +mρ)
− iǫµναβǫ

µ
−ǫ

ν
0p

α
Bp

β
0

2V B→ρ(m2
ρ)

(mB +mρ)





×
{

VubV
∗
ud(a1 + a2) − VtbV

∗
td ×

3

2
[a7 + a9 + a10]

}

. (129)

M(B̄0 → ωω) = −iGF√
2
fωmω

{

(ǫ1 · ǫ2)(mB +mω)AB→ω
1 (m2

ω)

−(ǫ1 · pB)(ǫ2 · pB)
2AB→ω

2 (m2
ω)

(mB +mω)
− iǫµναβǫ

µ
1ǫ

ν
2p

α
Bp

β
2

2V B→ω(m2
ω)

(mB +mω)

}

×
{

VubV
∗
uda2 − VtbV

∗
td[a4 + 2(a3 + a5) +

1

2
(a7 + a9 − a10)]

}

. (130)

M(B̄0 → ρ0ω) = −i GF

2
√

2
fρmρ

{

(ǫ0 · ǫω)(mB +mω)AB→ω
1 (m2

ρ)

−(ǫ0 · pB)(ǫω · pB)
2AB→ω

2 (m2
ρ)

(mB +mω)
− iǫµναβǫ

µ
0ǫ

ν
ωp

α
Bp

β
ω

2V B→ω(m2
ρ)

(mB +mω)

}

×
{

VubV
∗
uda2 − VtbV

∗
td[−a4 +

1

2
a10 +

3

2
(a7 + a9)]

}

+ i
GF

2
√

2
fωmω

{

(ǫ0 · ǫω)(mB +mρ)A
B→ρ
1 (m2

ω)

−(ǫ0 · pB)(ǫω · pB)
2AB→ρ

2 (m2
ω)

(mB +mρ)
− iǫµναβǫ

µ
ωǫ

ν
0p

α
Bp

β
−

2V B→ρ(m2
ω)

(mB +mρ)

}

×
{

VubV
∗
uda2 − VtbV

∗
td[a4 + 2(a3 + a5) +

1

2
[a7 + a9 − a10]

}

. (131)

M(B− → ρ−ω) = −iGF

2
fρmρ

{

(ǫ0 · ǫ−)(mB +mω)AB→ω
1 (m2

ρ)

−(ǫ0 · pB)(ǫ− · pB)
2AB→ω

2 (m2
ρ)

(mB +mω)
− iǫµναβǫ

µ
−ǫ

ν
0p

α
Bp

β
ω

2V B→ω(m2
ρ)

(mB +mω)

}
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× {VubV
∗
uda1 − VtbV

∗
td[a4 + a10]}

− i
GF

2
fωmω

{

(ǫ0 · ǫ−)(mB +mρ)A
B→ρ
1 (m2

ω)

−(ǫ0 · pB)(ǫ− · pB)
2AB→ρ

2 (m2
ω)

(mB +mρ)
− iǫµναβǫ

µ
0ǫ

ν
−p

α
Bp

β
−

2V B→ρ(m2
ω)

(mB +mρ)

}

×
{

VubV
∗
uda2 − VtbV

∗
td

[

a4 + 2(a3 + a5) +
1

2
(a7 + a9 − a10)

]}

. (132)

(2) b→ s processes:

M(B̄0 → K∗−ρ+) = −iGF√
2
fK∗mK∗

{

(ǫ+ · ǫ−)(mB +mρ)A
B→ρ
1 (m2

K∗)

−(ǫ+ · pB)(ǫ− · pB)
2AB→ρ

2 (m2
K∗)

(mB +mρ)

−iǫµναβǫ
µ
−ǫ

ν
+p

α
Bp

β
+

2V B→ρ(m2
K∗)

(mB +mρ)

}

× {VubV
∗
usa1 − VtbV

∗
ts[a4 + a10]} . (133)

M(B̄0 → K̄∗0ρ0) = −iGF

2
fρmρ

{

(ǫρ · ǫK)(mB +mK∗)AB→K∗

1 (m2
ρ)

−(ǫρ · pB)(ǫK · pB)
2AB→K∗

2 (m2
ρ)

(mB +mK∗)
− iǫµναβǫ

µ
ρǫ

ν
Kp

α
Bp

β
K

2V B→K∗

(m2
ρ)

(mB +mK∗)

}

×
{

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 + a7)

}

− i
GF

2
fK∗mK∗

{

(ǫρ · ǫK)(mB +mρ)A
B→ρ
1 (m2

K∗)

−(ǫρ · pB)(ǫK · pB)
2AB→ρ

2 (m2
K∗)

(mB +mρ)
− iǫµναβǫ

µ
Kǫ

ν
ρp

α
Bp

β
ρ

2V B→ρ(m2
K∗)

(mB +mρ)

}

× VtbV
∗
ts

[

a4 −
1

2
a10

]

. (134)

M(B− → K∗−ρ0) = −iGF

2
fρmρ

{

(ǫ0 · ǫ−)(mB +mK∗)AB→K∗

1 (m2
ρ)

−(ǫ0 · pB)(ǫ− · pB)
2AB→K∗

2 (m2
ρ)

(mB +mK∗)
− iǫµναβǫ

µ
0ǫ

ν
−p

α
Bp

β
−

2V B→K∗

(m2
ρ)

(mB +mK∗)

}

×
{

VubV
∗
usa2 − VtbV

∗
ts ×

3

2
(a9 + a7)

}

(135)

− i
GF

2
fK∗mK∗

{

(ǫ0 · ǫ−)(mB +mρ)A
B→ρ
1 (m2

K∗)

−(ǫ0 · pB)(ǫ− · pB)
2AB→ρ

2 (m2
K∗)

(mB +mρ)
− iǫµναβǫ

µ
−ǫ

ν
0p

α
Bp

β
0

2V B→ρ(m2
K∗)

(mB +mρ)

}

× {VubV
∗
usa1 − VtbV

∗
ts[a4 + a10]} .
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M(B̄0 → K̄∗0ω) = −iGF

2
fK∗mK∗0

{

(ǫ0 · ǫω)(mB +mω)AB→ω
1 (m2

K∗0)

−(ǫ0 · pB)(ǫω · pB)
2AB→ω

2 (m2
K∗)

(mB +mω)
− iǫµναβǫ

µ
0ǫ

ν
ωp

α
Bp

β
0

2V B→ω(m2
K∗)

(mB +mω)

}

× VtbV
∗
ts[−a4 +

1

2
a10]

− i
GF

2
fωmω

{

(ǫ0 · ǫω)(mB +mK∗)AB→K∗

1 (m2
ω)

−(ǫ0 · pB)(ǫω · pB)
2AB→K∗

2 (m2
ω)

(mB +mK∗)
− iǫµναβǫ

µ
ωǫ

ν
0p

α
Bp

β
−

2V B→K∗

(m2
ω)

(mB +mK∗)

}

×
{

VubV
∗
usa2 − VtbV

∗
ts[2(a3 + a5) +

1

2
(a9 + a7)

}

. (136)

M(B− → K∗−ω) = −iGF

2
fK∗mK∗

{

(ǫ0 · ǫ−)(mB +mω)AB→ω
1 (m2

K∗)

−(ǫ0 · pB)(ǫ− · pB)
2AB→ω

2 (m2
K∗)

(mB +mω)
− iǫµναβǫ

µ
−ǫ

ν
0p

α
Bp

β
0

2V B→ω(m2
K∗)

(mB +mω)

}

× {VubV
∗
usa1 − VtbV

∗
ts[a4 + a10]}

− i
GF

2
fωmω

{

(ǫ0 · ǫ−)(mB +mK∗)AB→K∗

1 (m2
ω)

−(ǫ0 · pB)(ǫ− · pB)
2AB→K∗

2 (m2
ω)

(mB +mK∗)
− iǫµναβǫ

µ
0ǫ

ν
−p

α
Bp

β
−

2V B→K∗

(m2
ω)

(mB +mK∗)

}

×
{

VubV
∗
usa2 − VtbV

∗
ts[2(a3 + a5) +

1

2
(a9 + a7)

}

. (137)

(3) Pure penguin processes:

M(B− → ρ−K̄∗0) = i
GF√

2
fK∗mK∗

{

(ǫρ · ǫK)(mB +mρ)A
B→ρ
1 (m2

K∗)

−(ǫρ · pB)(ǫK · pB)
2AB→ρ

2 (m2
K∗)

(mB +mρ)

−iǫµναβǫ
µ
Kǫ

ν
ρp

α
Bp

β
ρ

2V B→ρ(m2
K∗)

(mB +mρ)

}

VtbV
∗
ts

{

a4 −
1

2
a10

}

. (138)

M(B̄0 → ωφ) = i
GF

2
fφmφ

{

(ǫφ · ǫω)(mB +mω)AB→ω
1 (m2

φ)

−(ǫφ · pB)(ǫω · pB)
2AB→ω

2 (m2
φ)

(mB +mω)

−iǫµναβǫ
µ
φǫ

ν
ωp

α
Bp

β
ω

2V B→ω(m2
φ)

(mB +mω)

}

× VtbV
∗
td

{

a3 + a5 −
1

2
(a7 + a9)

}

. (139)
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M(B̄0 → ρ0φ) = −iGF

2
fφmφ

{

(ǫφ · ǫρ)(mB +mρ)A
B→ρ
1 (m2

φ)

−(ǫφ · pB)(ǫρ · pB)
2AB→ρ

2 (m2
φ)

(mB +mρ)

−iǫµναβǫ
µ
φǫ

ν
ρp

α
Bp

β
ρ

2V B→ρ(m2
φ)

(mB +mρ)

}

× VtbV
∗
td

{

a3 + a5 −
1

2
(a7 + a9)

}

. (140)

M(B− → ρ−φ) = −
√

2M(B̄0 → ρ0φ). (141)

M(B− → K∗−φ) =

M(B̄0 → K̄∗0φ) = i
GF√

2
fφmφ

{

(ǫφ · ǫK)(mB +mK∗)AB→K∗

1 (m2
φ)

−(ǫφ · pB)(ǫK · pB)
2AB→K∗

2 (m2
φ)

(mB +mK∗)

−iǫµναβǫ
µ
φǫ

ν
Kp

α
Bp

β
K

2V B→K∗

(m2
φ)

(mB +mK∗)

}

× VtbV
∗
ts

{

a3 + a4 + a5 −
1

2
(a7 + a9 + a10)

}

. (142)

M(B− → K∗−K∗0) =

M(B̄0 → K∗0K̄∗0) = i
GF√

2
fK∗mK∗

{

(ǫ1 · ǫ2)(mB +mK∗)AB→K∗

1 (m2
K∗)

−(ǫ1 · pB)(ǫ2 · pB)
2AB→K∗

2 (m2
K∗)

(mB +mK∗)

−iǫµναβǫ
µ
1ǫ

ν
2p

α
Bp

β
2

2V B→K∗

(m2
K∗)

(mB +mK∗)

}

VtbV
∗
td

{

a4 −
1

2
a10

}

. (143)
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