
ELSEVIER Information and Software Technology 39 (1997) 735-743

Experimental validation in software engineering’

Marvin V. Zelkowitzayb’*, Dolores Wallace” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

aNIST/lTL, Gaithersburg, MD 20899, USA

‘Department of Computer Science, Universiry of Maryland, College Park, MD 20742, USA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract

Although experimentation is an accepted approach toward scientific validation in most scientific disciplines, it only recently has gained

acceptance within the software development community. In this paper we discuss a 12-model classification scheme for performing experi-

mentation within the software development domain. We evaluate over 600 published papers in the computer science literature and over one

hundred papers from other scientific disciplines in order to determine: (1) how well the computer science community is succeeding at

validating its theories, and (2) how computer science compares to other scientific disciplines. Published by Elsevier Science B.V.

Keywords: Data collection; Experimentation; Evaluation; Measurement

1. Experimentation

Experimentation and data collection are the tools of

science for validating theories. The classical scientific

method depends upon theory formation followed by experi-

mentation and observation in order to provide a feedback

loop to validate, modify and improve on the theory. Most of

these concepts developed in the so-called ‘hard sciences’

(e.g., physics, chemistry) hundreds of years ago and fields

such as theoretical physics coexist along with experimental

physics as opposing forces to develop new concepts and

validate those concepts so developed.

Computer science is a relatively new field, with most

academic departments formed during the late 1960s and

1970s. A strong experimental model of the field has not

developed, at least as computer science folklore explains it.

However, is this true? This question forms the basis for

this paper. We study experimentation in computer science

and have developed a 1Zstep model for experimental com-

puter science. We classify over 600 papers in the computer

science literature and show that our folk wisdom seems to be

true - we do not do a good job in experimentation. We then

survey several other scientific disciplines to see how our

classification model and experimental paradigm fit other

disciplines.

Sojlware Engineering Experimentation. We have focused

our concerns on the subdiscipline of software engineering,

* Corresponding author. E-mail: mvz@cs.umd.edu
’ Contribution of the National Institute of Standards and Technology. Not

subject to copyright.

0950-5849/97/$17.00 Published by Elsevier Science B.V.

PII SO950-5849(97)00025-6

the study of tools and methods for producing quality soft-

ware products. Experimentation has become the research

focus of several groups. Data collection is central to the

NASA/GSFC Software Engineering Laboratory [3], the

concept behind the Data and Analysis Center for Software

(DACS) located at Rome Laboratories, and a crucial part of

the upper levels of the Software Engineering Institute’s

(SEI) Capability Maturity Model (CMM) [7]. However,

how far has this technology spread across the entire sub-

discipline? In fact, what does experimentation even mean in

this domain?

Software engineering is concerned with techniques useful

for the development of effective software programs, where

‘effective’ depends upon specific problem domains. Effec-

tive software can mean software that either is low cost,

reliable, rapidly developed, safe, or has some other relevant

attribute. We make the assumption that to answer the ques-

tion “Is this technique effective?” we need some measure-

ment of the relevant attribute. Saying only that a technique

is ‘good’ conveys no real information. Instead, we need a

measurement applied to each attribute so that we can say

one technique is more or less effective than another.

For some attributes, this mapping from an effective attri-

bute to a measurement scale is fairly straightforward. If

effective means low cost, then cost of development is

such a measure. For other applications of effectiveness,

we have no good measurement scale. Safety is an example.

What does it mean for one product to be safer than another?

Security is another one of these nebulous attributes. What

does it mean for one product to be more secure than

another? Does it mean the time it takes to penetrate the

736 M. V. Zelkowitz, D. Wallace/Information and Sofrware Technology 39 (1997) 735-743

software to bypass its security protection, how many data

protection ‘items’ it contains, or what level of information

the program is allowed to process?

We summarize this by saying that the basic purpose for

experimentation is to determine whether methods used in

accordance with some underlying theory during the develop-

ment of a product results in software being as effective as

necessary.

2. Data collection models

When we do an experiment, we are interested in the effect

that a method or tool, called afactor, has on an attribute of

interest. The running of an experiment with a specific

assignment to the factors is called a treatment. Each agent

that we are studying and collecting data on (e.g., pro-

grammer, team, source program module) is called a subject.

The goal of an experiment is to collect enough data from a

sufficient number of subjects, all adhering to the same

treatment, in order to obtain a statistically significant result

on the attribute of concern compared to some other

treatment.

In developing an experiment to collect data on this attri-

bute, Pfleeger mentions three aspects of data collection [8]:

Replication: The most important attribute of the scienti-

fic method is to be able to replicate the results of an

experiment to permit other researchers to reproduce the

findings. To ensure that this is so, we must not confound

two effects. That is, we must make sure that unantici-

pated variables are not affecting our results.

Local control: Local control refers to the degree to which

we can modify the treatment applied to each subject.

Factorial design: We have maximal local control by

applying every possible treatment for each factor. Thus

if there are three factors to evaluate, and each has two

possible values, then we need to run six experiments,

with subjects randomly chosen from among the factors.

There are two additional aspects, not mentioned by

Pfleeger, to consider:

1. Znjkence: We need to know the impact that a given

experimental design has on the results of that experi-

ment. We will call this influence and classify methods

as being passive or active. Passive methods view the

artifacts of study as inorganic objects that can be studied

with no effects on the object itself. Active methods are

those which interact with the artifacts under study. Thus

we introduce the possibility of contamination or modifi-

cation of the results due to the very nature of our investi-

gations. Active methods allow us to have some local

control over the experiment, while passive methods pro-

vide for minimal perturbation of the results. In other

scientific disciplines, a variety of experimental designs

can be active or passive. Archaeology uses mostly

passive designs, chemistry mostly active, while fields

such as astronomy often use a mixture of both.

2. Temporal properties: Experiments may be historical

(e.g., archaeological) or current (e.g., monitoring a

current project). There is certainly less control over the

experimental design if the basic data was collected

before the experiment began.

By looking at multiple examples of software engineering

validation (e.g., the NASA Software Engineering Labora-

tory, the 600 published papers discussed later), we have

developed a taxonomy for software engineering experimen-

tation that describes 12 different experimental approaches.

We are not claiming that this list of 12 is the ultimate list,

but we have not seen any such list before that effectively

categorizes multiple instances of experimental designs that

are appropriate for our community. We believe that this list

is a good start for such an understanding of software engi-

neering experimentation.

Experimentation is grouped into three categories:

An observational method will collect relevant data as a

project develops. There is relatively little control over

the development process.

An historical method collects data from projects that

have already been completed. The data already exists;

it is only necessary to analyze what has already been

collected.

A controlled method provides for multiple instances of

an observation in order to provide for statistical validity

of the results.

2.1. Observational methods

An observational method will collect relevant data as a

project develops. There are four such methods: Project

monitoring, Case study, Assertion, and Field study.

Project Monitoring. This is the collection and storage of

data that occurs during project development. It is a passive

model since the data will be whatever the project generates

with no attempt to influence or redirect the development

process or methods that are being used. The assumption is

made that the data will be used for some immediate analysis.

If an experimental design is constructed after the project is

finished, then we would call this an historical lessons

learned study.

This method lacks any experimental goals or consistency

in the data that is collected. It is important, however, to

collect this information so that a baseline can be established

later, should the organization build a more complex experi-

mentation process. Establishing baselines is crucial for later

process improvement activities, such as applying Basili’s

Quality Improvement Paradigm (QIP) [11.

Case Study. A project is monitored and data collected

over time. The important facet in this model is that the

project is to be undertaken whether data is to be collected

h4.V. Zelkowitz, D. Wallace/Information and Software Technology 39 (1997) 735-743 131

or not. With a relatively minimal addition to the costs to the

project, valuable information can be obtained on the various

attributes characterizing its development. (The NASA SEL

claims that this adds only 1% to 2% to the cost of a project.)

This differs from the project monitoring method above in

that data collection is focused on a specific goal for the

project. A certain attribute is studied (e.g., reliability,

cost) and data is collected to measure that attribute. Similar

data is often collected from a class of projects so that a

baseline is built that represents the organization’s standard

process for software development.

Assertion. There are many examples where the developer

of a technology wishes to show that it is effective and

becomes both the experimenter and the subject of the

study. Sometimes this may be a preliminary test before a

more formal validation of the effectiveness of the technol-

ogy. But all too often, the experiment is a weak example

favoring the proposed technology over alternatives. As

skeptical scientists, we would have to view these as poten-

tially biased since the goal is not to understand the differ-

ence between two treatments, but to show that one particular

treatment (the newly developed technology) is superior. We

will refer to such experiments as assertions.

The assertion category can be viewed as a value judgment

by us on the effectiveness of an experiment performed by

the developer. We had three alternatives for such experi-

ments: (1) Consider it a true experiment, which we believed

would not be appropriate in light of ‘good scientific

principles’; (2) consider it as no experiment at all, which

we also believed was not appropriate since some validation,

even if weak, was being performed on the technology; or (3)

reserve judgment on how to classify it by making it a sepa-

rate category, which allows us to classify it as either of the

first two categories as needed.

Field study. It is often desirable to compare several pro-

jects simultaneously. We view this as a cross between the

project monitoring method, where any data is collected and

the case study, where specific data is collected. An outside

group will come and monitor the subject groups to collect

the relevant information. Since the process is not modified,

the data that can be collected is limited, but designed to

achieve specific goals.

If the field study becomes very intrusive with a significant

involvement of the development staff in the collection of the

necessary data, then this method is a form of the replicated

experiment to be described later.

2.2. Historical methods

An historical method collects data from projects that have

already been completed. There are four such methods:

Literature search, Legacy data, Lessons learned, and Static

analysis.

Literature Search. The literature search requires the

investigator to analyze the results of papers and other docu-

ments that are publicly available. This can be useful to

confirm an existing hypothesis or to enhance the data col-

lected on one project with data that has been previously

published on similar projects (e.g., meta-analysis [6]).

This provides information across a broad range of indus-

tries, and access to such information is at a low cost. How-

ever, a major weakness with a literature search is selection

bias or the tendency of researchers, authors, and journal

editors to publish positive results. Contradictory results

often are not reported, so a meta-analysis of previously

published data may indicate an effect that is not really pre-

sent if the full set of observable data was presented.

Legacy Data. A completed project leaves a legacy of

products, called artifacts. These artifacts include the source

program, specification document, design, and a test plan, as

well as data collected during product development. We

assume there is a fair amount of quantitative data available

for analysis. When we do not have such quantitative data,

we call the analysis a lessons learned study (described later).

We will also consider the special case of looking at source

code and specification documents alone under the separate

category of static analysis.

Legacy data is a low cost form of experimentation. It can

be called a form of software archaeology as we examine

existing files trying to determine trends. Data mining is

another term often used for parts of this work as we try to

determine relationships buried in the collected data.

Lessons-learned. Lessons-learned documents are often

produced after a large industrial project is completed,

whether data is collected or not. A study of these documents

often reveals qualitative aspects which can be used to

improve future developments. If project personnel are still

available, it is possible to interview them to obtain trends in

looking at the effects of methods.

Static Analysis. We can often obtain needed information

by looking at the completed product. We analyze the struc-

ture of the product to determine characteristics about it.

Software complexity and data flow research fit under this

model. For example, since we do not fully understand what

the effective measurements are, the assumption is made that

products with a lower complexity or simple data flow will be

more effective. We examine the product to learn if its com-

plexity value is lower because of the development method

used.

2.3. Controlled methods

A controlled method provides for multiple instances of an

observation in order to provide for statistical validity of

the results. This is the more classical method of experimen-

tal design in other scientific disciplines. We consider four

such methods: Replicated, Synthetic environment, Dynamic

analysis, and Simulation.

Replicated Experiment. In a replicated experiment several

projects (e.g., subjects) are staffed to perform a task

using alternative treatments. Ideally, several projects are

staffed to perform each of the possible treatments. Control

738 M.V. Zelkowitz, D. Walladlnformtion and Software Technology 39 (1997) 735-743

variables are set (e.g., duration, staff level, methods used) and

statistical validity can be more easily established than the

large case study previously mentioned. On the other hand,

the risk of perturbing the experimental results is great since

the subjects know they are part of an experiment and not part

of a true development.

used to evaluate several products that have the same func-

tionality in order to compare the performance of each.

If there are enough replications, statistical validity of the

method under study may be established. Since this is usually

part of an industrial setting, the transfer of this technology to

industry should be apparent, and the risk of using the results

of this study should be lessened. However, the cost of such

replications is great, limiting their usefulness.

Simulation. We can evaluate a technology by executing

the product using a model of the real environment. We

hypothesize, or predict, how the real environment will

react to the new technology. If we can model the behavior

of the environment for certain variables, we often can ignore

other harder-to-obtain variables and obtain results more

readily using a simulated environment rather than real data.

By ignoring extraneous variables, a simulation is often

easier, faster, and less expensive to run than the full product

in the real environment (i.e., the dynamic analysis method).

Synthetic Environment Experiments. In software develop-

ment, projects are usually large and the staffing of multiple

projects (e.g., the replicated experiment) in a realistic setting

is usually prohibitively expensive. For this reason, most

software engineering replications are performed in a smaller

artificial setting, which only approximates the environment

of the larger projects. Because we believe that such experi-

ments are performed in a different environment from the

industrial setting of a true development, we call these

synthetic environment experiments.

2.4. Alternative classijication models

Such experiments often appear as human factors studies

investigating some aspect in system design or use. Typi-

cally, a large group of individuals (e.g., students or indus-

trial programmers) work at some task for several hours,

leading to data being collected on this task. A relatively

small objective is identified and all variables are fixed

except for the control method being modified. Personnel

are often randomized from a homogeneous pool of subjects,

duration of the experiment is fixed, and as many variables as

possible are monitored.

Several other frameworks for experimentation have been

proposed. Basili [2] calls an experiment in vivo, at a

development location, or in vitro, in an isolated controlled

setting (e.g., in a laboratory). A project may involve one

team of developers or multiple teams, and an experiment

may involve one project or multiple projects. This permits 8

different experiment classifications. Our case study, for

example, would be an in vivo experiment involving one

team and one project. The synthetic study, on the other

hand, is often a multiple team blocked (multiple individuals

in most cases) in vitro study involving one project.

Like the replicated experiment, it can be used to obtain a

high degree of statistical validity, but even more than the

replicated experiment, the artificial experimental setting of

the experiment (e.g., classroom or laboratory) may perturb

the results to make their applicability to an industrial setting

very suspect.

Kitchenham [5] considers experiments as: quantitative

experiments to identify measurable benefits of using a

method or tool; a qualitative experiments to assess the

features provided by a method or tool (e.g., the usability

and effectiveness of a required feature, training require-

ments); and benchmarking where a number of standard

tests are run against alternative technologies in order to

assess their relative performance.

We believe that both of the above taxonomies are subsets

of the 12 we have given here and do not include all 12 of the

experimental models we have presented.

Because the objectives of such experiments are often

limited, the relevance of transferring the results of such

experiments to industry may be limited. In this case it is

not clear that the experimental design relates to the environ-

ment that already exists in industry. So we may end up with

valid statistics of an experimental setup for a method that

may not be applicable.

3. Model validation

Dynamic Analysis. The controlled methods we have so far

discussed generally evaluate the development process. We

can also look at controlled methods that execute the product.

We call these dynamic analysis methods.

Given our taxonomy, we evaluated the software engineer-

ing literature and did a brief overview of the literature from

other scientific disciplines in order to determine: (1) which

methods were used most frequently, and (2) how well com-

puter science compares to other disciplines.

3. I. SofhYare engineering literature

The given product is either modified or executed under To test whether the classification presented here reflects

carefully controlled situations in order to extract informa- the software engineering community’s idea of experimental

tion on using the product. Techniques that employ scripts of design and data collection, we evaluated software engineer-

specific scenarios or which modify the source program of ing publications covering three different years: 1985, 1990,

the product itself in order to be able to extract information and 1995. We looked at each issue of IEEE Transactions on

while the program executes are both examples of this Sojlware Engineering (a research journal), IEEE Software

method. Benchmarking occurs when a common script is (a magazine which discusses current practices in software

739 M. V. Zelkowitz, D. W allace/Information and So&are Technology 39 (1997) 735-743

Table 1

Classification of software engineering papers

Method 1985 % 1990 % 1995 % Total %

Not applicable 15 22 13 50

No experimentation 83 36.4 57 29.2 21 19.4 167 29.1

Replicated 1 0.4 1 0.5 4 2.9 6 1.1

Synthetic 5 2.2 5 2.6 2 1.4 12 2.1

Dynamic analysis 0 3 1.5 4 2.9 7 1.2

Simulation 12 5.3 11 5.6 8 5.8 31 5.5

Project Monitoring 0 1 0.5 0 1 0.2

Case study 19 8.3 10 9.1 20 14.4 58 10.3

Assertion 19 34.6 73 37.4 40 28.8 192 34.2

Field study 2 0.9 1 0.5 4 2.9 7 1.2

Literature search 5 2.2 I 3.6 5 3.6 17 3.0

Legacy data 4 1.8 4 2.1 3 2.2 11 1.9

Lessons learned 16 7.0 13 6.7 20 14.4 49 8.1

Static analysis 2 0.9 0 2 1.4 4 0.7

Yearly totals 243 211 152 612

engineering), and the proceedings from that year’s Inter-

national Conference on Software Engineering (ICSE). We

classified each paper according to our taxonomy according

to how the authors validated their claims in the paper. For

completeness we needed the following two additional

classifications:

1. Nor applicable. Some papers did not address some new

technology, so the concept of data collection did not

apply (e.g., a paper summarizing a recent conference

or workshop).

2. No experiment. Some papers describing a new technol-

ogy contained no experimental validation in it. We do

not put a value judgment on this and no experiment is not

the same as bad experimental validation. For example, a

paper that describes a new theory may be quite important

and useful to the field. It would be up to the next genera-

tion of researchers to implement and evaluate the effec-

tiveness of the proposed technology.

According to Glass, a research paper typically contains

four sections [4]:

1. an informational phase reflecting the context of the pro-

posed technology,

2. a propositional phase stating the hypothesis for the new

technology,

3. an analytical phase analyzing the hypothesis and propos-

ing a solution, and

4. an evaluative phase demonstrating the validity of the

proposed solution.

Glass observed that most papers in his study contained some

form of the first three sections, and the fourth evaluative

phase was often missing.

Tichy [9] performed a comprehensive study of 400 pub-

lished papers in the computer science literature (mostly

ACM journals and conferences) and arrived at a similar

conclusion. He classified all papers into formal theory,

design and modeling, empirical work, hypothesis testing,

and other. His major observation was that about half of

the design and modeling papers did not include experimen-

tal validation, whereas only 10 to 15% of papers in other

engineering disciplines had no such validation.

In our survey, we were most interested in the data collec-

tion methods employed by the authors of the paper in order

to determine comprehensiveness of our classification scheme.

Therefore, we tried to carefully distinguish between Glass’

analytical and evaluative phases in order to carefully distin-

guish between demonstration of concept (which may involve

some measurements as a ‘proof of concept’, but not a full

validation of the method) and a true attempt at validation of

the results. Therefore, as in the Tichy study, a demonstration

of a technology via an example was considered part of the

analytical phase. The paper had to go beyond that demonstra-

tion to show that there were some conclusions about the

effectiveness of the technology before we considered that

the paper had an evaluative part.

Table 1 (Summary totals) summarizes the 612 papers

from 1985, 1990, and 1995 that we classified.* (We did

not include the 50 ‘not applicable’ papers in computing

the percentages in Table 1.) The most prevalent validation

mechanisms appear to be lessons learned and case studies,

each at a level of about 10%. Assertions were close to one-

third of the papers. Simulation was used in about 5% of the

papers, while the remaining techniques were each used in

about 1 to 3% in the papers.

About one-third of the papers had no experimental valida-

tion; however, the percentages dropped from 36.4% in 1985

to 29.2% in 1990 to only 19.4% in 1995. Improvement in

this important category seems to be occurring.

From Tichy’s classification, many ‘empirical work’

papers really are the result of an experiment to test a

theoretical hypothesis, so it may not be fair to ignore

those papers from the set of design and modeling papers.

If we assume the 25 empirical work papers in Tichy’s study

’ The complete breakdown by magazine is given in the appendix.

740 M. V. Zelkowitz, D. Wallac.dlnfomation and Software Technology 39 (1997) 735-743

Table 2

Classification from other sciences

Method J1 J2 J3 J4 J5 J6 Total %

Not applicable (Number) 2 5 1 8

No experimentation 16% 58% 7% 21% 6% 31% 26 20

Replicated 5% 4% 4% 12% 5

Synthetic 4% 11% 29% 9

Dynamic analysis 32% 5% 19% 11% 17 -

Simulation 15% 32% 13

Project monitoring

Case study 40% 16% 41% 6% 8% 26

Assertion 8% 4% 11% 8% 7 5

Field study 4% 18% 4

Literature search 4% 11% 7% 7% 24% 23% 14

Legacy data 6% 23% 4

Lessons learned 5% 8% 2

Static analysis

Paper count (Number) 25 21 32 28 17 14 137

Key:

Jl: Measurement Science and Technology, Jan-Feb, 1994 (devices to perform measurements).

J2: American Journal of Physics, Jan-Feb, 1996 (theory and application theories of physical theories).

53: Journal of Research of NJST, Sept 1991-Aug, 1992 (measurement and standardization).

J4: Management Science, Jan-March, 1992 (queuing theory and scheduling).

J5: Behavior Therapy, Winter-Summer, 1996 (clinical therapies).

J6: Journal of Anthropological Research, Winter-Summer, 1996 (human cultures).

all have evaluations in them, then the percent of design and

modeling papers with no validation drops from 50 to about

40% in his study. (These numbers are approximate, since we

do not have the details of his raw data.) This number is

consistent with our results.

We did not try to classify our database of papers into

subject matter, so our results am not strictly comparable

with Tichy’s. However, by combining the no experimental

validation papers with the weak form of assertion validation,

we found that almost two-thirds of the papers did not have

strong validation of their reported claims. However a claim

that 64% of the papers had no validation is too strong a state-

ment to make, since the assertion papers did include some

form of quantitative analysis of the effects of their technology.

3.2. Comparison with other sciences

In order to provide a proper perspective, we looked at

several different journals in other scientific disciplines.

Because of the thousands of available journals and the

limited resources of the authors to perform this survey, the

following is necessarily incomplete and only represents a

small random sampling of the possibilities. The method we

chose was to evaluate several consecutive issues of each

journal published between 1992 and 1996. We wanted

about 20 papers from each journal. (We soon discovered

that classifying papers in fields in which we were not experts

took considerably more time than those in our more familiar

software engineering domain.) The results of this sampling

are given in Table 2.

Although our sample size is very small and we make no

claims that these are representative of each respective field,

some trends seem apparent:

(1) Not too surprisingly, each field seems to have a

characteristic pattern of canonical data collection methods.

Physics journals tend to report on measurement devices or

reactions, so validation tends to be in repeated trials of the

device to confirm behavior (e.g., techniques like dynamic

analysis and simulation). Psychology is concerned about

human behavior, so its journals tend to report on longitudi-

nal studies of subjects who had different treatments (e.g.,

replicated and synthetic experiments). Anthropological

papers used mostly passive techniques on historical data

(e.g., legacy data). Because of these differing characteris-

tics, we did not believe a summary ‘ranking’ of techniques

across all 6 surveyed journals made any sense, so we

omitted those numbers in Table 2, except for the no experi-

mentation and assertion entries, which we discuss below.

Anthropology and psychology also tend to use literature

search as a significant method for validation, much more

than in the other journals. The literature search seems to be

in the range of 4 to 11% across the physics journals we

looked at. This may indicate that other disciplines are

more willing to publish papers that confirm previously pub-

lished results. We believe (although this is only known

anecdotally) that the computer science community frowns

on publishing papers if a previous study by another author

has been published on a given topic. In our software engin-

eering sample, the percentage of literature survey grew

from 2.1 to 3.3 to 3.5% from 1985 to 1995, so perhaps the

situation is improving in our own field.

(2) In the physics journals, except for American Journal

ofPhysics, the percentage of no experimentation papers was

M.V. Zelkowitz, D. W allace/Information and Software Technology 39 (1997) 735-743 741

Table 3

No experimentation papers

ICSE conferences

Theory

No validation

IEEE Software Magazine

Theory

No validation

Transactions on Software

Engineering

Theory

No validation

summary totals

Theory

No validation

No experimentation

Papers

1985 1990 1995 Total %

3 1 3 I 20.6

13 I 7 27 79.4

1 0 0 1 4.5

10 8 3 21 95.5

18 19 I 44 39.6

38 11 7 61 60.4

22 20 10 52 31.1

61 31 17 11 68.9

83 53 27 167

much lower than in software engineering (7 to 21% com-

pared to 30% in software engineering). However, the trends

in software engineering look favorable, with the per cent of

no experimentation dropping from 36% to 29% to 19% from

1985 to 1995.

In looking at the 11 ‘No experimentation’ papers in

physics, 9 were theoretical papers developing new theories

based upon some formal model that were not applicable to

experimentation. Only two of the papers (11%) appeared to

lack quantitative data where such data could have been

presented.

We noticed that anthropology also had a high rate of no

experimentation, coupled with a high percentage of litera-

ture searches. Perhaps the high cost of field trips to available

anthropological sites to obtain original data has allowed the

field to develop in this manner.

We checked for this same phenomenon as seen in physics

in our software engineering sample by reevaluating all the

papers originally classified as ‘no experiment’ (Table 3). Of

these 167 papers, about one-third (31 .l%) could be called

theoretical papers. (The papers had to have a formal

inference component in order to be called a theoretical

paper. A paper that was simply a description of a new pro-

cess, language, or technique with no formal component to

prove that the concept had the desired properties claimed by

the authors was still considered a ‘no experiment’ paper.)

From Table 3 we also see, not unsurprisingly, that differ-

ent publications have different classes of papers. IEEE Soft-

ware, as a general purpose magazine, has few theoretical

papers, and the ICSE conference has fewer theoretical

papers than the archival journal (Z’runsactions on So&are

Engineering).

By looking only at the 340 papers from the archival

journal, we get the complete classification given in Table 4.

According to this table, about two-thirds of the papers

(223 out of 334, not counting the not applicable papers)

were classified according to our 1Zmethod taxonomy,

about 13% were theoretical papers, and about 20% lacked

any validation. This 20% figure is not out of line with the

other disciplines we looked at.

(3) Although the 20% ‘no experimentation’ figure for

TSE papers looks fairly good, about 34% of our sample of

classified papers were assertions (including 118 of the 223

classified TSE papers). Assertion papers are relatively rare

across the other journals we looked at (from 0 to 11% in our

sample).

If we subtract the 9 theoretical papers in the physics

journal from the total of 28 no experimentation papers and

7 assertion papers, the total of 26 papers with no or little

experimentation (20%) is similar to the 15% found by Tichy

in his study of other disciplines. The corresponding numbers

for software engineering are 20% no experimentation with

34.2% assertions, or just over 50% of the sample of software

engineering papers should have done a better job of validat-

ing their claims.

(4) Many journals use a standard format in the organiza-

tion of technical papers that includes presentation of the

hypothesis, development of the concept, and experimental

validation. Most papers included a section called ‘Experi-

ment.’ The Behavior Therapy papers all had sections titled

‘Method’, ‘Procedures’ and ‘Results’, making the classifi-

cation of such papers quite easy. Such rigid formatting is

certainly not true in computer science.

Table 4

TSE paper classifications

Count %

Not applicable 6

No experimentation 67 20.1

Theory 44 13.2

Some experimentation 223 66.8

Total 340 100.0

142 M.V. Zelkowitz, D. W allace/Information and So&are Technology 39 (1997) 735-743

Table 5

International conference on software engineering

Method 1985 % 1990 % 1995 % Total %

Not applicable 6

No experimentation 16

Replicated 1

Synthetic 3

Dynamic analysis 0

Simulation 2

Project monitoring 0

Case study 5

Assertion 12

Field study 1

Literature search 1

Legacy data 1

Lessons learned 7

Static analysis 1

_

32.0

2.0

6.0

4.0

10.0

24.0

2.0

2.0

2.0

14.0

2.0

4 _ 5

8 25.8 10

0 1

0 0

0 0

0 1

0 0

7 22.6 4

12 38.7 4

0 1

1 3.2 0

2 6.5 1

1 3.2 5

0 0

37.0

3.7

3.7

14.8

14.8

3.7

3.7

18.5

15

34

2

3

0

3

0

16

28

2

2

4

13

1

31.5

1.9

2.8

2.8

14.8

25.9

1.9

1.9

3.7

12.0

0.9

4. Conclusions

In this paper we have developed a 12-step taxonomy for

classifying experimental validation in the scientific litera-

ture. We classified 612 papers in the software engineering

literature and found that the method appears to work quite

well. In addition, we confirmed some of the observations of

Glass and Tichy that the software engineering community

does not do a good job in validating its claims.

Tables 5-7 are the complete set of data for the 612 papers

that we analyzed. They are summarized by Table 1. An ear-

lier report [IO] provides additional background on this study.

We observed that 20% of the papers in the journal IEEE

Transactions on Software Engineering have no validation

component (either experimental or theoretical). This

number is comparable to the 15 to 20% observed in other

scientific disciplines. However, about one-third of the

software engineering papers had a weak form of experimen-

tation (assertions) where the comparable figure for other

fields was more like 5 to 10%.

We were encouraged by these findings that in about 80%

of the papers, the authors realized that a proper scientific

Table 6

IEEE Software Magazine

paper needs to validate its claims. This goes against the

usual folklore that software engineering is simply ad hoc

system building with no thoughts to the underlying science

of the field. However, the real weakness in our field seems to

be in our assertion category. These are papers where the

authors realize they need to validate their claims, but we

believe (albeit subjectively) that their validation was

generally insufficient. We believe that this large assertion

category represents a lack of attention on the part of authors.

If we, as a discipline, start to require more precise valida-

tion, this number could be brought down fairly quickly.

We also reviewed over 100 papers from several other

scientific disciplines. Each field seems to have characteristic

methods appropriate for its problem domain. We seem to

confirm the contention that other fields do a better job of

validating scientific claims. The assertion classification is

infrequently used and literature search validation is more

prevalent than in software engineering. We must restate,

of course, that our sampling of the other journals was by

an informal random process and subject to change if we

perform as detailed a study of those disciplines as we

believe we have done in software engineering.

Method 1985 % 1990 % 1995 % Total %

Not applicable 6 16 7

No experimentation 11 3214 8 18.2 3

Replicated 0 0 0

Synthetic 1 2.9 1 2.8 0

Dynamic analysis 0 0 0

Simulation 0 0 1

Project monitoring 0 1 2.8 0

Case study 2 5.9 6 13.6 6

Assertion 13 38.2 19 43.2 14

Field study 0 0 1

Literature search 1 2.9 5 11.4 3

Legacy data 1 2.9 0 1

Lessons learned 5 14.7 4 9.1 7

Static analysis 0 0 0

8.3

2.8

16.7

38.9

2.8

8.3

2.8

19.4

29

22

0

2

0

1

1

14

46

1

9

2

16

0

_

19.3

1.8

0.9

0.9

12.3

40.4

0.9

7.9

1.8

14.0

143 M.V. Zelkowitz, D. W allace/Information and Sofhoare Technology 39 (1997) 735-743

Table 7

IEEE Transactions on Software Engineering

Method 1985 % 1990 % 1995 % Total %

Not applicable 3 2 _ 1 6 _

No experimentation 56 38.9 41 34.2 14 18.4 111 32.6

Replicated 0 1 0.8 3 3.9 4 1.2

Synthetic 1 0.7 4 3.3 2 2.6 7 2.1

Dynamic analysis 0 3 2.5 4 5.3 7 2.1

Simulation 10 6.9 11 9.2 6 7.9 27 7.9

Project monitoring 0 0 0 0

Case study 12 8.3 6 5 10 13.2 28 8.2

Assertion 54 37.5 42 35.0 22 28.9 118 34.7

Field study 1 0.7 1 0.8 2 2.6 4 1.2

Literature search 3 2.1 1 0.8 2 2.6 6 1.8

Legacy data 2 1.4 2 1.7 1 1.3 5 1.5

Lessons learned 4 2.7 8 6.6 8 10.5 20 5.9

Static analysis 1 0.7 0 2 2.6 3 0.9

Software engineering seems unique among the

disciplines we studied. We have process research looking

at groups of individuals, much like the longitudinal studies

of psychology, we have post mortems to understand a

completed project, much like anthropology, and we develop

tools to perform actions, much like physics. But we often are

developing a ‘first of its kind’ device or process, so com-

parable data is not easily obtainable. We would expect a

characteristic software engineering profile to be more varied

than the other fields we looked at.

Our next step will be to refine these 12 approaches more

precisely and look more closely at what data each of the

techniques can provide to the experimenter. Our goal is to

provide a means that can be used to choose an experimental

paradigm that can be used to collect a specific type of

evaluation data.

We do not wish to end this paper with the claim that

software engineering is an inferior and sloppy science.

Software engineering is also a comparatively new field.

Unlike physics, there do not exist older devices from

which comparative data can be easily obtained. Therefore,

it often is hard to obtain good quantitative data from which

to make an evaluation. However, we certainly can do better

than we are currently doing. It is encouraging that the trends

from 1985 to 1990 to 1995 are moving in the right direction.

Acknowledgements

We acknowledge the help of Dale Walters of NIST

who helped to classify the 600 papers used to validate the

classification model described in this paper.

References

[l] V.R. Basil, H.D. Rombach, The TAME project: Towards improve-

ment-oriented software environments, IEEE Transactions on Software

Engineering 14 (6) (1988) 758-773.

[2] V.R. Basili, The role of experimentation: Past, present, future

(keynote presentation), 18th International Conference on Software

Engineering, Berlin, Germany, March, 1996.

[3] V. Basil, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, R. Pajerski,

SEL’s software process-improvement program, IEEE Software 12 (6)

(1995) 83-87.

[4] R.L. Glass, A structure-based critique of contemporary computing

research, Journal of Systems and Software 28 (1) (1995) 3-7.

[5] B.A. Kitchenham, Evaluating software engineering methods and tool,

ACM SIGSOFT Software Engineering Notes (1996) 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 15.

[6] National Research Council, Combining information: Statistical issues

and opportunities for research, Panel on Statistical Issues and Oppor-

tunities for Research in the Combination of Information, National

Academy Press, Washington, DC, 1992.

[7] M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber, Capability matur-

ity model for software, version 1 .l, IEEE Software 10 (4) (1993)

18-27.

[8] S.L. Pfleeger, Experimental design and analysis in software

engineering, Annals of Software Engineering 1 (1995) 219-253.

[9] W.F. Tichy, P. Lukowicz, L. Prechelt, E.A. Heinz, Experimental

evaluation in computer science: A quantitative study, Journal of

Systems and Software 28 (1) (1995) 9-18.

[lo] M.V. Zelkowitz, D. Wallace, Experimental models for software diag-

nosis, National Institute of Standards and Technology, NISTIR 5889,

September, 1996.

