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Experimental Tracheal 
Replacement Using 3-dimensional 
Bioprinted Artificial Trachea with 
Autologous Epithelial Cells and 
Chondrocytes
Jae-Hyun Park1,2, Jeong-Kee Yoon3, Jung Bok Lee3, Young Min Shin3, Kang-Woog Lee2, Sang-
Woo Bae1,2, JunHee Lee4, JunJie Yu4,5, Cho-Rok Jung6, Young-Nam Youn2, Hwi-Yool Kim1 & 

Dae-Hyun Kim  2

Various treatment methods for tracheal defects have been attempted, such as artificial implants, 
allografts, autogenous grafts, and tissue engineering; however, no perfect method has been 
established. We attempted to create an effective artificial trachea via a tissue engineering method 
using 3D bio-printing. A multi-layered scaffold was fabricated using a 3D printer. Polycaprolactone 
(PCL) and hydrogel were used with nasal epithelial and auricular cartilage cells in the printing process. 
An artificial trachea was transplanted into 15 rabbits and a PCL scaffold without the addition of 
cells was transplanted into 6 rabbits (controls). All animals were followed up with radiography, CT, 
and endoscopy at 3, 6, and 12 months. In the control group, 3 out of 6 rabbits died from respiratory 
symptoms. Surviving rabbits in control group had narrowed tracheas due to the formation of 
granulation tissue and absence of epithelium regeneration. In the experimental group, 13 of 15 animals 
survived, and the histologic examination confirmed the regeneration of epithelial cells. Neonatal 
cartilage was also confirmed at 6 and 12 months. Our artificial trachea was effective in the regeneration 
of respiratory epithelium, but not in cartilage regeneration. Additional studies are needed to promote 
cartilage regeneration and improve implant stability.

�e most commonly occurring tumours of the trachea are known as adenoid cystic carcinomas, squamous cell 
carcinomas, and so on. When a malignant tumour causes narrowing of the trachea, the damaged area is excised 
and end-to-end anastomosis is performed; however, this can only be applied to lesions 6 cm or less in size1. 
Although lesions larger than 6 cm are now treated with a stent, there is a risk of migration, corrosion, or haemor-
rhage, and stents are di�cult to use permanently. Various methods, have been tried to overcome these drawbacks 
so that stents can be successfully applied to lesions larger than 6 cm2.

Various methods, mainly using tissue gra�ing or tissue engineering, have been attempted. Early attempts used 
arti�cial implants, but attempts to produce e�ective and stable implants failed3–5. �en, researchers attempted to 
use a heterologous tissue, which resulted in long-term immunosuppression6. A method using an autologous tis-
sue, such as aortic or oesophageal tissue, was also tried7, but these stents did not have the strength of the tracheal 
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cartilage, and could not withstand the pressure during breathing. In addition, the surrounding tissue may unite 
with the stent and cause stenosis or haemorrhage8.

In the present days, arti�cial trachea has been studied to overcome such problems. To fabricate an arti�cial tra-
chea for tracheal regeneration, the goal is to produce �exibility and strength resembling normal tracheas, and to 
produce a characteristic ciliated epithelium. For decades, various methods have been used to make arti�cial tra-
cheas suitable for these conditions9,10. One method involved fabricating and mounting of cylindrical implants9,11. 
Since these implants cannot be combined with surrounding tissues, infection, dislodgement, immune reaction, 
migration, obstruction and other problems have occurred and epithelialisation has not progressed12. �e most 
actively studied method for fabricating arti�cial trachea is tissue engineering, and biodegradable synthetic poly-
mers are used to make tubular sca�olds. A sca�old made using tissue engineering tends to have a smooth vascu-
larization and less obstruction when compared to foreign materials, allogra�s, and autogenous gra�s. Currently, 
studies are underway in various directions, including those that regenerate tracheal epithelium13.

In recent years, due to the development of 3-dimensional (3D) printing technology, various attempts have 
been made to use this technology in tissue engineering14. Biodegradable materials, such as polycaprolactone 
(PCL), polyglycolic acid (PGA), polylactic acid (PLA), and poly(lactic-co-glycolic) acid (PLGA), used in 3D 
printing have strengths similar to the tracheal cartilage; therefore, various attempts are being made to apply 3D 
printing technology to arti�cial trachea research15. In addition, given the development of bio-printing technology, 
living cells can be added to hydrogel for printing, and cells, such as chondrocytes or stem cells, can be printed 
together in the production of arti�cial tracheas16.

�rough this study, we tried to construct arti�cial tracheas similar to the original tracheal structure using 3D 
printing and observe them for any unusual characteristics at 3, 6, and 12 months. �is study is the �rst to treat 
tracheal lesions using 3D printed arti�cial trachea with autologous epithelial cells and chondrocytes, and there 
have been few studies examining long-term e�ects of arti�cial tissue over one year. Respiratory epithelia and car-
tilage chondrocytes, which play the most important role in the structure of the trachea, were cultured to produce 
hydrogel for bio-printing. An arti�cial trachea was produced using 3D printing with a biodegradable polymer. 
In addition, an arti�cial trachea was implanted in a well-known trachea sca�old partial resection model17, and 
respiration scoring, x-ray, computed tomography (CT), endoscopy, and histological examination were performed.

Results
Bioprintability of artificial trachea. Grid patterned alginate hydrogels with a concentration of 1, 2, and 
3% (w/v) was printed through a 300 µm nozzle (Fig. 1A). In the case of hydrogel at 1% and 2% of alginate solution, 
the grid pattern was not well formed: the strand was deconstructed and they are not suitable for further studies 
(Fig. 1B). Accordingly, we could obtain the desired grid pattern cube at a concentration of 3% which maintains 
its shape a�er printing (Fig. 1B). Meanwhile, cell viability was signi�cantly reduced at concentrations above 3%, 
thereby excluded from the evaluation (data not shown).

�e 3D bio-printed arti�cial gra� turned out just as we had planned (Fig. 1C). �e SEM images revealed that 
the hydrogel containing epithelial cells on the inner layer and the hydrogel containing chondrocytes on the outer 
layer were printed on the boundary of the PCL layer (Fig. 1D). Fluorescence microscopy of sca�olds stained with 
Cell Tracker™ resulted in a complete separation of the green-stained epithelial cells and red-stained chondrocytes 
layers (Fig. 1E–G).

In the �rst Live/Dead Assay, the number of live cells increased overtime. �e ratio of dead cells on day 1 was 
about 30%, but from day 3, it was maintained below 20%, which con�rmed the absence of problem with regard to 
survival of cells in the hydrogel (Fig. 2).

Clinical evaluation of the artificial trachea. A summary of the results is shown in Table 1. No animals 
died during the surgical procedure, and all awakened from the anaesthesia. �e survival ratio of the control ani-
mals in the �rst 3 months was three of six animals. Meanwhile, in experimental group, the survival ratio in the 
�rst 3 months was �ve of six, and one more rabbit died within the next 3 months. �e rabbits that died showed 
symptoms of anorexia and diarrhoea. �e other animals were euthanized on a planned date. �ere were no deaths 
in the 12-month observation group. �e surviving rabbits had no speci�c clinical signs, and euthanasia was per-
formed in time.

Immediately a�er surgery, all rabbits showed continuous crackles or stridor. At the time of euthanasia, the 
mean respiration score was 2.20 ± 0.84 points in the control group; most rabbits showed intermittent crackles 
or stridor in the resting state, and laboured respiration was observed in some rabbits. On the other hand, in the 
experimental group, the average respiration score was 0.47 ± 0.52 points, and normal respiration was observed 
in most animals in the experimental group. Only a few rabbits in the experimental group showed intermittent 
crackles or stridor when excited.

Radiographs taken immediately a�er surgery showed an increase in opacity at implant sites in all rabbits. 
In the control group, the decreasing diameter ratio was 46.19 ± 22.10% on average, which was larger than the 
11.72 ± 13.81% seen in the experimental group. In particular, the rate of decrease in tracheal diameter in the 
12-month observation group was 6.72 ± 1.07%, which was close to the diameter of a normal trachea.

On CT images, we observed that the inner diameter of the gra� site was signi�cantly reduced in the control 
group (Fig. 3A). On the other hand, the tracheal inner diameters in the 6-month survival group and 12-month 
survival group did not decrease (Fig. 3C,E).

On bronchoscopic images, the diameter of the trachea was markedly narrowed, and the granulomatous tissue 
was proliferating to block some of the trachea in the control group (Fig. 3B). However, the inner diameter showed 
almost no decrease, and internal structures very similar to a normal trachea were seen in the experimental group 
(Fig. 3D,F).
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Histological regeneration of the artificial trachea. �ere was no regeneration of epithelial cells in the 
staining of the control group and an in�ammatory reaction was observed, which resulted in narrowing of the 
lumen of the trachea. On the other hand, in the experimental group, ciliated epithelial cells were observed in all 
the rabbits over 3 months, covering the inside of the sca�old, and forming a similar structure to a normal trachea 
(Fig. 4).

Cartilaginous tissue was not observed in the experimental group at 3 months. However, immature cartilage 
islets were observed in the experimental group at 6 and 12 months (Fig. 5). Formation of c-shaped cartilage was 
not observed.

Discussion
In the case of the trachea, the most important structures for performing the role are the cartilage and epithelium. 
�e cartilage should be strong enough to withstand the pressure during breathing and be �exible2. �e epithelium 
is composed of characteristic ciliated epithelial cells and can be seen from the inside of the trachea and nasal cav-
ity. For tracheal transplantation, allogra� and autogra� have been conventionally used.

In allogra�s, the methods of chemically treating, lyophilizing, or freezing the trachea18 and other tissues like 
the aorta are used19. Experiments have also been carried out on allogra�s of tracheas treated in various ways20. 
However, in the case of an allogra�, the vascularization does not progress21, and eventually stenosis due to �brosis 
occurs22. �ere are also problems encountered by patients with immune reactions23. Autogenous gra�s have also 
been actively studied. Initially, autogenous gra�s were combined with foreign material implants9,24. In some of 
these experiments, epithelialization and cartilage formation were observed, but stenosis eventually occurred. 

Figure 1. 3D printed alginate hydrogel and arti�cial trachea. (A) Alginate hydrogel being extruded at 300 um 
nozzle. (B) Optical image of 3D alginate cube type (16 × 16 × 2 mm3). �e higher concentration of alginate 
hydrogel providing more precise and porous cube type. (C) Gross image of the arti�cial trachea fabricated using 
a 3D bio-printer. (D) Scanning electron microscopic image. From the bottom: �rst, porous PCL layer; second, 
epithelial cell layer; third, non-porous PCL layer; fourth, chondrocyte layer; and ��h, porous PCL layer are 
clearly seen. (E–G) Fluorescent microscopic images using green dye for the epithelial cells (E) and red dye for 
chondrocytes (F); and merged image (G) reveals that the 2 hydrogel layers are completely separated.
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Autogenous tissue has also been transplanted into a patch25. However, in non-congenital stenosis, �brosis and 
contraction proceeded, and obstruction of the trachea occurred.

In this experiment, to overcome such problems of allogra� and autogra�, we used PCL as a biodegradable syn-
thetic polymer for tissue engineering. PGA is a conventionally used polymer because of its high porosity, which 
can induce cell in�ltration and neovascularization and can be absorbed at a relatively accurate time26. However, 
due to its short absorption time, it is di�cult to use for long-term therapeutic e�ect, and it also has low strength26. 
On the other hand, PCL has a low porosity, but its long absorption time and strength are superior to PGA, so it 

Figure 2. In vitro Live/Dead Assay. �e live cells and the dead cells are green and red, respectively. From the 3rd 
day of culture, the ratio of live cells is maintained at 80% or more. On day 14, alginate hydrogel is degraded and 
cells are observed at the PCL sca�old. Scale bars indicate 100 µm.
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has long-term applicability; some studies have also shown that low porosity promotes chondrogenesis27. A total 
of 3 PCL layers were applied in this experiment. �e PCL of the innermost and outermost layers was fabricated 
with a grid pattern with pores to promote cell �ltration and neovascularisation. �e middle layer was made into 
a cylindrical shape with no pores, so that the epithelial cells and cartilage layer could be separated and physical 
strength could be increased. �e elastic modulus of PCL can be easily modulated by controlling the molecular 
weight. �e PCL construct which we used in this study was designed to have similar mechanical properties 
to that of rabbit trachea. �us, to apply our system to larger animal models or humans, we should control the 
elastic modulus of the arti�cial trachea, by using PCL with di�erent molecular weight (i.e. pig tracheal carti-
lage = 1.74 ± 0.85 MPa28, human tracheal cartilage = 16.92 ± 8.76 MPa29).

Between each PCL layers, two di�erent types of autogenous cells were placed with alginate hydrogel. In this 
study, we choose alginate hydrogel for cell printing, as several groups have revealed about the biocompatibility/
biodegradability of alginate30, and used for tracheal regeneration31. Optimization of the concentration of alginate 
is important as minimum shape-stability is necessary in order to maintain the cylindrical hydrogel shape and to 
prevent from �owing down (Fig. 6B). Also, high alginate concentration has harmful e�ect on cell viability. We 
previously measured the rheological properties of alginate + CaCl2 hydrogel32, and we used a rheologically opti-
mized hydrogel. We con�rmed the majority of the cells were viable a�er gelation (Fig. 2). Also, we have con�rmed 
that our 3D-printing process itself has no e�ect on cell viability, by performing the live and dead assay at day 1 on 
cells in �lm typed alginate + CaCl2 hydrogel without printing process (Supplementary Fig. S1).

A living tissue is composed of at least two types of cells. In other words, it is recommended that any arti�cial 
gra� must contain two or more kinds of cells in order to perform its function in vivo. Trachea is also a complex 
tissue composed of epithelium, cartilage and also a membranous structure with smooth muscle cells in the dorsal 
side. In this study, we focused on epithelium and cartilage regeneration, thus nasal epithelial cells in the inside 
layer, and auricular cartilage cells in the outside layer was applied. However, applying two or more types of cells 
to implants has been a challenge33. In this regard, recent bio-printing techniques are considered a very e�ective 
solution. When 3D printing is performed using hydrogel-cultured cells, various kinds of cells can be applied to 
the sca�old33. Furthermore, it has been con�rmed through the Live/Dead Assay that there was no problem with 
cell survival in hydrogel34.

To evaluate the in vivo therapeutic e�cacy of our arti�cial trachea, rabbit partial resection model was used, 
as it is a commonly-used animal model for airway transplantation research35,36. Rabbit partial resection model 
is an economical and commonly used animal model compared to pig or sheep. Also, the method of harvesting 
rabbit-derived nasal epithelial cells and auricular chondrocytes is well-established. Refer to previous studies, 
spontaneous regeneration is limited if the airway is dissected more than 50%36. In particular, nasal epithelial cell 

Group, 
animal 
no. State Follow-up Complication

Stenosis 
rate (%)

Respiratory 
scoring Epithelialisation

Cartilage 
regeneration

Control

1 Sacri�ced 45 days Diarrhea, anorexia 39.757 3

2 Died 3 months 29.712 1

3 Sacri�ced 44 days
Nasal discharge, 
anorexia

76.428 3

4 Sacri�ced 3 months 38.271 2

5 Died 3 months 22.470 2

6 34 days
Nasal discharge, 
anorexia

70.471 3

Experimental

7 Sacri�ced 3 months 13.529 0 Mucociliary

8 Sacri�ced 3 months 23.357 1 Squamous metaplasia

9 Sacri�ced 3 months 9.477 0 Mucociliary

10 Died 13 days Diarrhoea, anorexia 1

11 Sacri�ced 3 months 25.269 0 Mucociliary

12 Sacri�ced 3 months 27.547 1 Mucociliary

13 Sacri�ced 6 months 22.811 0 Mucociliary Islet

14 Sacri�ced 6 months −26.681 0 Mucociliary Islet

15 Sacri�ced 6 months 14.637 1 Mucociliary Islet

16 Sacri�ced 6 months 14.799 1 Mucociliary Islet

17 Died 21 days Diarrhoea, anorexia 1

18 Sacri�ced 6 months 7.423 1 Mucociliary Islet

19 Sacri�ced 1 years 7.542 0 Mucociliary Islet

20 Sacri�ced 1 years 5.517 0 Mucociliary Islet

21 Sacri�ced 1 years 7.112 0 Mucociliary Islet

Table 1. Clinical and Pathological Results of Animals with Tracheal Replacement using 3-D Printed Arti�cial 
Tracheas.
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cultures were used to transplant trachea-like ciliated epithelial cells without damaging the tracheas of the rabbit 
before surgery, and epithelial cells were successfully formed in all the experimental groups. We believe that this 
is the e�ect of transplantation of epithelial cells into sca�olds and that there is a direct correlation with early sur-
vival rate. Cartilage also plays an important role for a successful transplantation. In this experiment, the auricular 
cartilage cell was cultured and applied to the sca�old, but no cartilage formation was observed in the 3-month 
observation group, and some neonatal cartilage could be observed at 6 and 12 months. Other studies using rabbit 
ear chondrocytes for tracheal gra�s also revealed a cartilaginous island similar to that of the native trachea at 6 
months, but it did not produce a complete c-shape36. �us, more e�ective methods are needed to reduce the time 
it takes for the cartilage to regenerate. For example, stem cells and the extracellular matrix are involved in carti-
lage regeneration in the tracheas37, so further studies utilizing mesenchymal stem cells or decellularized cartilage 
powder38 are needed in the future. We did not focus on this study, but the regeneration of connective tissue is also 
an important point of tracheal repair, thereby further studies would be necessary.

Conclusions
In this experiment, an arti�cial trachea was constructed using a 3D bio-printing technique and was success-
fully transplanted with two di�erent types of autogenously isolated cells, epithelial cells and chondrocytes. �e 
arti�cial trachea was successfully engra�ed into the partially resected trachea, resulting epithelialization and 
formation of cartilage islet. �is resulted thirteen of ��een animals’ survival until 12 months without speci�c 
respiratory signs in the experimental group, while the control group showed only four of six animals’ survival. 
Our research could inform that our 3D-printed arti�cial gra� containing autogenous cells is stable enough for a 
long time about a year, and could provide a platform to apply with several di�erent types of cells or suitable bio-
materials to treat tracheal diseases.

Materials and Methods
�is animal study was approved by the Institutional Animal Care and Use Committee of Yonsei University Health 
System (publication no. 2015-0361, 2015). �is study was performed according to the ARRIVE guidelines and the 
National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Figure 3. Computed tomography and bronchoscopic images. (A) Control group (animal no. 2), (B) Control 
group (animal no. 4), (C) experimental group (animal no. 13), (D) experimental group (animal no. 7), (E) 
experimental group (animal no. 19) and (F) experimental group (animal no. 20). On CT images, the tracheal 
diameter of the control group (A) is signi�cantly reduced. On the other hand, the tracheal diameter of the 
experimental group maintains airway patency a�er 6 (C) and 12 months (E). On bronchoscopic images, 
the lumen of the trachea is narrowed and massive granulation tissue proliferation is observed in the control 
group (B). However, the tracheal lumen in the experimental group observed at 3 (D) and 12 months (F) is not 
narrowed, and the mucosa of the trachea is similar to the normal trachea. �e gra�ed area was pointed with 
white arrows. Scale bars indicate 10 mm (A,C,E), and 500 µm (B,D,F), respectively.
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Preparation of autologous nasal epithelial cells and auricular chondrocytes. For primary culture 
of rabbit nasal epithelial cells, 15 mature male New Zealand White rabbits (3.0–3.5 kg) were injected with 5 mg/
kg xylazine and 10 mg/kg Zoletil® intramuscularly at 15 min intervals for anaesthesia. Nasal mucosa was har-
vested from the nasal cavity using a ∅ = 4 mm skin biopsy punch and then stored in phosphate-bu�ered saline 
(PBS) containing 1% penicillin-streptomycin (�ermo Fisher Scienti�c, MA, USA) for 30 min. Submucosal tissue 
was eliminated on a sterilised petri dish on a clean bench. �e harvested tissue was incubated with 0.2% (w/v) 
collagenase type II (�ermo Fisher Scienti�c, MA, USA) in Ham’s F-12 medium (Welgene, Daegu, Korea) for 
24 h. It was then �ltered through a 100 µm nylon cell strainer (BD Biosciences, NJ, USA) and centrifuged at 
1500 rpm for 5 min. Subsequently, the supernatant was discarded. Nasal epithelial cells were seeded in a 100∅ cell 
culture dish (SPL Life Sciences, Gyeonggi-do, Korea) with Ham’s F-12 medium supplemented with 10% fetal 
bovine serum (FBS) (GE Healthcare, UT, USA), 1% penicillin-streptomycin, 10 µg/ml amphotericin B (Enzo Life 
Sciences, NY, USA), 50 µg/ml gentamicin (Daesung Microbiological Labs, Gyeonggi-do, Korea), 0.5 µg/ml hydro-
cortisol (Sigma-Aldrich, MO, USA), 5 ng/ml epidermal growth factor (EGF) (ProSpec, NJ, USA), 1.5 µg/ml 
bovine serum albumin (BSA), (MP Biomedicals, CA, USA), and 1 × insuline trans�erin selenium(ITS) + 3 solu-
tion (Sigma-Aldrich, MO, USA).

For the primary culture of rabbit auricular cartilage cells, the ear of the rabbit was cut approximately 2 × 2 cm 
in size using Metzenbaum scissors and stored in PBS containing 1% penicillin-streptomycin for 30 min. 
Perichondrium was eliminated as much as possible in a sterilised petri dish on a clean bench. Harvested auric-
ular cartilage was incubated with 0.2% (w/v) collagenase type II in Ham’s F-12 medium for 24 h. It was then 
�ltered through a 100 µm nylon cell strainer (BD Biosciences, NJ, USA) and centrifuged at 1500 rpm for 5 min. 
Subsequently, the supernatant was discarded. �e auricular cartilage cells were seeded in a 100∅ cell culture dish 
(SPL Life Sciences, Gyeonggi-do, Korea) with Dulbecco’s Minimal Essential Medium with high glucose (Welgene, 
Daegu, Korea) supplemented with 10% FBS, 1% penicillin-streptomycin, 10 µg/ml amphotericin B, 50 µg/ml gen-
tamicin, and 25 µg/ml L-ascorbic acid(Sigma-Aldrich, MO, USA). Passage 2 cells were used for manufacturing 
the arti�cial trachea.

Figure 4. Histopathologic images of epithelial regeneration. Compared with the normal tracheal epithelium 
(A), the control group (animal no. 5) does not show epithelial regeneration (B). However, the experimental 
group shows epithelial regeneration at 3 months, and 1 animal shows incomplete epithelial regeneration with 
squamous metaplasia (C, animal no. 8). �e animals at 6 (D, animal no. 14) and 12 months (E, animal no. 21) 
show complete epithelial cell regeneration. (F) A whole trans-sectional image at 3 months in the experimental 
group (animal no. 9) also shows complete epithelial regeneration. (Masson’s trichome staining, the bars in 
subpanels A-E indicate 50 µm and that in subpanel F indicates 1 mm) �e epithelial regeneration was pointed 
with green and yellow boxes in (D,E).

https://doi.org/10.1038/s41598-019-38565-z


www.nature.com/scientificreports/

8SCIENTIFIC REPORTS |          (2019) 9:2103  | https://doi.org/10.1038/s41598-019-38565-z

Bioprinting process. �e 3D printing was performed using a 3D bioprinter (KIMM &Protek Korea, Daejeon, 
Korea).�e bioprinter consists of a ‘screw pump system’ for hydrogel printing, a ‘screw pump and heating controller’ 
for PCL printing, a ‘tube fabrication controller’ for tube shape formation, and a ‘motion controller’ that receives infor-
mation about the design from the main computer to control the nozzles to construct the desired structure (Fig. 6).

�e 3D printability of the hydrogel was optimized using three di�erent concentrations (1%, 2%, and 3% w/v) 
of sodium alginate hydrogels, by stacking 300 µm grid shapes to constructthe 16 × 16 × 2 mm cubes.For the 
fabrication of the sca�old, PCL (Sigma-Aldrich, MO, USA, Catalog no.440744) polymer pellets were melted at 
100–130 °C in a heating cylinder and ejected through a heated nozzle. �e thickness of PCL strands was 2.5 mm. 
To make a hydrogel for printing, a�er counting 1 × 107cells, they were suspended in serum free media and made a 
total of 8.2 ml of hydrogel. �en, 1.5 ml of PBS with CaCl2 1% solution was added. Finally, 0.3 g of sodium alginate 

Figure 5. Histopathologic images of tracheal cartilage regeneration. �e formation of immature 
cartilaginous islets is observed at 6 (A and B, animal no. 15) and 12 months (C and D, animal no. 20). (A and 
C = haematoxylin and eosin staining, B and D = safranin O staining, the asterisk indicates PCL strand of ��h 
layer, all bars indicate 50 µm).

Figure 6. System components and bioprinting process. (A) Schematic graph of 3D bio-sca�old plotting system. 
(B) Detailed fabrication process of arti�cial trachea using bio plotting system. First, porous PCL layer; second, 
cell-laden alginate; third, non-porous PCL layer; fourth, cell-laden alginate; and ��h, porous PCL printing on 
tube type module.
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(Sigma-Aldrich, MO, USA) was added to make a total of 10 ml of hydrogel (3% w/v), which was then incubated 
for 30 min and then used for printing.

�e arti�cial trachea was constructed with a total of �ve layers with 20 mm length: �rst layer, PCL (grid pat-
tern, 5 mm diameter); second layer, hydrogel (cylindrical, 6 mm diameter) with epithelial cells; third layer, PCL 
(cylindrical, 6.5 mm diameter); fourth layer, hydrogel with chondrocytes (cylindrical, 7 mm diameter); and ��h 
layer, PCL (grid pattern, 8 mm diameter).

�e arti�cial trachea was imaged using a �eld emission scanning electron microscope (SEM) with a backs-
cattered electron image detector and an environmental secondary electron detector (JEOL, Ltd., Tokyo, Japan).

Visualisation of the cell positioning. The position of the printed cells was confirmed using Cell 
Tracker™ (Life Technologies, OR, USA). Epithelial cells were stained with a green dye (Cell Tracker™ CMFDA, 
Life Technologies, OR, USA), whereas chondrocytes were stained with a red dye (Cell Tracker™ CMTPX, Life 
Technologies, OR, USA). Microscopic images were obtained with �uorescence imaging using an Olympus® DP71 
microscope digital camera installed on an Olympus® BX51TF system microscope (Olympus, Tokyo, Japan).

Cell viability test. �e arti�cial trachea was cultured with Dulbecco’s Minimal Essential Medium with high 
glucose supplemented with 10% FBS, 1% penicillin-streptomycin, 10 µg/ml amphotericin B, and 50 µg/ml gen-
tamicin. �en, cell viability was analysed statistically using a Live/Dead Assay at 1 day, 3 days, 7 days, and 14 
days. A total of 16 arti�cial tracheas were stained with calcein AM (1:500) and ethidium homodimer-1 (1:1000) 
(Invitrogen) at 37 °C for 1 hour and imaged using confocal microscopy (LSM 700, Zeiss). �e number of viable 
cells and dead cells in each image were quanti�ed using ImageJ so�ware (National Institute of Health, NY, USA). 
Microscopic images at 400× magni�cation from each of the eight sites of the samples were used for live cell 
counting. Live cell ratio (%) was calculated as the ratio of live cell nuclei (green) to the total cell nuclei.

Anaesthesia and surgical procedure. To evaluate the in vivo epithelial and cartilage regeneration e�cacy 
of the arti�cial trachea, partial resection model was used in New Zealand rabbit. 21 rabbits were used and all 
rabbits showed normal breathing. As a control group, arti�cial tracheas without any cells were transplanted into 
six rabbits. �e experimental group was de�ned as those receiving an arti�cial trachea with nasal epithelial and 
auricular cartilage cells. For the experimental group, 6 rabbits were used in the 3-month and 6-month observation 
groups, and 3 rabbits in the 12-month observation group. Mature male New Zealand White rabbits (3.0–3.5 kg) 
were injected with 5 mg/kg xylazine and 10 mg/kg Zoletil® intramuscularly at 15 min intervals for anaesthesia. 
�en, 2% of an iso�urane was used to maintain anaesthesia a�er inserting the endotracheal tube.

�e rabbit was �xed in the dorso-ventral position and then the trachea was approached via a ventral midline 
incision in the neck. A�er exposure of the trachea, the ventral portion of the trachea was cut into a semi-cylindrical 
shape measuring approximately 1.5 × 1.5 cm, and the arti�cial trachea was cut into a semicircular shape and 
implanted with 5–0 polyglyconate suture (Maxon™, Covidien, MN, USA) (Fig. 7). �en, the muscular and subcu-
taneous layers were closed with Maxon 5–0. �e skin was closed with 4–0 non-absorbable mono�lament sutures.

Follow-up and evaluation. Radiographs and breathing videos were taken before surgery, immediately a�er 
surgery, and every month therea�er for each experimental group. �e reduced diameter of the trachea on the 
radiograph taken just before euthanasia was calculated as a ratio. Breathing videos were 5 min long, and scored 
for respiratory patterns. �e respiration pattern of each group was recorded for 5 min and scored according to the 
pattern; that is, 0 point for normal breathing, 1 point for intermittent crackles or stridor when excited, 2 points for 
intermittent crackles or stridor at rest, and 3 points for laboured respiration with continuous crackles or stridor. 
To observe the diameter of the trachea, radiographs were taken immediately a�er surgery and every month (VXR 
- 9 M, DRGRM, Gyeonggi-do, Korea). A computed tomography machine (Brivo 385, GE Health Care, Incheon, 
Korea) was used to take images just before euthanasia, and images inside the trachea were taken using a broncho-
scope (CV 260 S, Olympus, Tokyo, Japan).

Histologic examination. �e arti�cial trachea obtained by autopsy was cut in the middle and observed 
internally. �en, they were �xed with 10% phosphate-bu�ered formalin, embedded in para�n, sectioned, and 
stained with haematoxylin and eosin, mason’s trichrome, and safranin O to evaluate the degree of epithelialisation 
and neocartilage formation.

Figure 7. Surgical procedure. (A) A picture of the partially resected trachea. �e ventral part of the resected 
trachea is a semi-circular shape. (B) �e arti�cial trachea is cut into semi-circular shapes and placed with 
interrupted sutures. Scale bars indicate 1 cm.
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Statistical analysis. All data are expressed as mean ± standard deviation. Statistical analyses were per-
formed using GraphPad Prism 5.0 so�ware (GraphPad So�ware Inc., San Diego, CA, USA). Normal data distri-
bution was determined using the Shapiro-Wilk test. A two-tailed Student’s unpaired t-test was used to compare 
the mean values of all study parameters. A P value < 0.05 was considered statistically signi�cant.
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