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Abstract 

Although experimentation is an accepted approach toward scientific validation in most scientific disciplines, it only recently has gained 

acceptance within the software development community. In this paper we discuss a 12-model classification scheme for performing experi- 

mentation within the software development domain. We evaluate over 600 published papers in the computer science literature and over one 

hundred papers from other scientific disciplines in order to determine: (1) how well the computer science community is succeeding at 

validating its theories, and (2) how computer science compares to other scientific disciplines. Published by Elsevier Science B.V. 
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1. Experimentation 

Experimentation and data collection are the tools of 

science for validating theories. The classical scientific 

method depends upon theory formation followed by experi- 

mentation and observation in order to provide a feedback 

loop to validate, modify and improve on the theory. Most of 

these concepts developed in the so-called ‘hard sciences’ 

(e.g., physics, chemistry) hundreds of years ago and fields 

such as theoretical physics coexist along with experimental 

physics as opposing forces to develop new concepts and 

validate those concepts so developed. 

Computer science is a relatively new field, with most 

academic departments formed during the late 1960s and 

1970s. A strong experimental model of the field has not 

developed, at least as computer science folklore explains it. 

However, is this true? This question forms the basis for 

this paper. We study experimentation in computer science 

and have developed a 1Zstep model for experimental com- 

puter science. We classify over 600 papers in the computer 

science literature and show that our folk wisdom seems to be 

true - we do not do a good job in experimentation. We then 

survey several other scientific disciplines to see how our 

classification model and experimental paradigm fit other 

disciplines. 

Sojlware Engineering Experimentation. We have focused 

our concerns on the subdiscipline of software engineering, 
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the study of tools and methods for producing quality soft- 

ware products. Experimentation has become the research 

focus of several groups. Data collection is central to the 

NASA/GSFC Software Engineering Laboratory [3], the 

concept behind the Data and Analysis Center for Software 

(DACS) located at Rome Laboratories, and a crucial part of 

the upper levels of the Software Engineering Institute’s 

(SEI) Capability Maturity Model (CMM) [7]. However, 

how far has this technology spread across the entire sub- 

discipline? In fact, what does experimentation even mean in 

this domain? 

Software engineering is concerned with techniques useful 

for the development of effective software programs, where 

‘effective’ depends upon specific problem domains. Effec- 

tive software can mean software that either is low cost, 

reliable, rapidly developed, safe, or has some other relevant 

attribute. We make the assumption that to answer the ques- 

tion “Is this technique effective?” we need some measure- 

ment of the relevant attribute. Saying only that a technique 

is ‘good’ conveys no real information. Instead, we need a 

measurement applied to each attribute so that we can say 

one technique is more or less effective than another. 

For some attributes, this mapping from an effective attri- 

bute to a measurement scale is fairly straightforward. If 

effective means low cost, then cost of development is 

such a measure. For other applications of effectiveness, 

we have no good measurement scale. Safety is an example. 

What does it mean for one product to be safer than another? 

Security is another one of these nebulous attributes. What 

does it mean for one product to be more secure than 

another? Does it mean the time it takes to penetrate the 
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software to bypass its security protection, how many data 

protection ‘items’ it contains, or what level of information 

the program is allowed to process? 

We summarize this by saying that the basic purpose for 

experimentation is to determine whether methods used in 

accordance with some underlying theory during the develop- 

ment of a product results in software being as effective as 

necessary. 

2. Data collection models 

When we do an experiment, we are interested in the effect 

that a method or tool, called afactor, has on an attribute of 

interest. The running of an experiment with a specific 

assignment to the factors is called a treatment. Each agent 

that we are studying and collecting data on (e.g., pro- 

grammer, team, source program module) is called a subject. 

The goal of an experiment is to collect enough data from a 

sufficient number of subjects, all adhering to the same 

treatment, in order to obtain a statistically significant result 

on the attribute of concern compared to some other 

treatment. 

In developing an experiment to collect data on this attri- 

bute, Pfleeger mentions three aspects of data collection [8]: 

Replication: The most important attribute of the scienti- 

fic method is to be able to replicate the results of an 

experiment to permit other researchers to reproduce the 

findings. To ensure that this is so, we must not confound 

two effects. That is, we must make sure that unantici- 

pated variables are not affecting our results. 

Local control: Local control refers to the degree to which 

we can modify the treatment applied to each subject. 

Factorial design: We have maximal local control by 

applying every possible treatment for each factor. Thus 

if there are three factors to evaluate, and each has two 

possible values, then we need to run six experiments, 

with subjects randomly chosen from among the factors. 

There are two additional aspects, not mentioned by 

Pfleeger, to consider: 

1. Znjkence: We need to know the impact that a given 

experimental design has on the results of that experi- 

ment. We will call this influence and classify methods 

as being passive or active. Passive methods view the 

artifacts of study as inorganic objects that can be studied 

with no effects on the object itself. Active methods are 

those which interact with the artifacts under study. Thus 

we introduce the possibility of contamination or modifi- 

cation of the results due to the very nature of our investi- 

gations. Active methods allow us to have some local 

control over the experiment, while passive methods pro- 

vide for minimal perturbation of the results. In other 

scientific disciplines, a variety of experimental designs 

can be active or passive. Archaeology uses mostly 

passive designs, chemistry mostly active, while fields 

such as astronomy often use a mixture of both. 

2. Temporal properties: Experiments may be historical 

(e.g., archaeological) or current (e.g., monitoring a 

current project). There is certainly less control over the 

experimental design if the basic data was collected 

before the experiment began. 

By looking at multiple examples of software engineering 

validation (e.g., the NASA Software Engineering Labora- 

tory, the 600 published papers discussed later), we have 

developed a taxonomy for software engineering experimen- 

tation that describes 12 different experimental approaches. 

We are not claiming that this list of 12 is the ultimate list, 

but we have not seen any such list before that effectively 

categorizes multiple instances of experimental designs that 

are appropriate for our community. We believe that this list 

is a good start for such an understanding of software engi- 

neering experimentation. 

Experimentation is grouped into three categories: 

An observational method will collect relevant data as a 

project develops. There is relatively little control over 

the development process. 

An historical method collects data from projects that 

have already been completed. The data already exists; 

it is only necessary to analyze what has already been 

collected. 

A controlled method provides for multiple instances of 

an observation in order to provide for statistical validity 

of the results. 

2.1. Observational methods 

An observational method will collect relevant data as a 

project develops. There are four such methods: Project 

monitoring, Case study, Assertion, and Field study. 

Project Monitoring. This is the collection and storage of 

data that occurs during project development. It is a passive 

model since the data will be whatever the project generates 

with no attempt to influence or redirect the development 

process or methods that are being used. The assumption is 

made that the data will be used for some immediate analysis. 

If an experimental design is constructed after the project is 

finished, then we would call this an historical lessons 

learned study. 

This method lacks any experimental goals or consistency 

in the data that is collected. It is important, however, to 

collect this information so that a baseline can be established 

later, should the organization build a more complex experi- 

mentation process. Establishing baselines is crucial for later 

process improvement activities, such as applying Basili’s 

Quality Improvement Paradigm (QIP) [ 11. 

Case Study. A project is monitored and data collected 

over time. The important facet in this model is that the 

project is to be undertaken whether data is to be collected 
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or not. With a relatively minimal addition to the costs to the 

project, valuable information can be obtained on the various 

attributes characterizing its development. (The NASA SEL 

claims that this adds only 1% to 2% to the cost of a project.) 

This differs from the project monitoring method above in 

that data collection is focused on a specific goal for the 

project. A certain attribute is studied (e.g., reliability, 

cost) and data is collected to measure that attribute. Similar 

data is often collected from a class of projects so that a 

baseline is built that represents the organization’s standard 

process for software development. 

Assertion. There are many examples where the developer 

of a technology wishes to show that it is effective and 

becomes both the experimenter and the subject of the 

study. Sometimes this may be a preliminary test before a 

more formal validation of the effectiveness of the technol- 

ogy. But all too often, the experiment is a weak example 

favoring the proposed technology over alternatives. As 

skeptical scientists, we would have to view these as poten- 

tially biased since the goal is not to understand the differ- 

ence between two treatments, but to show that one particular 

treatment (the newly developed technology) is superior. We 

will refer to such experiments as assertions. 

The assertion category can be viewed as a value judgment 

by us on the effectiveness of an experiment performed by 

the developer. We had three alternatives for such experi- 

ments: (1) Consider it a true experiment, which we believed 

would not be appropriate in light of ‘good scientific 

principles’; (2) consider it as no experiment at all, which 

we also believed was not appropriate since some validation, 

even if weak, was being performed on the technology; or (3) 

reserve judgment on how to classify it by making it a sepa- 

rate category, which allows us to classify it as either of the 

first two categories as needed. 

Field study. It is often desirable to compare several pro- 

jects simultaneously. We view this as a cross between the 

project monitoring method, where any data is collected and 

the case study, where specific data is collected. An outside 

group will come and monitor the subject groups to collect 

the relevant information. Since the process is not modified, 

the data that can be collected is limited, but designed to 

achieve specific goals. 

If the field study becomes very intrusive with a significant 

involvement of the development staff in the collection of the 

necessary data, then this method is a form of the replicated 

experiment to be described later. 

2.2. Historical methods 

An historical method collects data from projects that have 

already been completed. There are four such methods: 

Literature search, Legacy data, Lessons learned, and Static 

analysis. 

Literature Search. The literature search requires the 

investigator to analyze the results of papers and other docu- 

ments that are publicly available. This can be useful to 

confirm an existing hypothesis or to enhance the data col- 

lected on one project with data that has been previously 

published on similar projects (e.g., meta-analysis [6]). 

This provides information across a broad range of indus- 

tries, and access to such information is at a low cost. How- 

ever, a major weakness with a literature search is selection 

bias or the tendency of researchers, authors, and journal 

editors to publish positive results. Contradictory results 

often are not reported, so a meta-analysis of previously 

published data may indicate an effect that is not really pre- 

sent if the full set of observable data was presented. 

Legacy Data. A completed project leaves a legacy of 

products, called artifacts. These artifacts include the source 

program, specification document, design, and a test plan, as 

well as data collected during product development. We 

assume there is a fair amount of quantitative data available 

for analysis. When we do not have such quantitative data, 

we call the analysis a lessons learned study (described later). 

We will also consider the special case of looking at source 

code and specification documents alone under the separate 

category of static analysis. 

Legacy data is a low cost form of experimentation. It can 

be called a form of software archaeology as we examine 

existing files trying to determine trends. Data mining is 

another term often used for parts of this work as we try to 

determine relationships buried in the collected data. 

Lessons-learned. Lessons-learned documents are often 

produced after a large industrial project is completed, 

whether data is collected or not. A study of these documents 

often reveals qualitative aspects which can be used to 

improve future developments. If project personnel are still 

available, it is possible to interview them to obtain trends in 

looking at the effects of methods. 

Static Analysis. We can often obtain needed information 

by looking at the completed product. We analyze the struc- 

ture of the product to determine characteristics about it. 

Software complexity and data flow research fit under this 

model. For example, since we do not fully understand what 

the effective measurements are, the assumption is made that 

products with a lower complexity or simple data flow will be 

more effective. We examine the product to learn if its com- 

plexity value is lower because of the development method 

used. 

2.3. Controlled methods 

A controlled method provides for multiple instances of an 

observation in order to provide for statistical validity of 

the results. This is the more classical method of experimen- 

tal design in other scientific disciplines. We consider four 

such methods: Replicated, Synthetic environment, Dynamic 

analysis, and Simulation. 

Replicated Experiment. In a replicated experiment several 

projects (e.g., subjects) are staffed to perform a task 

using alternative treatments. Ideally, several projects are 

staffed to perform each of the possible treatments. Control 



738 M.V. Zelkowitz, D. Walladlnformtion and Software Technology 39 (1997) 735-743 

variables are set (e.g., duration, staff level, methods used) and 

statistical validity can be more easily established than the 

large case study previously mentioned. On the other hand, 

the risk of perturbing the experimental results is great since 

the subjects know they are part of an experiment and not part 

of a true development. 

used to evaluate several products that have the same func- 

tionality in order to compare the performance of each. 

If there are enough replications, statistical validity of the 

method under study may be established. Since this is usually 

part of an industrial setting, the transfer of this technology to 

industry should be apparent, and the risk of using the results 

of this study should be lessened. However, the cost of such 

replications is great, limiting their usefulness. 

Simulation. We can evaluate a technology by executing 

the product using a model of the real environment. We 

hypothesize, or predict, how the real environment will 

react to the new technology. If we can model the behavior 

of the environment for certain variables, we often can ignore 

other harder-to-obtain variables and obtain results more 

readily using a simulated environment rather than real data. 

By ignoring extraneous variables, a simulation is often 

easier, faster, and less expensive to run than the full product 

in the real environment (i.e., the dynamic analysis method). 

Synthetic Environment Experiments. In software develop- 

ment, projects are usually large and the staffing of multiple 

projects (e.g., the replicated experiment) in a realistic setting 

is usually prohibitively expensive. For this reason, most 

software engineering replications are performed in a smaller 

artificial setting, which only approximates the environment 

of the larger projects. Because we believe that such experi- 

ments are performed in a different environment from the 

industrial setting of a true development, we call these 

synthetic environment experiments. 

2.4. Alternative classijication models 

Such experiments often appear as human factors studies 

investigating some aspect in system design or use. Typi- 

cally, a large group of individuals (e.g., students or indus- 

trial programmers) work at some task for several hours, 

leading to data being collected on this task. A relatively 

small objective is identified and all variables are fixed 

except for the control method being modified. Personnel 

are often randomized from a homogeneous pool of subjects, 

duration of the experiment is fixed, and as many variables as 

possible are monitored. 

Several other frameworks for experimentation have been 

proposed. Basili [2] calls an experiment in vivo, at a 

development location, or in vitro, in an isolated controlled 

setting (e.g., in a laboratory). A project may involve one 

team of developers or multiple teams, and an experiment 

may involve one project or multiple projects. This permits 8 

different experiment classifications. Our case study, for 

example, would be an in vivo experiment involving one 

team and one project. The synthetic study, on the other 

hand, is often a multiple team blocked (multiple individuals 

in most cases) in vitro study involving one project. 

Like the replicated experiment, it can be used to obtain a 

high degree of statistical validity, but even more than the 

replicated experiment, the artificial experimental setting of 

the experiment (e.g., classroom or laboratory) may perturb 

the results to make their applicability to an industrial setting 

very suspect. 

Kitchenham [5] considers experiments as: quantitative 

experiments to identify measurable benefits of using a 

method or tool; a qualitative experiments to assess the 

features provided by a method or tool (e.g., the usability 

and effectiveness of a required feature, training require- 

ments); and benchmarking where a number of standard 

tests are run against alternative technologies in order to 

assess their relative performance. 

We believe that both of the above taxonomies are subsets 

of the 12 we have given here and do not include all 12 of the 

experimental models we have presented. 

Because the objectives of such experiments are often 

limited, the relevance of transferring the results of such 

experiments to industry may be limited. In this case it is 

not clear that the experimental design relates to the environ- 

ment that already exists in industry. So we may end up with 

valid statistics of an experimental setup for a method that 

may not be applicable. 

3. Model validation 

Dynamic Analysis. The controlled methods we have so far 

discussed generally evaluate the development process. We 

can also look at controlled methods that execute the product. 

We call these dynamic analysis methods. 

Given our taxonomy, we evaluated the software engineer- 

ing literature and did a brief overview of the literature from 

other scientific disciplines in order to determine: (1) which 

methods were used most frequently, and (2) how well com- 

puter science compares to other disciplines. 

3. I. SofhYare engineering literature 

The given product is either modified or executed under To test whether the classification presented here reflects 

carefully controlled situations in order to extract informa- the software engineering community’s idea of experimental 

tion on using the product. Techniques that employ scripts of design and data collection, we evaluated software engineer- 

specific scenarios or which modify the source program of ing publications covering three different years: 1985, 1990, 

the product itself in order to be able to extract information and 1995. We looked at each issue of IEEE Transactions on 

while the program executes are both examples of this Sojlware Engineering (a research journal), IEEE Software 

method. Benchmarking occurs when a common script is (a magazine which discusses current practices in software 
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Table 1 

Classification of software engineering papers 

Method 1985 % 1990 % 1995 % Total % 

Not applicable 15 22 13 50 

No experimentation 83 36.4 57 29.2 21 19.4 167 29.1 

Replicated 1 0.4 1 0.5 4 2.9 6 1.1 

Synthetic 5 2.2 5 2.6 2 1.4 12 2.1 

Dynamic analysis 0 3 1.5 4 2.9 7 1.2 

Simulation 12 5.3 11 5.6 8 5.8 31 5.5 

Project Monitoring 0 1 0.5 0 1 0.2 

Case study 19 8.3 10 9.1 20 14.4 58 10.3 

Assertion 19 34.6 73 37.4 40 28.8 192 34.2 

Field study 2 0.9 1 0.5 4 2.9 7 1.2 

Literature search 5 2.2 I 3.6 5 3.6 17 3.0 

Legacy data 4 1.8 4 2.1 3 2.2 11 1.9 

Lessons learned 16 7.0 13 6.7 20 14.4 49 8.1 

Static analysis 2 0.9 0 2 1.4 4 0.7 

Yearly totals 243 211 152 612 

engineering), and the proceedings from that year’s Inter- 

national Conference on Software Engineering (ICSE). We 

classified each paper according to our taxonomy according 

to how the authors validated their claims in the paper. For 

completeness we needed the following two additional 

classifications: 

1. Nor applicable. Some papers did not address some new 

technology, so the concept of data collection did not 

apply (e.g., a paper summarizing a recent conference 

or workshop). 

2. No experiment. Some papers describing a new technol- 

ogy contained no experimental validation in it. We do 

not put a value judgment on this and no experiment is not 

the same as bad experimental validation. For example, a 

paper that describes a new theory may be quite important 

and useful to the field. It would be up to the next genera- 

tion of researchers to implement and evaluate the effec- 

tiveness of the proposed technology. 

According to Glass, a research paper typically contains 

four sections [4]: 

1. an informational phase reflecting the context of the pro- 

posed technology, 

2. a propositional phase stating the hypothesis for the new 

technology, 

3. an analytical phase analyzing the hypothesis and propos- 

ing a solution, and 

4. an evaluative phase demonstrating the validity of the 

proposed solution. 

Glass observed that most papers in his study contained some 

form of the first three sections, and the fourth evaluative 

phase was often missing. 

Tichy [9] performed a comprehensive study of 400 pub- 

lished papers in the computer science literature (mostly 

ACM journals and conferences) and arrived at a similar 

conclusion. He classified all papers into formal theory, 

design and modeling, empirical work, hypothesis testing, 

and other. His major observation was that about half of 

the design and modeling papers did not include experimen- 

tal validation, whereas only 10 to 15% of papers in other 

engineering disciplines had no such validation. 

In our survey, we were most interested in the data collec- 

tion methods employed by the authors of the paper in order 

to determine comprehensiveness of our classification scheme. 

Therefore, we tried to carefully distinguish between Glass’ 

analytical and evaluative phases in order to carefully distin- 

guish between demonstration of concept (which may involve 

some measurements as a ‘proof of concept’, but not a full 

validation of the method) and a true attempt at validation of 

the results. Therefore, as in the Tichy study, a demonstration 

of a technology via an example was considered part of the 

analytical phase. The paper had to go beyond that demonstra- 

tion to show that there were some conclusions about the 

effectiveness of the technology before we considered that 

the paper had an evaluative part. 

Table 1 (Summary totals) summarizes the 612 papers 

from 1985, 1990, and 1995 that we classified.* (We did 

not include the 50 ‘not applicable’ papers in computing 

the percentages in Table 1.) The most prevalent validation 

mechanisms appear to be lessons learned and case studies, 

each at a level of about 10%. Assertions were close to one- 

third of the papers. Simulation was used in about 5% of the 

papers, while the remaining techniques were each used in 

about 1 to 3% in the papers. 

About one-third of the papers had no experimental valida- 

tion; however, the percentages dropped from 36.4% in 1985 

to 29.2% in 1990 to only 19.4% in 1995. Improvement in 

this important category seems to be occurring. 

From Tichy’s classification, many ‘empirical work’ 

papers really are the result of an experiment to test a 

theoretical hypothesis, so it may not be fair to ignore 

those papers from the set of design and modeling papers. 

If we assume the 25 empirical work papers in Tichy’s study 

’ The complete breakdown by magazine is given in the appendix. 
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Table 2 

Classification from other sciences 

Method J1 J2 J3 J4 J5 J6 Total % 

Not applicable (Number) 2 5 1 8 

No experimentation 16% 58% 7% 21% 6% 31% 26 20 

Replicated 5% 4% 4% 12% 5 

Synthetic 4% 11% 29% 9 

Dynamic analysis 32% 5% 19% 11% 17 - 

Simulation 15% 32% 13 

Project monitoring 

Case study 40% 16% 41% 6% 8% 26 

Assertion 8% 4% 11% 8% 7 5 

Field study 4% 18% 4 

Literature search 4% 11% 7% 7% 24% 23% 14 

Legacy data 6% 23% 4 

Lessons learned 5% 8% 2 

Static analysis 

Paper count (Number) 25 21 32 28 17 14 137 

Key: 

Jl: Measurement Science and Technology, Jan-Feb, 1994 (devices to perform measurements). 

J2: American Journal of Physics, Jan-Feb, 1996 (theory and application theories of physical theories). 

53: Journal of Research of NJST, Sept 1991-Aug, 1992 (measurement and standardization). 

J4: Management Science, Jan-March, 1992 (queuing theory and scheduling). 

J5: Behavior Therapy, Winter-Summer, 1996 (clinical therapies). 

J6: Journal of Anthropological Research, Winter-Summer, 1996 (human cultures). 

all have evaluations in them, then the percent of design and 

modeling papers with no validation drops from 50 to about 

40% in his study. (These numbers are approximate, since we 

do not have the details of his raw data.) This number is 

consistent with our results. 

We did not try to classify our database of papers into 

subject matter, so our results am not strictly comparable 

with Tichy’s. However, by combining the no experimental 

validation papers with the weak form of assertion validation, 

we found that almost two-thirds of the papers did not have 

strong validation of their reported claims. However a claim 

that 64% of the papers had no validation is too strong a state- 

ment to make, since the assertion papers did include some 

form of quantitative analysis of the effects of their technology. 

3.2. Comparison with other sciences 

In order to provide a proper perspective, we looked at 

several different journals in other scientific disciplines. 

Because of the thousands of available journals and the 

limited resources of the authors to perform this survey, the 

following is necessarily incomplete and only represents a 

small random sampling of the possibilities. The method we 

chose was to evaluate several consecutive issues of each 

journal published between 1992 and 1996. We wanted 

about 20 papers from each journal. (We soon discovered 

that classifying papers in fields in which we were not experts 

took considerably more time than those in our more familiar 

software engineering domain.) The results of this sampling 

are given in Table 2. 

Although our sample size is very small and we make no 

claims that these are representative of each respective field, 

some trends seem apparent: 

(1) Not too surprisingly, each field seems to have a 

characteristic pattern of canonical data collection methods. 

Physics journals tend to report on measurement devices or 

reactions, so validation tends to be in repeated trials of the 

device to confirm behavior (e.g., techniques like dynamic 

analysis and simulation). Psychology is concerned about 

human behavior, so its journals tend to report on longitudi- 

nal studies of subjects who had different treatments (e.g., 

replicated and synthetic experiments). Anthropological 

papers used mostly passive techniques on historical data 

(e.g., legacy data). Because of these differing characteris- 

tics, we did not believe a summary ‘ranking’ of techniques 

across all 6 surveyed journals made any sense, so we 

omitted those numbers in Table 2, except for the no experi- 

mentation and assertion entries, which we discuss below. 

Anthropology and psychology also tend to use literature 

search as a significant method for validation, much more 

than in the other journals. The literature search seems to be 

in the range of 4 to 11% across the physics journals we 

looked at. This may indicate that other disciplines are 

more willing to publish papers that confirm previously pub- 

lished results. We believe (although this is only known 

anecdotally) that the computer science community frowns 

on publishing papers if a previous study by another author 

has been published on a given topic. In our software engin- 

eering sample, the percentage of literature survey grew 

from 2.1 to 3.3 to 3.5% from 1985 to 1995, so perhaps the 

situation is improving in our own field. 

(2) In the physics journals, except for American Journal 

ofPhysics, the percentage of no experimentation papers was 
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Table 3 

No experimentation papers 

ICSE conferences 

Theory 

No validation 

IEEE Software Magazine 

Theory 

No validation 

Transactions on Software 

Engineering 

Theory 

No validation 

summary totals 

Theory 

No validation 

No experimentation 

Papers 

1985 1990 1995 Total % 

3 1 3 I 20.6 

13 I 7 27 79.4 

1 0 0 1 4.5 

10 8 3 21 95.5 

18 19 I 44 39.6 

38 11 7 61 60.4 

22 20 10 52 31.1 

61 31 17 11 68.9 

83 53 27 167 

much lower than in software engineering (7 to 21% com- 

pared to 30% in software engineering). However, the trends 

in software engineering look favorable, with the per cent of 

no experimentation dropping from 36% to 29% to 19% from 

1985 to 1995. 

In looking at the 11 ‘No experimentation’ papers in 

physics, 9 were theoretical papers developing new theories 

based upon some formal model that were not applicable to 

experimentation. Only two of the papers (11%) appeared to 

lack quantitative data where such data could have been 

presented. 

We noticed that anthropology also had a high rate of no 

experimentation, coupled with a high percentage of litera- 

ture searches. Perhaps the high cost of field trips to available 

anthropological sites to obtain original data has allowed the 

field to develop in this manner. 

We checked for this same phenomenon as seen in physics 

in our software engineering sample by reevaluating all the 

papers originally classified as ‘no experiment’ (Table 3). Of 

these 167 papers, about one-third (31 .l%) could be called 

theoretical papers. (The papers had to have a formal 

inference component in order to be called a theoretical 

paper. A paper that was simply a description of a new pro- 

cess, language, or technique with no formal component to 

prove that the concept had the desired properties claimed by 

the authors was still considered a ‘no experiment’ paper.) 

From Table 3 we also see, not unsurprisingly, that differ- 

ent publications have different classes of papers. IEEE Soft- 

ware, as a general purpose magazine, has few theoretical 

papers, and the ICSE conference has fewer theoretical 

papers than the archival journal (Z’runsactions on So&are 

Engineering). 

By looking only at the 340 papers from the archival 

journal, we get the complete classification given in Table 4. 

According to this table, about two-thirds of the papers 

(223 out of 334, not counting the not applicable papers) 

were classified according to our 1Zmethod taxonomy, 

about 13% were theoretical papers, and about 20% lacked 

any validation. This 20% figure is not out of line with the 

other disciplines we looked at. 

(3) Although the 20% ‘no experimentation’ figure for 

TSE papers looks fairly good, about 34% of our sample of 

classified papers were assertions (including 118 of the 223 

classified TSE papers). Assertion papers are relatively rare 

across the other journals we looked at (from 0 to 11% in our 

sample). 

If we subtract the 9 theoretical papers in the physics 

journal from the total of 28 no experimentation papers and 

7 assertion papers, the total of 26 papers with no or little 

experimentation (20%) is similar to the 15% found by Tichy 

in his study of other disciplines. The corresponding numbers 

for software engineering are 20% no experimentation with 

34.2% assertions, or just over 50% of the sample of software 

engineering papers should have done a better job of validat- 

ing their claims. 

(4) Many journals use a standard format in the organiza- 

tion of technical papers that includes presentation of the 

hypothesis, development of the concept, and experimental 

validation. Most papers included a section called ‘Experi- 

ment.’ The Behavior Therapy papers all had sections titled 

‘Method’, ‘Procedures’ and ‘Results’, making the classifi- 

cation of such papers quite easy. Such rigid formatting is 

certainly not true in computer science. 

Table 4 

TSE paper classifications 

Count % 

Not applicable 6 

No experimentation 67 20.1 

Theory 44 13.2 

Some experimentation 223 66.8 

Total 340 100.0 
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Table 5 

International conference on software engineering 

Method 1985 % 1990 % 1995 % Total % 

Not applicable 6 

No experimentation 16 

Replicated 1 

Synthetic 3 

Dynamic analysis 0 

Simulation 2 

Project monitoring 0 

Case study 5 

Assertion 12 

Field study 1 

Literature search 1 

Legacy data 1 

Lessons learned 7 

Static analysis 1 

_ 

32.0 

2.0 

6.0 

4.0 

10.0 

24.0 

2.0 

2.0 

2.0 

14.0 

2.0 

4 _ 5 

8 25.8 10 

0 1 

0 0 

0 0 

0 1 

0 0 

7 22.6 4 

12 38.7 4 

0 1 

1 3.2 0 

2 6.5 1 

1 3.2 5 

0 0 

37.0 

3.7 

3.7 

14.8 

14.8 

3.7 

3.7 

18.5 

15 

34 

2 

3 

0 

3 

0 

16 

28 

2 

2 

4 

13 

1 

31.5 

1.9 

2.8 

2.8 

14.8 

25.9 

1.9 

1.9 

3.7 

12.0 

0.9 

4. Conclusions 

In this paper we have developed a 12-step taxonomy for 

classifying experimental validation in the scientific litera- 

ture. We classified 612 papers in the software engineering 

literature and found that the method appears to work quite 

well. In addition, we confirmed some of the observations of 

Glass and Tichy that the software engineering community 

does not do a good job in validating its claims. 

Tables 5-7 are the complete set of data for the 612 papers 

that we analyzed. They are summarized by Table 1. An ear- 

lier report [IO] provides additional background on this study. 

We observed that 20% of the papers in the journal IEEE 

Transactions on Software Engineering have no validation 

component (either experimental or theoretical). This 

number is comparable to the 15 to 20% observed in other 

scientific disciplines. However, about one-third of the 

software engineering papers had a weak form of experimen- 

tation (assertions) where the comparable figure for other 

fields was more like 5 to 10%. 

We were encouraged by these findings that in about 80% 

of the papers, the authors realized that a proper scientific 

Table 6 

IEEE Software Magazine 

paper needs to validate its claims. This goes against the 

usual folklore that software engineering is simply ad hoc 

system building with no thoughts to the underlying science 

of the field. However, the real weakness in our field seems to 

be in our assertion category. These are papers where the 

authors realize they need to validate their claims, but we 

believe (albeit subjectively) that their validation was 

generally insufficient. We believe that this large assertion 

category represents a lack of attention on the part of authors. 

If we, as a discipline, start to require more precise valida- 

tion, this number could be brought down fairly quickly. 

We also reviewed over 100 papers from several other 

scientific disciplines. Each field seems to have characteristic 

methods appropriate for its problem domain. We seem to 

confirm the contention that other fields do a better job of 

validating scientific claims. The assertion classification is 

infrequently used and literature search validation is more 

prevalent than in software engineering. We must restate, 

of course, that our sampling of the other journals was by 

an informal random process and subject to change if we 

perform as detailed a study of those disciplines as we 

believe we have done in software engineering. 

Method 1985 % 1990 % 1995 % Total % 

Not applicable 6 16 7 

No experimentation 11 3214 8 18.2 3 

Replicated 0 0 0 

Synthetic 1 2.9 1 2.8 0 

Dynamic analysis 0 0 0 

Simulation 0 0 1 

Project monitoring 0 1 2.8 0 

Case study 2 5.9 6 13.6 6 

Assertion 13 38.2 19 43.2 14 

Field study 0 0 1 

Literature search 1 2.9 5 11.4 3 

Legacy data 1 2.9 0 1 

Lessons learned 5 14.7 4 9.1 7 

Static analysis 0 0 0 

8.3 

2.8 

16.7 

38.9 

2.8 

8.3 

2.8 

19.4 

29 

22 

0 

2 

0 

1 

1 

14 

46 

1 

9 

2 

16 

0 

_ 

19.3 

1.8 

0.9 

0.9 

12.3 

40.4 

0.9 

7.9 

1.8 

14.0 
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Table 7 

IEEE Transactions on Software Engineering 

Method 1985 % 1990 % 1995 % Total % 

Not applicable 3 2 _ 1 6 _ 

No experimentation 56 38.9 41 34.2 14 18.4 111 32.6 

Replicated 0 1 0.8 3 3.9 4 1.2 

Synthetic 1 0.7 4 3.3 2 2.6 7 2.1 

Dynamic analysis 0 3 2.5 4 5.3 7 2.1 

Simulation 10 6.9 11 9.2 6 7.9 27 7.9 

Project monitoring 0 0 0 0 

Case study 12 8.3 6 5 10 13.2 28 8.2 

Assertion 54 37.5 42 35.0 22 28.9 118 34.7 

Field study 1 0.7 1 0.8 2 2.6 4 1.2 

Literature search 3 2.1 1 0.8 2 2.6 6 1.8 

Legacy data 2 1.4 2 1.7 1 1.3 5 1.5 

Lessons learned 4 2.7 8 6.6 8 10.5 20 5.9 

Static analysis 1 0.7 0 2 2.6 3 0.9 

Software engineering seems unique among the 

disciplines we studied. We have process research looking 

at groups of individuals, much like the longitudinal studies 

of psychology, we have post mortems to understand a 

completed project, much like anthropology, and we develop 

tools to perform actions, much like physics. But we often are 

developing a ‘first of its kind’ device or process, so com- 

parable data is not easily obtainable. We would expect a 

characteristic software engineering profile to be more varied 

than the other fields we looked at. 

Our next step will be to refine these 12 approaches more 

precisely and look more closely at what data each of the 

techniques can provide to the experimenter. Our goal is to 

provide a means that can be used to choose an experimental 

paradigm that can be used to collect a specific type of 

evaluation data. 

We do not wish to end this paper with the claim that 

software engineering is an inferior and sloppy science. 

Software engineering is also a comparatively new field. 

Unlike physics, there do not exist older devices from 

which comparative data can be easily obtained. Therefore, 

it often is hard to obtain good quantitative data from which 

to make an evaluation. However, we certainly can do better 

than we are currently doing. It is encouraging that the trends 

from 1985 to 1990 to 1995 are moving in the right direction. 
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