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Abstract: This paper examines the dynamic behaviour of timber framed buildings under wind and 

dynamic loads, focusing on the role of connections being experimentally tested. The main aim of 

this manuscript is to analyze the in-service dynamic behaviour of a semi-rigid moment-resisting 

dowel-type connection between timber beam and column. For this purpose, two laboratory tests 

have been performed, the first on a connection and another one on a portal frame. The results are 

used to validate a numerical model of the simple portal frame, analyzed in OpenSees. The obtained 

relationships are also discussed and compared with Eurocode rules. The main result is that the joint 

stiffness is calculated through the Eurocode (EC) formulation underestimates the experimental one. 

A mutual agreement is obtained between the numerical model, validated from the experimental 

stiffness value for the connections, and the experimental results on the portal frame. 
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1. Introduction 

Wind-induced vibrations reveal to be an important design aspect when dealing with timber 

structures due to their low mass. A deeper knowledge about the connection behaviour is necessary 

to face this issue. Connections play a significant role on structural stiffness and damping, and the lack 

of information about their in-service dynamic vibrations challenges designers. The connections in 

timber structures are often designed by using dowel-type connections and they make a significant 

contribution to the overall structural stiffness. 

Many researchers have experimentally studied dowel type connections, focusing their attention 

on single dowel connection axially loaded (parallel to the grain direction) [1,2]. Beam-to-column 

moment resisting dowel type connections have also been tested to achieve a better knowledge about 

the rotational stiffness of the joint [3–5]. Dynamic properties of dowelled connections have been 

investigated through cyclic load tests [6,7], showing their contribution to damping in a complete 

structure. Analytical models can be used to predict in-service stiffness as well as the frictional energy 

dissipation in embedment [8–12]. Eurocode 5 [13] provides rules for calculating the slip modulus 

(���� ), which can be used to assess the connection stiffness appropriate to static loading under 

serviceability limit state. Incidentally, the importance of dissipation due to friction has also been 

analytically and experimentally demonstrated for the collapse failures of masonry structures, by 

means of a rigid-plastic orthotropic damage model [14–17]. For such structures in a dynamic 

perspective, the dissipation due to the impact between rigid surfaces also plays an important role 

[18,19]. 
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Moreover, the semi-rigid connection stiffness required for modelling and predicting the in-

service dynamic behaviour of dowel-type connections is different from the stiffness required for static 

loading [7]. Furthermore, ����  is empirically determined, independent of the geometry of the 

connection, relying only on the diameter of the connector and the timber density. The nonlinearity 

resulting from ductile connections makes their modelling difficult. Many numerical models have 

been developed to simulate such a behaviour [20-22] based on the mechanical parameters that play 

significant roles in the connection. Validation of the model through experimental campaign can be 

done in order to compare test data to model prediction [23]. 

This study aims at the evaluation of the in-service stiffness of a beam-to-column moment-

resisting 4 × 4 dowel-type connection through experimental tests and numerical analysis. 

Figure 1 shows the connection that is analyzed in this work. This connection is then included in 

a 1500 mm × 1500 mm symmetric portal frame. Localized phenomena (at connection level) are then 

investigated through a full scale specimen, whereas the global elastic response is simulated at a model 

scale of 1:2. Indeed, at reduced scales, the prototype response cannot be properly reproduced [24]. 

For that reason, and to avoid the potentially inaccurate scaling of results, the connection to test have 

been designed with medium-large connectors (full scale specimen). 

 
(a) 

 
(b) 

Figure 1. Dowel type connection: (a) beam-column joint; (b) joint layout (all lengths are in mm). 

The single connection is firstly statically tested (Section 2), and its influence on a simple portal 

frame is estimated with a vibration test (Section 3). Here, the dynamic characteristics of the structure 

are obtained by means of a MATLAB [25] script based on the Matrix Pencil Algorithm (MP 

Algorithm) [26]. Experimental results are applied in Section 4 on a three-dimensional (3D) portal 

frame modelled in OpenSees [27]. Both modal and time-history analysis are performed and results are 

compared to the experimental outcomes. 

2. Connection Test 

2.1. Experimental Test Set-Up 

Two experiments were performed in the laboratory at the University of Bath: a static test on a 

typical steel-timber connection with 4 + 4 dowels (Figure 2a) and a non-destructive vibration test on 

a symmetric portal frame 1500 mm × 1500 mm (Figure 2b). The joint was cut off from the frame once 

the vibration test had been performed. 
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(a) (b) 

Figure 2. Laboratory specimens: (a) steel-timber connection; (b) 1500 mm × 1500 mm portal frame—

all lengths in mm. 

Each member has cross section of 140 mm × 300 mm (Figure 2b) and the material is whitewood 

glulam of grade GL-24h, as defined in EN 1408 [28]. The steel plate slotted in the timber elements 

links two different connections: a four-dowel connection on the column and a four-dowel connection 

on the beam. The steel grade is S235, with 8 mm-thick plates and 16 mm diameter holes 

accommodating the steel dowels. 16 mm diameter holes have been drilled into the timber members. 

The fasteners are of S235 grade and have a diameter of 16 mm so to fit tight into the holes. Beams 

and columns were cut with an angle of 45° and the specimen was vertically loaded so to induce a 

bending moment in the joint (Figure 3a,b). The connection was statically loaded through Instron 2000 

kN Universal Testing Machine in displacement-control (∆
 =  3 mm/min). Two transducers fixed at 

the column measured the relative column-beam displacement of the joint in two points 

spanned 140 mm, placed symmetrically to the beam axes (Figure 2a). The corresponding angular 

deformation can be easily found through the following equation:  

��rad� =  tan��(������ ), (1)

where !� and !" are the relative displacements from the two sensors in the direction of the beam 

axes (Figure 3c) and # is the distance between the two reference points (240 mm). The corresponding 

moment is evaluated as: 

$ = %& ∙ (, (2) 

where %& = %/√2 is the component of the force that is applied by the loading machine orthogonal to 

the axes of the beam and ( = 610 mm is the distance between the loading point and the centroid of 

the group of dowels of the column side, which is considered as the rotation center of the joint (Figure 

3c).  
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(a) (b) (c) 

Figure 3. Experimental set-up: (a) machinery used for connection test; (b) joint under static monotonic 

test; and, (c) graphic display of angular deformation. 

2.2. Static Behaviour of the Joint 

The static test performed on the joint allowed to obtain the moment-rotation diagram shown in 

Figure 4a.  

 

 
(a) (b) 

Figure 4. Connection test results: (a) moment-rotation diagram of the dowelled connection; (b) 

connection specimen at failure. 

The examined diagram (Figure 4a) displays the whole failure load path from the beginning up 

to the maximum load when the cracks on the timber member become clearly visible and the test is 

interrupted (Figure 4b). The connection shows lower stiffness at the beginning of the loading process. 

Higher stiffness was not attained up to a load of 2.5 KNm . Dorn [1] argues that this initial 

consolidation is probably caused by imperfect contact between dowel and wood, which results from 

geometric roughness of the specimen in the contact zone as well as from imperfections of the contact 

surfaces. During the phase that directly follows the consolidation process at about 0.005 rad (Figure 
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4a), the maximum stiffness of the connection is attained. Even though perfect linearity is not 

observed, an approximation by a straight line is possible over a short section to obtain an approximate 

stiffness value. 

The approximate stiffness value is later used to validate the numerical model in Section 4. A 

‘sawtooth’ path is visible since the first stages of loading path. This is supposed to be caused by 

invisible cracks that are occurring inside the connection since low load. When the load increases 

(about 11 kNm), the stiffness dramatically decreases and a softening behaviour is observed in the 

load-displacement curve. Once the moment attains a value of 15 kNm, a steep increasing of the 

stiffness can be seen. This atypical behaviour is because of the contact that occurred between member 

surfaces at bottom-side (Figure 3b). The center of rotation of both connections shifts resulting in 

different angles to the grain. Another non-linear path can be shown until the bending moment arrives 

to about 30 kNm . Here, cracking strongly occurs in part of the wood matrix that reaches the 

compression strength and plastic deformations. The stiffness sensitively decreases until the 

maximum load is attained (37.68 kNm). A yield plateau is visible at the final stage and a maximum 

rotation of 0.107 rad (6.13°) is obtained. At the end of the test, final failure occurred, resulting in a 

sudden load reduction (Figure 4a). Brittle failure is reached because maximum tension forces are 

attained perpendicular to the grain in the column member. 

2.3. Estimation of the Rotational Stiffness of the Joint and Comparison with Eurocode Indications 

By the analysis of the first three stages of the moment-rotation relationship (Section 2.2), a 

linearization of the curve allows for calculating the rotational stiffness of the connection. Reynolds 

[7] shows that the range of loads imposed on a connection in service is of 20% and 40% of the 

predicted characteristic capacity. According to CEN (European Committee for Standardisation) [28] 

the initial stiffness is calculated from 10% to 40% of the peak load. The latter is used in this study to 

evaluate the rotational stiffness of the joint. 

A linear regression of data in the range of 0.1$456 < $ < 0.4$456 gives the rotational stiffness, 

89,��� = 696 kNm/rad. (3)

The linear fit is shown in Figure 5, where the root mean squared error is 0.191  and the 

correlation coefficient (;") is 0.976, suggesting a significant variation of data. This was probably due 

to the ‘sawtooth’ shape of the diagram. 

 

Figure 5. Linear interpolation of the moment-rotation diagram between 10%$=>? and 40%$=>? 

Analytical prediction of the rotational stiffness of the connection can be done in order to compare 

the experimental value. Gelfi [29] evaluated the stiffness of the connection on the basis of the classical 

approach of the beam on elastic foundation, whereas Eurocode 5 [13] provides the analytical 
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calculation of the slip modulus ����, per shear plane, per fastener under service load, through the 

expression: 

���� = 2 ∙ @4�.A ∙ B"C ([13] Tab. 7.1) (4)

where D is the diameter of the fastener and @4 is the mean density of timber. The stiffness can be 

multiplied by 2 because of the steel connector [13] (§7.1(3)). It is straightforward to calculate the 

stiffness of the individual fastener as: 

�E5�,FG = HI� ∙ ����, (5)

where HI� is the number of shear plane. In this specific case, 

�E5�,FG = 23951.1 kN/m. (6)

Even if �E5�,FG is the serviceability limit state design value that is provided from the Eurocode, 

it could be of interest to extrapolate the individual fastener stiffness, �E5�,�6J from the connection 

rotational stiffness experimentally evaluated (89,���) and compare it with Eurocode design value. 

Because only one experiment is not enough to characterize the stiffness, comparison should be done 

with caution. If one assumes the joint made by two separate connections linked in series, therefore 

the inverse of the equivalent rotational stiffness of the connection is: 

189,�K = 189,LMN + 189,P�54. (7)

where 89,LMN  refers to the column stiffness and 89,P�54  to the beam one. Furthermore, each 

rotational stiffness can be expressed in function of the single fastener stiffness: 

89 = �E5� Q RS", (8)

where �E5� is the stiffness value of the individual fastener (force per unit length) and RS is the TUV 

radius vector, namely the distance from the center of the group to the TUV fastener (Figure 6). By 

making simple calculations, in the case under examination it is: 

89,LMN = 1.508 ∙ 89,P�54, (9)

therefore, 

89,LMN = 1745.35 kNm/rad (10)

and finally, 

�E5�,�6J = WX,YZ[\]� = 44524.30 kN/m. (11)

The comparison of the experimentally determined stiffness with corresponding design values 

from EC5 leads to a ratio: 

�E5�,FG�E5�,�6J = 0.54, (12)

graphically displayed in Figure 6. 
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Figure 6. Comparison of experimental rotational stiffness to the Eurocode (EC) value. 

The EC5 formula underestimates the stiffness, probably because it does not cover the influence 

of all the involved parameters, such as connection width, length of the dowel, and its consequent 

deformed shape. Moreover, it does not take into account the influence of the angle to grain direction 

and the foundation modulus. Dorn [1] compared results from dowel-type connections to the current 

generation of European standards with respect to stiffness. Results clearly show that for 200 mm 

wide specimens, the stiffness specified by EC5 underestimates the observed stiffness. Even though 

the first branch of the curve was assumed, the EC5 expression would have strongly underestimated 

the stiffness value of the joint as well. 

3. Portal Vibration Test 

3.1. Experimental Test Set-Up 

A non-destructive vibration test was carried out to evaluate the dynamic properties (i.e., 

frequency and modal damping) of the timber portal frame, as shown schematically in Figure 2b. The 

portal frame is made by two identical frames with four columns and two beams all 1.5 m long. 

Description of materials, cross sections, and geometry of the joints can be found in Section 2.1. 

Columns are pinned at the ground through hinge-type steel-timber connections (Figure 7a,b). 

 

(a) 

 

(b) 

Figure 7. Details of the base connections: (a) detail of connections at the ground; (b) steel hinges. 

The portal frames are connected at the top by two whitewood plywood panels, which are useful 

to transfer the load from the shaker to the structure, with dimensions of 1150 mm × 600 mm ×18 mm. 

Table 1 summarizes the main characteristics of the performed experiments. The excitation 

method was a slow sine sweep, in which a sinusoidal force, gradually increasing in frequency, was 
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applied by the shaker and the rate of increase of frequency was sufficiently slow that the steady-state 

response at each frequency had time to develop. The shaker (APS 113 ELECTRO-SEIS®, APS 

Dynamics, Inc., San Juan Capistrano, CA, USA) had a mass of 30 kg and a frequency range from 0.01 to 200 Hz. Two piezoelectric accelerometers having a lower frequency limit of 0.1 Hz and a 

nominal sensitivity of 10 V/g were fixed to the mid-height column (#1, Figure 2b) and at the mid-

span of the beam (#2) to read the vertical and horizontal response (Figure 8). The data logger was 

connected to a laptop and the records were processed with the software LabVIEW (software version, 

National Instruments, Austin; TX, USA)[31]. For all of the tests performed, a sampling rate of 500 Hz was 

used and frequency was manually tuned from 0.1 Hz to 100 Hz to cover a considerable range of 

frequency spectrum. 

Table 1. Summary of the experimental tests performed in laboratory. 

Test n° Type of Specimen  Type of Test Machine Signal Recorded 

#1 timber portal frame dynamic 
shaker: APS 113 

ELECTRO-SEIS®  
accelerometer 

#2 
steel-timber dowelled 

connection 

static  

(displacement-control) 

Instron 2000 kN 

Universal 

displacement 

transducers 

 

Figure 8. Portal frame under vibration test. 

3.2. Dynamic Response of the Portal Frame 

Four vibration tests (from #1 to #4) performed through the shaker on the portal frame provided 

acceleration time-histories variable with the excitation frequency. Figure 9 shows the acceleration 

time-histories read from both of the accelerometers during the experiments. For test #1 and #2, the 

frequency was tuned from 0.1 Hz to 100 Hz, whereas, the start frequency for test #3 and #4 was set 

to 0.3 Hz, as lower values were not significant for this case. To develop the steady-state response at 

each step, the frequency was manually shifted approximately every 15 ÷  20 s. Test #2 was clearly 

affected from peak accelerations that were caused by instruments acting at the same time in the 

laboratory. Impulse-type responses were useful to evaluate free vibrations of the structure. For the 

third test, the rate of frequency-turning was set to 20 s and no relevant noise affected the signal. 

Finally, for the last test, a higher amplitude of the shaker was set and an accurate and clear signal was 

obtained. 

Few seconds of free swinging of the signal were trimmed and filtered by using a bandpass filter 

to reduce the noise that was caused by the shaker and to extract the fundamental frequency and 

evaluate the damping ratio. Modal analysis of a two-dimensional (2D) numerical model of the timber 

frame with beam-column semi-rigid connection stiffness set at 89 = 374.4 kNm/rad (based on the 

slip modulus, ���� from EC5 [13]) was performed to evaluate the natural frequency of the structure 

corresponding to the interesting mode of vibration (i.e., horizontal swinging): 
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d4Me = 14.23 Hz (13)

Thus, the natural frequency of the portal frame is assumed to be included in the range [6 Hz ÷30 Hz].  

 

Figure 9. Registered acceleration time-histories of the four tests (time in s). 

A 9th-order Butterworth filter was chosen to eliminate frequencies outside the interesting range. 

Figure 10 shows the filtered time history record of one of the trimmed signal (106.80 < f < 107.70) 

from test #2 displayed in Figure 11. 

 

Figure 10. Filtered signal using a 9th-order Butterworth filter. 
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Figure 11. Trimmed signal, T = 0.9 s, test #2, accelerometer #1 (column mid-height). 

3.3. Signal Curve Fitting Process 

The acceleration time histories data (obtained as illustrated in Section3.2) are processed in time 

domain by using the Matrix Pencil Algorithm (MP Algorithm) [4] through a specifically developed 

MATLAB script, where the number of modes contributing to vibration signal has to be assumed. A 

wrong assumption could lead to misleading results of the damping ratios. The algorithm derives 

fundamental frequencies and associated damping ratios, and performs a procedure to compare fitted 

signal to the measured signal visually, as shown in Figure 12. A very good agreement is obtained. 

 

Figure 12. Modal curvefitting of the signal. 

Table 2 collects all of the analysis results and shows for each analyzed segment the relative 

frequency and the corresponding damping ratio of the whole structure, as found from curve fitting. f� and f" are the lower and the upper limits of the segment analyzed. Most of the segments are 

chosen from the second test (#2, Figure 9) where free vibrations are visible. Many analyses are 

performed in the range of 405– 409 s where resonance is clear. The average frequency is calculated 

with the following: 

d4�5h = 110 Q di = 19.48 Hz
S

. (14)

To evaluate the precision of the observed data, the standard deviation is evaluated: 

j = k 110 Q(di − d4�5h)"
S

= 0.6734, (15)

showing an acceptable accuracy of the analysis. The dispersion is shown in Figure 13. 
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Table 2. Curvefitting experimental signal. 

Analysis Test mn < m < mo f p 

N° # (s) (Hz) (%) 

1 2 52.54 < f < 53.50 19.08 0.82 

2 2 106.80 < f < 107.70 19.44 1.45 

3 1 264.40 < f < 265.40 19.22 4.18 

4 2 309.70 < f < 310.00 18.29 2.86 

5 2 409.30 < f < 409.50 19.90 1.40 

6 2 416.85 < f < 417.10 20.27 3.83 

7 2 405.00 < f < 405.14 20.71 0.50 

8 2 406.20 < f < 406.50 19.23 0.62 

9 2 407.40 < f < 407.80 19.28 1.12 

10 2 409.30 < f < 409.50 19.34 0.32 

 

Figure 13. Dispersion of data. 

4. Numerical Model of the Portal Frame 

Modelling and Analysis 

The 3D portal frame is modelled in OpenSees [27]; it includes 156 nodes and 148 elements, of 

frame-type elastic and isotropic (Figure 14a). The material used for modelling glulam timber is 

graded GL-24h according to EN 14080 [28], whose mechanical properties are listed in Table 3. Density 

was experimentally measured and a value of @ = 352 qr4s was obtained.  

 

(a) 

 

(b) 

Figure 14. (a) OpenSees numerical model; (b) portal frame under vertical vibration. 
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Table 3. Properties of GL 24 h according to EN 14080:2013 [28] assumed in the numerical 

simulation. 

 tu,v,wxyz {u,v,wxyz 

Class (N/mm") (N/mm") 

GL 24 h 11,500 600 

The horizontal panels that are placed at the top of the frame are modelled as shells, meshed with 

elastic orthotropic nDmaterial 18 mm-thick. The beam length is set to 1.32 m to take into account 

the dimension of the connections in both sides. Columns are 1.35 m long and the distance between 

the two frames is 1.10 m. All of the support nodes are pinned at the base. Rotational springs simulate 

the connection between beam and column and between slab panel and beam. The numerical simulation 

neglects the strengthening effect of the panel with respect to the beams as nailed at the top of the 

elements. Modal analysis has been done to evaluate eigenmodes and corresponding eigenfrequencies. 

The response of the portal frame model is validated by assuming the value of rotational stiffness 

resulted from experimental test (89,���). Moreover, the stiffness value of the connections 89,FG, based 

on the Eurocode 5 and evaluated in Section 2.3 is also set and results are compared. Further analytical 

models [6,30] can be used in order to predict the initial rotational stiffness of the joint based on the 

mechanical properties of the elements and on the geometry. These models are usually based on the 

classical approach of the beam on elastic foundation but are not considered in this work. 

The modal analysis outcomes are reported in Table 4, where d  is the natural frequency, 

corresponding to the direction along beam-column connections. 

Table 4. Results from modal analysis for the three-dimensional (3D) portal frame model. 

Rotational Stiffness Value (|}w/~y�) � (��) 89,��� 696.0 17.84 89,FG 374.4 13.06 

Figure 15 shows the third mode shape when 89 = 89,���, namely when the second branch of the 

moment-rotation relationship is assumed for the stiffness calculation (Section 2.3). The percentage 

difference between the experimental and numerical eigenfrequencies is 8.2%; their ratio is 1.09, value 

considered acceptable for the uncertainties, that, in any case, affect a numerical model.  

 

Figure 15. Third mode shape of portal frame 3D model, d = 17.84 Hz. 

As discussed in the Introduction, localized phenomena at the connection level have been 

evaluated by testing a full scale specimen, whereas the global elastic characteristics have been 

obtained through a scaled model (1:2). Anyway, to evaluate the scale effect, it could be worthy to 

vary the dimensions in the validated FE model. By doubling the length of the structural members, 

the eigenfrequency of the prototype is about half of that of the model: 
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d = 8.48 Hz (16)

Other scale effects can be considered in further studies by varying the dimensions of the 

connectors and keeping their geometry constant. One of the limitations of this work is that the 

investigation only considers the linear-elastic behaviour of the dowel connections neglecting their 

cyclic hysteretic behavior, necessary to assess damping and dissipation of energy. 

Further studies will be addressed to find a simple and efficient analytical model that is useful to 

represent a wide range of connections as a function of geometry and mechanical properties of the 

components. These models can be applied in numerical models of timber buildings to better evaluate 

the influence of connections on the building dynamic behaviour. 

5. Conclusions 

This work investigated the interaction between steel and timber in dowel-type connections, in 

the experimental and numerical perspective. 

Laboratory tests on portal frame and connections allowed for the evaluation of the single 

fastener shear stiffness. The results of the experimental tests showed rotational stiffness values that 

were overestimated by about two times with respect to the Eurocode indications. Through a curve-

fitting method, the experimental results in terms of acceleration time-histories were filtered up and 

the resonance condition gave the relevant frequency of vibration of the portal frame. The modal 

analysis was performed on a 3D portal frame by setting the rotational joint stiffness that was 

calculated when considering the linearization in the range of 0.1$max < $ < 0.4$max  of the 

moment-rotation relationship obtained from the experimental test. The experimental frequency was 

seen to be less than 10% higher than the eigenfrequency obtained through the modal analysis. The 

results are then in good mutual agreement; the percentage difference of 8.4% is probably due to the 

uncertainties of the actual timber mechanical properties and on the strengthening effect of the 

horizontal panel nailed at the top of the frame. 

This work only considers the linear-elastic behaviour of the dowel connections without taking 

into account the cyclic hysteretic loop of the joints, which is useful to assess the damping and 

dissipation of energy. 

Further studies will be addressed to find a simple and efficient analytical model useful to 

represent a wide range of connections as a function of geometry and mechanical properties of the 

components. 
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