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Experimental Validation of a Framework for the Design of Controllers

that Induce Stable Walking in Planar Bipeds

E.R. Westervelt, G. Buche, and J.W. Grizzle

Abstract

This paper presents the experimental validation of a frame-

work for the systematic design, analysis, and performance

enhancement of controllers that induce stable walking in N -

link underactuated planar biped robots. Controllers designed

via this framework act by enforcing virtual constraints—

holonomic constraints imposed via feedback—on the robot’s

configuration which create an attracting two-dimensional in-

variant set in the full walking model’s state space. Stability

properties of resulting walking motions are easily analyzed in

terms of a two-dimensional sub-dynamic of the full walking

model. A practical introduction to and interpretation of the

framework is given. In addition, the paper develops the

ability to regulate the average walking rate of the biped to

a continuum of values by modification of within-stride and

stride-boundary characteristics, such as step length.

1. Introduction

The main factor contributing to the slow development of

usable legged machines is the difficulty of simultaneously

endowing legged machines with energy efficiency and stability,

two essential attributes of any autonomous vehicle. The two

means for addressing this problem are machine design and

gait control. Through mechanical design, legged machines can

be made efficient by using, for example, lighter materials

and more efficient actuators. To enhance stability, legged

machines can be designed to have morphologies that decrease

the possibility of overturn: feet can be made larger and the

number of legs increased. Through the use of control, a legged

machine’s gait may be designed and tuned to exploit the

mechanism’s natural dynamics to yield efficient locomotion.

Control may also be used to impose gaits that, under some

assumptions, have guarantees of stability. Typically, this has

been accomplished by controlling the machine’s motion to be

slow to minimize inertial effects so that quasi-static stability

measures may be used.

The past forty years have seen the development and con-

struction of many mechanically sophisticated biped robot pro-

totypes [2] that, to varying degrees of success, have addressed

the efficiency-stability problem primarily through mechanism

design. The development of equally sophisticated control
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algorithms that address the efficiency-stability problem which

induce walking in these prototypes has not kept pace. This

is evidenced by the reliance on heuristics, such as the zero

moment point1 (ZMP) principle [9], [30].

It is conjectured here that the development of control algo-

rithms that induce truly dynamic biped walking has been slow

for five reasons that are inherent to dynamic biped walking.

The five difficulties are divided into two groups. The first three

difficulties are common to all biped walking models while the

last two are common only to dynamic biped walking.

The first difficulty is limb coordination. Bipeds are typically

high DOF mechanisms, but the task of biped walking is

inherently a low DOF task. That is, bipeds typically have

many links and joints that must be coordinated to achieve

locomotion—the moving of the robot’s center of mass (COM)

from one point to another. The second difficulty is effective

underactuation during the single support phase (the phase of

walking when only one leg is touching the ground). Unlike

traditional robotic manipulators which are securely fastened

to the environment, bipeds are designed to move with respect

to the environment. Unilateral constraints severely limit the

amount of torque that may be supplied at the stance leg ankle

joint; because of finite foot size, too large a torque supplied

at the angle joint results in foot roll-over. This has been

recognized in [7], [9], [14], [18]. The third difficulty is hybrid

dynamics. The presence of impacts and changing dynamic

constraints during the walking cycle due to foot touchdown

and lift-off necessarily leads to models that are hybrid.

The last two difficulties are common only to dynamic

biped walking. The first is static instability of the biped

during portions of the walking cycle. That is, in dynamic

walking during portions of the walking cycle the projection of

the biped’s COM—and usually the ZMP—onto the walking

surface is outside of the biped’s polygon of support. This

prohibits the use of the popular ZMP principle to ensure

stability. The second, and final, difficulty is the design of

limit cycles. Dynamically stable walking corresponds to the

existence of limit cycles in the biped’s state space. The design

of controllers that induce limit cycles, while a challenge in its

own right, is made significantly more difficult by the first four

difficulties and by the need for energy efficiency.

The approach of this work (developed in [12], [33], [34])

has been to study a class of biped robots whose model

is only as complex as required to capture these inherent

difficulties. The class consists of planar biped robots that are

N -link—and thus have N DOF during the swing phase—

with walking taking place in the sagittal plane (the plane

1In the legged robotics literature, the center of pressure (COP)—the point
on the ground where the resultant of the ground-reaction force acts—is often
referred to as the zero moment point [9].
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Fig. 1. A higher DOF planar robot model with its center of mass labeled.
Cartesian coordinates are indicated at the swing leg end. The COM is of mass
M with inertia J .

that divides the body into left and right halves; see Figure 1.

Restricting attention to the plane where forward progression

is achieved (the sagittal plane) is reasonable since the sagittal

plane dynamics are almost decoupled from those in the frontal

plane (the plane that divides the body into front and back

halves) in that stability in the frontal plane can be achieved

with only frontal plane control actions, such as step width

control [1], [20]. The model assumes point feet with no

actuation between the stance leg end and the ground and full

actuation at all internal joints. The model for the swing phase

of walking is therefore that of an underactuated mechanical

system. Without feet, the ZMP heuristic is not applicable, and

thus the effective underactuation must be explicitly addressed

in the feedback control design; see Figure 2. The phase of

double support (when both legs are on the ground) is assumed

to be instantaneous and is modeled by a rigid contact model

[15].

One of the fruits of studying a biped model of minimal

complexity has been the development of a rigorous framework

for the systematic analysis and design of efficient, dynamic,

stable walking motions [12], [34]. It is anticipated that the

results for a robot with point feet will lead to an equally

complete control theory for walking with anthropomorphic

foot action.

In addition to walking at a fixed rate, this framework pro-

vides two additional control features: 1) the ability to compose

such controllers to obtain walking at several discrete walking

rates with guaranteed stability during the transitions; and 2)

the ability to regulate the average walking rate to a continuum

of values by modification of within-stride characteristics [33].

The purpose of this paper is to provide experimental

validation of this framework on the biped robot prototype,

RABBIT constructed by the French project Commande de

Robots à Pattes of the CNRS - GdR Automatique [3], [4]. In

presenting the experimental validation, several implementation

issues will be discussed, and the control design framework will

be interpreted. The final contribution of this paper is to develop

a technique to regulate the average walking rate to a continuum

of values by modification of within-stride and stride-boundary
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Fig. 2. The zero moment point (ZMP) principle according to Goswami [9].
Idealize a robot in single support as a planar inverted pendulum attached
to a base consisting of a foot with torque applied at the ankle. Assume
adequate friction so that the foot is not sliding. In (a), the robot’s nominal
trajectory has been planned so that the center of pressure of the forces on
the foot, P , remains strictly within the interior of the footprint. In this case,
the foot will not rotate (i.e, the foot is acting as a base, as in a normal
robotic manipulator), and thus the system is fully actuated. It follows that
small deviations from the planned trajectory can be attenuated via feedback
control, proving stabilizability of the walking motion. In case (b), however,
the center of pressure has moved to the toe, allowing the foot to rotate. The
system is now underactuated (two degrees of freedom and one actuator),
and designing a stabilizing controller is nontrivial, especially when impact
events are taken into account. The ZMP principle says to design trajectories
so that case (a) holds; i.e., walk flat footed. This leads to awkward, quasi-static
walking motions.

characteristics, such as step length. This result is a nontrivial

extension to the event-based PI-control result given in [33]

and was developed in response to the within-stride scheme’s

inability to effectively regulate average walking rate on the

prototype.

The paper is structured as follows: Section 2 describes

the prototype RABBIT, gives the model for walking of [34]

specialized to RABBIT, and describes three issues associated

with RABBIT’s construction which were addressed in the

control implementation. Section 3 summarizes, interprets, and

gives the experimental implementation of the control frame-

work presented in [34]. Section 4 reports on the experimental

validation of the control implementation for walking at a fixed

rate described in Section 3.4 and the experimental validation of

the transitioning technique presented [33] and the event-based

control for the regulation of average walking rate developed

in Appendix 2.

2. The prototype RABBIT

The five-link, planar prototype RABBIT (see Figure 3) is

located at the Laboratoire D’Automatique de Grenoble in

Grenoble, France. It was constructed jointly by several French

research laboratories, spanning Mechanical Engineering, Au-

tomatic Control, and Robotics [3], [4]. The RABBIT project

was initiated in 1997 and is funded by the French CNRS and

the French National Research Council. Its central mission is to

build a prototype for studying truly dynamic motion control. In

particular, the mechanism was designed to allow for high speed

walking and running. In its mechanical design complexity was
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Fig. 3. The biped prototype RABBIT’s experimental setup.
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Fig. 4. Schematic of the prototype RABBIT with measurement conventions.

included only as required to accurately model biped walking.

(The theoretical development given in [12], [34] was motivated

by a desire to control RABBIT.)

RABBIT’s five links are connected by revolute joints that

form two symmetric legs and a torso; see Figure 4(a). Actu-

ators supply torque between each of the four internal joints:

one at each knee and one between the torso and each femur.

All actuators are identical and capable of producing a peak

torque of 150 Nm. To prevent motions in the frontal plane,

RABBIT was constructed with a boom attached at the hip;

see Figure 3. RABBIT has no feet and no means of supplying

actuation between the stance leg end and the ground.

The link parameter values were identified by a group

associated with the project and are given in Table 1 with

the measurement conventions given in Figure 5. To obtain

configuration information, encoders are located at each internal

joint giving the robot’s shape, and between the boom and hip

giving the robot’s orientation with respect to a world frame.

Binary contact switches located at the leg ends are used to

detect whether or not a leg is in contact with the walking

Table 1. Identified link parameters for RABBIT.

Model parameter Units Label Value

MT 12

Mass kg Mf 6.8

Mt 3.2

lT 0.63

Length m lf 0.4

lt 0.4

IT 1.33

Inertia m2kg If 0.47

It 0.20

pM
T 0.24

Mass center m pM
f

1.11

pM
t 0.24

Fv,H 16.5
Viscous friction Ns

Fv,K 5.48

Fs,H 15.0
Static friction Nm Fs,K 8.84

Gear ratio - ng 50

Motor rotor inertia m2kg Ia 0.83

femur

lT

pM
T

u1, u2
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lf

lt

pM
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(b) Schematic of leg.

Fig. 5. Schematic of RABBIT’s link parameter measurement conventions.

surface.

For a real-time control platform, RABBIT uses a dSPACE

DS1103 system. With the DS1103 system, run-time software

is created by automatic translation and cross-compiling of

Simulink diagrams for the system’s 400 MHz PowerPC 604e

DSP, allowing the real-time controller software to be devel-

oped in a high-level language. This obviates the need for low-

level I/O programming and facilitates debugging. In addition,

the system provides low-level computation, digital-to-analog

and analog-to-digital conversion, as well as a user interface—

all in a single package.

2.1. The mathematical model of RABBIT walking

The model of RABBIT walking used for controller design

assumes that all motions take place in the sagittal plane and

that a normal gait consists of symmetric, alternating phases
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of single support and double support (see Appendix 1 for a

complete list of hypotheses). These two phases of the walking

cycle naturally lead to a mathematical model of the biped

consisting of two parts: the differential equations describing

the dynamics during the single support phase, and a discrete

model of the dynamics of the double support phase. The

biped model is thus hybrid in nature, consisting of continuous

dynamics and a re-initialization rule at the contact event.

2.1.1. Swing phase model: a nonlinear underactuated con-

trol system

The dynamic model of RABBIT during the swing phase is

that of an underactuated, planar five-link inverted pendulum.

Let q := (q1, · · · , q5)
′ be the set of angular coordinates

describing the configuration of the robot, given in Figure 4(a).

Since only symmetric gaits are of interest here, the same model

can be used irrespective of which leg is the stance leg if the

coordinates are re-labeled after each phase of double support.

The torques ui, i = 1 to 4 are applied between torso

and femurs and between the femurs and the tibias. Using the

method of Lagrange and defining the state as x := (q′, q̇′)′,
the model is

ẋ =

[

q̇

D−1(q) [−C(q, q̇)q̇ − G(q) + Bu]

]

(1)

=: f(x) + g(x)u (2)

The state space of the model is taken as TQ := {x =
(q′, q̇′)′ | q ∈ Q, q̇ ∈ R

5}, where Q is a simply-connected,

open subset of [0, 2π)2× [−π, π)3 corresponding to physically

reasonable configurations of the robot (for example, with the

exception of the end of the stance leg, all points of the robot

being above the walking surface; one could also impose that

the knees are not bent backward, etc.).

2.1.2. Double support model: a rigid impact

The double support phase—the transition from one leg

to another—is modeled with a rigid impact map. The rigid

contact model collapses the double support phase to an instant

in time resulting in a discontinuity in the velocity component

of the state, with the configuration remaining continuous.

In addition to modeling the change in state of the robot,

the impact model accounts for the relabeling of the robot’s

coordinates that occurs after each phase of double support.

The result of the impact and relabeling of the states is then

an expression

x+ = ∆(x−) (3)

where x+ := (q+, q̇+) (resp. x− := (q−, q̇−)) is state value

just after (resp. just before) impact and

∆(x−) :=

[
∆q q−

∆q̇(q
−) q̇−

]

(4)

where ∆q and ∆q̇(q
−) are linear maps (see Appendix 1 for

a complete list of hypotheses assumed for this rigid impact

model).

2.1.3. The complete model for walking: a hybrid nonlinear

underactuated control system

With the addition of an appropriately chosen switching

set, S, the swing phase model can be combined with the

double support model and expressed as a nonlinear system

with impulse effects [12], [36]

ẋ = f(x) + g(x)u x− /∈ S

x+ = ∆(x−) x− ∈ S.
(5)

Here the switching set is chosen to be the set where both legs

are on the ground,

S := {(q, q̇) ∈ TQ | pv
2(q) = 0, ph

2(q) > 0}, (6)

and x−(t) := limτրt x(τ). The value of ph
2(q) is taken to be

positive so that for x ∈ S the swing leg end is in front of the

stance leg at the end of a step (a step is only defined when

the swing leg progresses from behind to in front of the stance

leg). Dynamically stable walking corresponds to the existence

of a limit cycle in the state space of (5).

2.2. Implementation issues

This section presents three important aspects of RABBIT

that are not addressed by the model given in the previous

subsection. The effects are the additional dynamics introduced

by the boom used to constrain RABBIT’s motions to be

planar, RABBIT’s gear reducers, and RABBIT’s irregular,

non-rigid walking surface. These effects were accommodated

in the design of controllers for the experiments presented

in Section 4 so that the closed-loop system’s experimental

dynamic performance would more closely match the design

specification.

2.2.1. Constraining RABBIT to be planar

The boom attached to RABBIT’s hip constrains RABBIT’s

motions to the sagittal plane and constrains the sagittal plane

to be tangent to a sphere centered at the universal joint

that connects the boom to the center stand (see Figures 3

and 6). RABBIT therefore walks in a circle whose radius

is determined by the length of the boom. The boom system

consists of the boom, center stand, counterweight, and cabling.

“Training wheels,” shown in Figure 11, but not drawn in

Figure 6, were attached to the boom to provide a measure

of safety. The training wheels’ post has a prismatic joint with

a stop to prevent the robot’s hip from dropping too low but

otherwise does not support the robot’s weight. The boom

system also includes two encoders at the universal joint to

measure horizontal and vertical angular displacement of the

boom about the center stand. A boom system of this sort was

also used for MIT Leg Lab’s Spring Flamingo [24], as well

as several of their other robots. The other typical means of

constraining a biped robot’s motion to be planar is through the

use of wide feet. This idea was used in the design of Kenkyaku

[6] and Meltran II [18], among others. The advantage of a

boom system over wide feet is that a boom is able to constrain

the robot’s motion even when none of the feet are on the

ground. This is important in the case of RABBIT, as one
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(a) Overhead view of RABBIT’S experimental setup.
For clarity, the electronics are not drawn.
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(b) Side view of RABBIT’s experimental setup.

Fig. 6. Various dimensions of RABBIT’s experimental setup.

of its stated purposes is to study running, which necessarily

has a ballistic phase (when no feet are in contact with the

ground). The use of a boom, however, requires some means

of allowing the legs to move radially when in contact with

the ground. To accomplish this in RABBIT, wheels aligned

with the frontal plane were attached at the leg ends. Another

consideration with a boom system is how to connect power

and communications cabling to the experimental setup. Unless

a slip ring is used, cabling connected to the experimental

setup will become twisted or wound as the robot makes laps.

Unfortunately, a slip ring was not installed at the time when

the experiments reported here were performed, and RABBIT

had to be “unwound” after each experiment.

The inertia of the boom system used to constrain RAB-

BIT’s motion to be planar results in additional inertia that

is significant enough to require incorporation into RABBIT’s

model. The inertia has four components due to 1) the boom

connecting RABBIT, the center stand, and the counterbalance,

2) the counterbalance, 3) the cabling connecting RABBIT to

the support electronics, and 4) the support electronics (see

Figures 3 and 6). Since the training wheels are not always

used, and since they are relatively light, their inertia is not

included. The inertia may be approximated as

Is =
1

3

mb

lb

(
l3b,1 + l3b,2

)

︸ ︷︷ ︸

boom

+ mw l2b,2
︸ ︷︷ ︸

counterbalance

+
1

3
mc l2b,1

︸ ︷︷ ︸

cabling

(7)

Table 2. RABBIT’s experimental platform parameters.

Model parameter Units Label Value

Constraint boom length m lb 1.5

Hip to stand distance m lb,1 1.4

Stand height m ls 1.4

Constraint boom mass kg mb 5.0

Cable mass kg mc 2.0

Counterbalance mass kg mw 0.0

Support electronics mass kg me 20.0

Ie =
1

12
me l2e (8)

This results in additional kinetic energy,

Ka =
1

2
Is

(

φ̇2
h + φ̇2

v

)

+
1

2
Ieφ̇

2
h (9)

where φh and φv are the horizontal and vertical angular

displacements of RABBIT about the center stand (see Figure

6). The angles φh and φv may be approximated by

φh ≈
ph
H(q) − ph

H(q0)

lb,1
and φv ≈

pv
H(q) − pv

H(q0)

lb,1
(10)

where q0 is RABBIT’s configuration at the beginning of a step

and ph
H and pv

H are the horizontal and vertical positions of the

hip.

There is also additional potential energy due to the boom,

the counterbalance, and the cabling,

Va =
1

2
g0

mb

lb

(
l2b,1 − l2b,2

)
sin(φv)

︸ ︷︷ ︸

boom

− g0mw lb,2 sin(φv)
︸ ︷︷ ︸

counterbalance

+
1

2
g0mclb,1 sin(φv)

︸ ︷︷ ︸

cabling

. (11)

Note that the counterbalance mass may be chosen to negate

the potential energy due to the boom and cabling. In the

experiments described in Section 4, no counterbalance was

used; the required counterbalance of 52 kg could not be

securely fastened to the boom because of the short length of

lb,2.

The controllers used for the experiments reported in Section

4 were designed using equations of motion which included the

boom dynamics. These equations of motion were calculated

by first forming an updated Lagrangian—the planar model’s

Lagrangian with the kinetic energy Ka added and the potential

energy Va subtracted—and then using the method of Lagrange.

Table 2 gives the parameter values for the boom system setup

used for the experiments.

Aside from the ability to counterbalance the boom, the

choice of boom length has other important considerations. The

longer the boom, the better the approximation of RABBIT as

a planar mechanical system; however, the longer the boom, the

greater the dynamic effects of the additional kinetic (9) and

potential (11) energies, and the greater the flexibility of the

boom. Boom flexibility was found to be of great significance

experimentally. The boom was initially chosen to be 3 m

in length. Flexing of the tubular steel boom affected forces
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on RABBIT’s hip large enough to cause foot slippage. In

response, the boom was swapped for a 1.5 m boom, and the

foot slippage problem subsided.

2.2.2. Gear reducers and joint friction

To allow smaller, lighter weight motors to be used, RABBIT

has gear reducers between its motors and links. The gear

reducers have two important effects on RABBIT’s dynamics.

The first effect is to add significant joint friction, which effec-

tively eliminates all passive motions of the joints. The second

effect is to approximately decouple the robot’s dynamics,

leaving the motor’s rotor inertia as the only significant inertial

load on the motor. Both effects were taken into consideration

in the control implementation described in Section 3.4.

The joint friction was modeled by viscous and static friction

terms,

F (q, q̇) := Fvq̇ + Fs sgn(q̇) (12)

where2 Fv = diag(Fv,H, Fv,H, Fv,K, Fv,K) and Fs =
diag(Fs,H, Fs,H, Fs,K, Fs,K). The identified values of RAB-

BIT’s frictional parameters are given in Table 1. Note that

both the viscous and static friction values are substantial; at

the hip, the static friction is approximately ten percent of the

motor/gear reducer system’s peak available torque of 150 Nm.

Another, in some ways desirable, effect of gear reducers is

to scale the inertial load seen by the motors. This scaling has

the effect of approximately decoupling the robot’s actuated

dynamics so that the only significant dynamic terms are the

inertia of the motors’ rotors and the unactuated dynamics.

Writing the model in motor coordinates makes this evident.

Define the motor shaft coordinates q̄ := Ngq where Ng =
diag(ng, ng, ng, ng, 1) and ng are the gear reducers’ gear ratio

(the four gear reducers are identical). Since the torso, q5, is

unactuated, (Ng)55 = 1. When the motors’ rotor inertias and

the gear ratios are included in RABBIT’s swing phase model,

(1), and the model is written in the motor shaft coordinates,

the equations of motion become







1

n2
g

D1,1 + IaI
1

ng
D1,2

1

ng
D′

1,2 (D)5,5







¨̄q+
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n2
g

C1,1
1

ng
C1,2

1

ng
C ′

1,2 (C)5,5







˙̄q

+ N−1
g G − N−1

g F = Bū (13)

where ū := (ū1, ū2, ū3, ū4) are the torques supplied at the

output shafts of the motors and Ia is the inertia of the motors’

rotors (the four motors are identical). The result is that the

actuated dynamics are approximately decoupled and the block

of actuated dynamics is approximately decoupled from the

unactuated dynamics. RABBIT’s motors’ rotor inertia and gear

ratio are given in Table 1.

2As is commonly done to circumvent the difficulties associated with the
discontinuity of the signum function, in implementation, a scaled arctangent
function was used in its place, i.e., for large τ ,

sgn(x) ≈
2

π
tan−1(τx).

2.2.3. The walking surface

The floor on which RABBIT walks is concrete with 30 cm

wide cabling access trenches covered with 4 mm steel plates.

In preliminary experiments it was found that after stepping

on one of the four plates crossing RABBIT’s path, RABBIT

would slow significantly. Since the gait—change in the shape

over a step—was the same (see Section 3.1), this indicated that

the energy dissipation due to impacting the concrete surface

is less than the energy dissipation due to impacting the steel

plates. To help make the walking surface uniform, the floor

was covered with 1.5 cm particle board, which was then

covered with a layer of 3 mm rubber (see Figure 3). Aside

from helping to make the walking surface uniform, the rubber

layer was added in hopes of extending the life of RABBIT by

providing a modest amount of compliance.

3. Controlling dynamically stable walking

The approach to the control of walking taken here is to

encode the task of walking as a set of holonomic constraints

on the robot’s actuated DOF parameterized by the robot’s

unactuated DOF. With this approach, the closed-loop system

is rendered autonomous (time-invariant) and formal analysis

of the stability properties of the resulting gait is possible

[12]. Beyond analysis, in [33], [34] a framework using this

approach was developed for systematic design and perfor-

mance enhancement of controllers that induce walking with a

priori known kinematic and dynamic properties. This section

provides a succinct summary of that work and interprets the

use of holonomic constraints as imposing virtual constraints—

holonomic constraints imposed via feedback. “Virtual con-

straint” is used to differentiate these constraints from phys-

ical constraints that are imposed via, for example, a geared

mechanism or a cam and link system.

3.1. Virtual constraints and hybrid zero dynamics

Since the model for walking is underactuated—due to no

ankle torque—the dynamics compatible with the constraints

being exactly imposed are nontrivial. During the single support

phase these dynamics correspond to the inverted pendulum-

like dynamics of the center of mass about the stance leg

end. A means for calculating these dynamics—called the zero

dynamics—via an output design problem is given in [34].

It is shown that the zero dynamics can be designed to be

an invariant sub-dynamic of the full hybrid model in spite

of the discontinuous dynamics introduced by impacts. In this

case, existence of a limit cycle of the zero dynamics is easily

determined. This is interesting because exponentially stable

periodic orbits of the hybrid zero dynamics are exponentially

stabilizable periodic orbits of (5).

The main results of [34] are now summarized. Consider the

model (2) with the following output function

y = h(x) := h0(q) − hd ◦ θ(q) (14)

where h0(q) specifies 4 independent quantities that are to be

controlled and hd ◦ θ(q) specifies the desired evolution of

these quantities as a function of the scalar, monotonic quantity
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−

+

y

x

u

Γ

hd ◦ θ(q)
θ(q)

h0(q)

Fig. 7. Block diagram of a time invariant controller. The controller Γ forces
the signal y = h0(q)− hd ◦ θ(q) to zero so that the signal h0(q) tracks the
function hd ◦ θ(q).

θ(q). Driving y to zero will force h0(q) to track hd ◦ θ(q);
see Figure 7. Intuitively, the posture of the robot is being

controlled by virtual constraints—here a holonomic constraint

parameterized by θ(q). Unlike physical constraints, virtual

constraints may be reconfigured electronically via change in

feedback law, whereas reconfiguration of physical constraints

requires mechanism redesign; the next section discusses their

difference in detail. Note that the control of walking using

virtual constraints is not a trajectory tracking scheme since

the desired evolution of h0(q) is slaved to a function of θ(q)
and not time. For this reason, the resulting closed-loop system

is autonomous.

Choosing

h0(q) := H0q (15)

θ(q) := c q (16)

where H0 ∈ R
5×4, c ∈ R

5×1 allows hypotheses HH1)–HH4)

to be easily satisfied, which guarantees the existence of the

swing phase zero dynamics,

ż = fzero(z), (17)

which evolves on the two-dimensional embedded sub-manifold

Z := {x ∈ T Q̃ | h(x) = 0, Lfh(x) = 0} (18)

where Q̃ ⊂ Q is the set where3 LgLfh(x), the decoupling

matrix, is invertible. The feedback control

u∗(x) = −(LgLfh(x))−1L2
fh(x) (19)

3(This definition of the Lie derivative is taken from [16, pp. 496–496].)
Let f be a smooth vector field, N a smooth manifold of dimension n, and
λ a smooth real-valued function on N . The (Lie) derivative of λ along f is
a function N → R, written Lf λ and

(Lf λ)(p) := (f(p))(λ)

(i.e., (Lf λ)(p) is the value at λ of the tangent vector f(p) at p). In local
coordinates, Lf λ is represented by

(Lf λ)(x1, . . . , xn) =

(
∂λ

∂x1

. . .
∂λ

∂xn

)







f1

.

.

.

fn







.

If f1, f2 are vector fields and λ is a real-valued function, then

Lf1
Lf2

λ := Lf1
(Lf2

λ)

and
L2

f1
λ := Lf1

Lf1
λ.

renders Z invariant under the swing dynamics; that is, for

every z ∈ Z, fzero(z) := f(z) + g(z)u∗(z) ∈ TzZ. When

expressed in coordinates (ξ1, ξ2) = (θ(q), γ(q, q̇)) where

γ(q, q̇) := γ0(q) q̇ and γ0(q) is the last row of D, the mass-

inertia matrix, the zero dynamics (17) take the form [34,

Thm. 1]

ξ̇1 = κ1(ξ1)ξ2 (20)

ξ̇2 = κ2(ξ1). (21)

If S∩Z is a smooth, one-dimensional, embedded sub-manifold

of TQ, and if ∆(S ∩Z) ⊂ Z, then the nonlinear system with

impulse effects,

ż = fzero(z) z− /∈ S ∩ Z

z+ = ∆(z−) z− ∈ S ∩ Z,
(22)

with z ∈ Z, is an invariant sub-dynamic of the model (5) and

is called the hybrid zero dynamics of (5). In the coordinates

(ζ1, ζ2) = (θ, 1
2γ2), the Poincaré return map of the hybrid zero

dynamics, ρ : S ∩ Z → S ∩ Z, is given by

ρ(ζ−2 ) = δ2
zero ζ−2 − Vzero(θ

−), (23)

with domain of definition

{
ζ−2 > 0

∣
∣ δ2

zero ζ−2 − V MAX
zero ≥ 0

}
(24)

where δzero, Vzero, and V MAX
zero are constants calculated from

(22), and θ− := θ(q−), q− ∈ S ∩ Z. If δ2
zero �= 1 and

ζ∗2 := −
Vzero(θ

−)

1 − δ2
zero

(25)

is in the domain of definition of ρ, then it is the fixed point

of ρ [34, Thm. 3]. Moreover, if ζ∗2 is a fixed point, then ζ∗2 is

an exponentially stable equilibrium point of

ζ2(k + 1) = ρ(ζ2(k)) (26)

if, and only if, 0 < δ2
zero < 1, and in this case, its

domain of attraction is (24), the entire domain of definition

of ρ. Therefore, the hybrid zero dynamics admit a non-trivial,

exponentially stable periodic orbit if, and only if, the following

two inequality constraints hold [34, Cor. 1]

0 < δ2
zero < 1 (27)

and
δ2
zero

1 − δ2
zero

Vzero(θ
−) + V MAX

zero < 0. (28)

Exponentially stable periodic orbits of the hybrid zero dynam-

ics are exponentially stabilizable periodic orbits of (5), [34,

Sec. IV.C].

Specialization of hd to a vector of Bézier polynomials

makes achieving the invariance condition, ∆(S∩Z) ⊂ Z, sim-

ple as well as providing a finite parameterization of the zero

dynamics. Finite parameterization allows h(x)—and thus the

hybrid zero dynamics—to be tuned using standard parameter

optimization techniques [34, Sec. VI].
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θ

l

m

Fig. 8. A horizontal, variable length pendulum used to explain virtual
constraints.

3.2. Virtual versus physical constraints

Though virtual constraints and physical constraints impose

the same kinematic behavior, the resulting dynamic behavior is

different. To illustrate this difference, consider the horizontal

variable length pendulum depicted in Figure 8. The distance

from the point mass m to the rotation point is l and may vary.

Since the pendulum is horizontal, its Lagrangian is equal to

the kinetic energy,

L = K =
1

2
m
(

l̇2 + l2θ̇2
)

. (29)

Two different scenarios will be considered. First, the length,

l, will be constrained to be a function of θ via a physical con-

straint. Second, l will be constrained via a virtual constraint.

In the first case, suppose that a physical constraint is

designed such that l = ld(θ). Then, the equation of motion

is

m

((
∂ld(θ)

∂θ

)2

+ (ld(θ))
2

)

θ̈

+ m
∂ld(θ)

∂θ

(
∂2ld(θ)

∂θ2
+ ld(θ)

)

θ̇2 = 0. (30)

Now suppose that l is constrained via a virtual constraint. In

this case, the length l is treated as a controlled quantity, and the

equations of motion may be calculated from the Lagrangian

(29) to be

θ̈ = − 2
l
l̇θ̇

l̈ = lθ̇2 + 1
m

u
(31)

where u is an input used to control the length l. To do so, an

output on the system (31) is formed as

y = l − ld(θ) (32)

such that y ≡ 0 implies l ≡ ld(θ). As long as ∂ld(θ)/∂θ �=
0, the output (32) is of relative degree two [16]. Hence,

differentiating twice yields

ÿ = lθ̇2 −
∂l2d(θ)

∂θ2
θ̇2 +

2

l

∂ld(θ)

∂θ
l̇θ̇ +

1

m
u (33)

The output dynamics (33) may be stabilized with

u = m

(

−lθ̇2 +
∂l2d(θ)

∂θ2
θ̇2 −

2

l

∂ld(θ)

∂θ
l̇θ̇ − KDẏ − KP y

)

(34)

for KD,KP > 0. Under the constraint l ≡ ld(θ), the system

state must evolve on the set4 Z := {(θ, θ̇, l, l̇) ∈ S × R
3 | l −

4Here S is the topological space the unit circle, not the walking surface;
see Section 2.1.3.

l
(m

)

θ (rad)
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(a) Kinematic behavior

t (sec)

l
(m

)

0 5 10 15
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1.5

2

2.5

(b) Dynamic behavior

Fig. 9. Kinematic and dynamic behaviors of the horizontal pendulum. The
dashed lines correspond to the constraint l = sin(θ) + 1.5 imposed via
a physical constraint, whereas the solid corresponds to the same constraint
imposed via a virtual constraint.

ld(θ) = 0}. The maximal internal dynamics compatible with

the output being identically zero, the zero dynamics, are

m (ld(θ))
2
θ̈ + 2m

∂ld(θ)

∂θ
ld(θ)θ̇

2 = 0 (35)

and the unique control required to enforce l ≡ ld(θ), u∗, is

readily calculated from (34).

While the kinematic behavior of the zero dynamics resulting

from the virtual constraint l = ld(θ) is identical to that

resulting from the physical constraint l = ld(θ), their dynamic

behavior is different, cf. (30) and (35). Figure 9 illustrates

this difference for the constraint ld = sin(θ) + 1.5. For

this example, m = 1 and the system (30) was initialized

with (θ, θ̇) = (0, 1) and the system (35) was initialized with

(θ, θ̇, l, l̇) = (0, 1, 1.5, 1) ∈ Z. The difference between these

two realizations lies in u∗, the energy entering the system in

the virtual constraint realization which does not appear in the

physical constraint realization.

3.3. Interpreting the (swing phase) zero dynamics

Much in the way that it has been proposed that the spring

loaded inverted pendulum is a template for running [26], [29],

it has been proposed, though less formally, that an inverted

pendulum is the template for walking [7], [17]–[19], [22].

From Figure 1 it might seem that the dynamics that result from

imposing virtual constraints—the swing phase zero dynamics,

(20) and (21)—should be the dynamics of a length and inertia

varying inverted pendulum, i.e., the length, l, and the inertia

about the center of mass (COM), J , vary as function of ξ1.

If this were true it would suggest this pendulum as a new

control template (or target) in the design of future controllers.

Unfortunately, it is not true.

Using the angular momentum balance theorem [27], the rate

of change of the angular momentum of the robot about the

stance leg end during the swing phase, ξ̇2, is equal to the

external applied torque,

ξ̇2 = g0 Mph
COM (36)

where g0 is the acceleration due to gravity, M is the robot’s

mass and ph
COM is the horizontal position of the robot’s center

of mass; see Figure 1. Suppose ξ1 is defined as in Figure 1.
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Then, for output (14), if y ≡ 0, then ph
COM = ph

COM(ξ1) and

l = l(ξ1) so that

κ2(ξ1) = g0 Ml(ξ1) sin(ξ1). (37)

Expressing (20) as ξ2 = Izero(ξ1)ξ̇1, where5 Izero(ξ1) =
1/κ1(ξ1) is an inertial term, allows the zero dynamics (20)

and (21) to be written as a second order system,

Izero(ξ1)ξ̈1 +
∂Izero(ξ1)

∂ξ1
(ξ̇1)

2 − g0 Ml(ξ1) sin(ξ1) = 0. (38)

The equation of motion for a length and inertia varying

pendulum can be easily derived using the method of Lagrange.

The kinetic energy is K(ξ1) = 1/2I(ξ1)ξ̇
2
1 where

I(ξ1) = M

(
∂l(ξ1)

∂ξ1

)

+ M(l(ξ1))
2 + J(ξ1). (39)

The potential energy is V (ξ1) = Mg0 l(ξ1) cos(ξ1), and,

hence, the equation of motion6 is,

I(ξ1) ξ̈1 +
1

2

∂I(ξ1)

∂ξ1
ξ̇2
1

+ Mg0

(
∂l(ξ1)

∂ξ1
cos(ξ1) − l(ξ1) sin(ξ1)

)

= 0. (40)

Comparing the swing phase zero dynamics (38) and the

dynamics for the length and inertia varying pendulum (40),

it is evident that what is suggested by Figure 1 does not hold,

which also implies that the swing phase zero dynamics are

not those of an inverted pendulum, or an inverted length and

inertia varying pendulum. It is interesting to note, however,

that if the length and inertia varying inverted pendulum had a

torque, u, acting between the pendulum and ground, i.e.,

I(ξ1) ξ̈1 +
1

2

∂I(ξ1)

∂ξ1
ξ̇2
1

+ Mg0

(
∂l(ξ1)

∂ξ1
cos(ξ1) − l(ξ1) sin(ξ1)

)

= u, (41)

where

u = −
1

2

∂I(ξ1)

∂ξ1
ξ̇2
1 + Mg0

∂l(ξ1)

∂ξ1
cos(ξ1), (42)

then, the forms of (38) and (41) with u as in (42) would be

identical.7 Matching the inertial terms, I and Izero, however,

does not yield a positive definite J . That is, supposing Izero

has the form of I given in (39) implies J(ξ1) = Izero −
M (∂l(ξ1)/∂ξ1)−M(l(ξ1))

2 where l is the distance from the

stance leg end to the COM. For every example worked by the

authors, J is sign indefinite.

5The proposition [34, Prop. 1] ensures that κ1(ξ1) is never zero whenever
the robot successfully completes a step.

6If l and J do not vary as a function of ξ1, then I(ξ1) = I , l(ξ1) = l
and (40) reduces to the equation of motion for an inverted pendulum, I ξ̈1 −

Mg0l sin(ξ1) = 0.
7The justification for this input is to account for the energy entering the

robot’s dynamics via the control u∗ given in (19).

3.4. The control algorithm implementation: imposing the

virtual constraints

The swing phase zero dynamics (20) and (21) are indepen-

dent of the feedback used to zero the output that gives rise to

them. The feedback introduced in [34, Sect. IV-C], a computed

torque pre-feedback plus finite time converging controllers,

is one possible feedback. The input-output linearization of

the computed torque pre-feedback decoupled the dynamics

resulting in a chain of four double integrators. The finite-

time converging controllers stabilized the origin of the double

integrators in finite time, enabling the stability of the robot’s

walking motion to be assessed via the hybrid zero dynamics’

scalar return map. In light of the decoupling effect of the

reducers (see Section 2.2.2) and the likely inaccuracy of the

parameter identification, high-gain decoupled PD controllers

were used in place of the feedback given in [34, Sect. IV-C]

to impose the virtual constraints on RABBIT. It was found

that this control was able to zero the outputs sufficiently well

to induce walking with dynamic characteristics similar to the

theoretical design.

For the experiments described in this paper, outputs of the

form (14) with h0(q) and θ(q) as in (15) and (16) were used

with

H0 =
[

I 0
]

(43)

c =
[
−1 0 −1/2 0 −1

]
(44)

which results in the output

y = (q1, q2, q3, q4)
′ − hd ◦ θ(q). (45)

Figure 4(b) gives θ(q) corresponding to this choice of c.

The Bézier polynomial order, M , was chosen to be 6, which

left five free parameters to be chosen for each output (two

parameters per output are used to impose invariance; see [34,

Rem. 4]). This implied a total of 20 output function parameters

to be chosen via optimization. The optimization problem was

posed as described in [34, Sec. VI] to choose the 20 free

parameters of α by approximately minimizing the cost

J(α) :=
1

ph
2(q−)

∫ TI(ξ−

2 )

0

||u∗(t)||22dt (46)

where q− ∈ S ∩ Z, TI(ξ
−
2 ) corresponds to the step duration,

ph
2(q−0 ) corresponds to step length, and u∗(t) is the result of

evaluating (19) along a solution of the hybrid zero dynamics.

The hybrid zero dynamics used in the optimization process

were updated to accommodate the effects of the additional

dynamics caused by the inertia of the boom system and friction

of the gear reducers. The effect of the non-rigidity of the

walking surface was also important to accommodate.

The tradeoff between the dissipation due to impacts and

the energy gained through shape change (cf. [34, Thm. 3])

determine the closed-loop system’s average walking rate and

stability. Imperfections in the model parameters and unmod-

eled dynamics during the swing phase affect the energy gained

through shape change. Imperfections in the impact model

affect the amount of energy dissipated. To study the latter,

RABBIT was simulated using a compliant ground contact
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Fig. 10. Average walking rate verses impact map scaling constant a. The
solid line is a least squares fit to empirically determined impact scalings
(indicated by circles). This apparently linear relationship between average
walking rate and impact scaling is reminiscent of the classical coefficient of
restitution relation, e = 1 − av0, where e is the coefficient of restitution,
a is some material-dependent constant, and v0 is the impacting velocity [8,
p. 258]. It is hypothesized that this approximately linear relation will hold for
other walking surfaces, suggesting it as a means of identifying the surface to
determine how the rigid impact model, i.e., δzero, should be modulated as a
function of ν̄.

Table 3. Experiment control parameter values.

Control parameter Units Label Value

KP,H 2000
Proportional gains N

KP,K 1500

KD,H 10
Derivative gains Ns

KD,K 10

model described in [23]. It was found that stability was pre-

served, but the steady-state average walking rate differed from

the average walking rate designed assuming rigid impacts.

This was also found experimentally.

For the wood and rubber walking surface, it was found

that in the design of walking motions, the amount of energy

dissipated at impact had to be scaled to be less than the

rigid model predicted at low walking speeds and more at

higher walking speeds. This was accomplished through trial

and error by scaling δzero (see [34, Sec. IV-A] for its definition)

by some constant a. A series of controllers over a range

of values of a were generated and then evaluated using the

experiment procedure described in Section 4 to determine their

steady-state average walking rates. The value of a resulting

in a controller that induced the desired average walking rate

was recorded. Figure 10 gives a plot of these values of a
verses the corresponding average walking rate. Surprisingly,

the relationship is approximately linear; the least squares fit is

a(ν̄) = 1.2957 − 0.4250ν̄.

To zero the output resulting from optimization on the hybrid

zero dynamics updated to accommodate the implementation

issues, the decoupled, PD controller with friction compensa-

tion8

u = −KP e − KD ė + Fvhd ◦ θ̂(q̂) + Fs sgn(e) (47)

was used where the terms Fvhd ◦ θ̂(q) and Fs sgn(e) cor-

respond to feed-forward viscous and static friction compen-

sation terms and KP = diag(KP,H,KP,H,KP,K,KP,K) and

KD = diag(KD,H,KD,H,KD,K,KD,K) are the proportional

and derivative gains given in Table 3. The error signals are

8The friction compensation terms are due to C. Canudas-de-Wit.

defined as

e := H0q̂ − hd ◦ θ̂(q̂) and ė := H0
˙̂q −

∂hd

∂θ
˙̂
θ( ˙̂q) (48)

where (q̂, ˙̂q) is RABBIT’s state with relabeling,

(q̂, ˙̂q) :=

{

(q, q̇) if stance leg is right leg

(∆qq, ∆q q̇) if stance leg is left leg.
(49)

A simple state machine was used to determine the current

stance leg as required by (49). Since hd is only designed for9

0 ≤ (θ(q) − θ+)/(θ− − θ+) ≤ 1, where θ− := θ(q−) and

θ+ := θ ◦ ∆q(q
−), q− ∈ S ∩ Z, the scalar function of the

robot’s states θ(q) was saturated,

(θ̂(q),
˙̂
θ(q)) :=







(θ(q), θ̇(q̇)) 0 < θ(q)−θ+

θ−−θ+ < 1

(θ−, 0) θ(q)−θ+

θ−−θ+ > 1

(θ+, 0) θ(q)−θ+

θ−−θ+ < 0.

(50)

The velocities were estimated using a five-point numerical

differentiator described in [5] applied to the encoder outputs.

The PD based feedback (47) was chosen over a sliding

mode, or finite-time converging controller because of its ro-

bustness to noise and uncertainty. The feedback (47) provided

surprisingly good joint-level tracking (see, for example, Figure

12).

The feedback (47)–(50) was implemented on the dSPACE

DS1103 system running with a sample period of 1.5 ms

(667 Hz). To provide high-level control, the feedback imple-

mentation has a state machine which provides an interface

between the user and the lower-level, continuous control.

The implementation also has safety mechanisms which set

the commanded control signals to zero in the event of an

anomalous condition, such as a joint exceeding a position

limit, or upon user request.

4. Experiments

This section describes six experiments which highlight the

capabilities and robustness of controllers designed via the the-

oretical framework summarized in Section 3 and the additional

tools presented in [33] and Appendix 2. The experiments

reported were performed during a three week research visit

lasting from February 24th until March 14th 2003. At the start

of the visit, RABBIT had just been installed into its permanent

location, pictured in Figure 3, where about 200 consecutive

steps (6 to 7 laps about the center stand) are possible; the

limit on the total number of steps is due to the winding of the

power and Ethernet cabling about the center stand. During the

visit, many small details had to be addressed to improve the

experimental platform before the reported experiments could

be performed.

The experiments were conducted as follows: the experiment

began with the robot suspended in the air, lifted by an

experimenter. After an encoder calibration phase, the robot

was servoed to a configuration (q, q̇) = (q0, 0) ∈ ∆(S ∩ Zα)

9The parameterization of Bézier polynomials is such that they are only
defined on the unit interval.
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Fig. 11. Video frames of RABBIT taking a step. The interval between
frames is 120 ms. Note the “training wheels” attached to the boom to provide
a measure of safety.

and then placed on the ground. Once on the ground, data

collection was initiated and the control was switched to the

virtual constraint based feedback controller (47)–(50). This

was possible because (q, q̇) = (q0, 0) ∈ ∆(S ∩ Zα) is an

asymptotically stable point under the hybrid zero dynamics

based controller. To initiate walking, an experimenter pushed

the robot’s torso—temporarily fully actuating the robot’s un-

deractuated dynamics—supplying the energy required to land

the robot’s state in the basin of attraction of the Poincaré

return map. Once in motion, the robot reached steady state

walking within ten to twenty steps. To stop the robot, an exper-

imenter grabbed the torso—again, fully actuating the robot’s

dynamics—slowing the robot to a stop in double support. This

ability to interact with the robot’s dynamics by pushing on the

robot is a consequence of the zero dynamics’ parameterization

by θ(q). Through mechanical coupling, forces on the robot

drive θ(q) which, in turn, determine the evolution of the robot’s

actuated DOF. Figure 11 gives video frames of RABBIT

taking a step for a typical walking motion. Videos of these

experiments are available at [31].

4.1. Walking at a fixed rate

These first two experiments illustrate the performance of

controllers designed via the theoretical framework summarized

in Section 3.

4.1.1. Walking at 0.7 m/s

In this first experiment, RABBIT was controlled with a

feedback designed to induce walking at 0.7 m/s. The experi-

ment lasted approximately 93 seconds during which RABBIT

took 170 steps. Figures 12–17 are plots of various quantities

of interest over a representative time interval containing ap-

proximately five steps. Figures 12 and 13 give the tracking

performance. Figure 15 gives the commanded control signals.

The peak commanded torque is less than 100 Nm, two thirds

of the actuators’ 150 Nm maximum. Figure 14 gives the trace

of the torso angle. Note the torso angle is not a directly

controlled quantity. Figure 16 gives the trace of the horizontal

angular displacement of the boom, φh. As indicated by Figure

16, the robot took approximately six laps about the center

stand to complete the 170 steps. Note the constant slope and

monotonicity of the trace of φh indicating smooth, horizontal

motion of the hip. Figure 17 gives the step length, step

duration, and the ratio of step length to step duration, step

rate. The data points of Figure 17 were calculated upon swing

foot touchdown declaration. The step lengths given in Figure

17 were calculated using the measured joint angles and the

robot’s identified link lengths. In each plot of Figure 17,

squares indicate data points corresponding to the inner leg—

the leg closer to the center stand—and circles indicate data

points corresponding to the outer leg—the leg further from

the center stand. Labeling the data points in this way reveals

differences between the inner and outer legs in step length,

step duration, and step rate. Since the two legs are, to within

close approximation, identical, the difference is likely due to

the non-sagittal plane dynamics created by the boom system.

Aside from the differences between the inner and outer legs,

the variances in step length and step duration have several

contributing factors. The ones believed to be most significant

are nonuniformity in the walking surface, variance in the

declaration of leg touchdown, and flexibility in the robot’s

joints. Careful comparison of Figure 17 with Figure 16 reveals

that the step rate is periodic in φh. The periodic change with φh

is due to nonuniformity in the walking surface: one section of

the wood and rubber walking surface was not firmly lying on

the ground because of unevenness in the underlying concrete

floor.

4.1.2. Demonstration of robustness to perturbations

This second experiment demonstrates the robustness of

controllers designed via the theoretical framework. Two types

of perturbations were applied to RABBIT controlled by a

feedback designed to induce walking at 0.9 m/s. The first

was a 10 kg mass added to the torso, which resulted in a

shift of the average walking rate from 0.9 m/s to 1.0 m/s.

(In the fifth experiment, described in Section 4.2.3, it will be

demonstrated that the designed fixed average walking rate may

be recovered through the use of event-based integral control.)

In addition to the sizable perturbation to the robot’s model (the

robot’s nominal weight is 32 kg), the second perturbation was

aperiodic, short duration forces applied to the RABBIT’s torso

by an experimenter in both the forward and reverse directions.

Despite both these significant perturbations, RABBIT did not
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fall during the experiment which lasted approximately 74

seconds where RABBIT took 164 steps.

Figures 18 and 19 are plots of the actual and desired

joint trajectories and the commanded control signals over a

representative time interval in which the robot was pushed in

the forward direction (at approximately 20.5 seconds) and in

the reverse direction (at approximately 29 seconds). Note that

the change in the reference motion, hd, during the application

of these forces. The commanded control signals are within the

actuators’ limits, except during the force perturbations when

they saturate (see Figure 19).

4.2. Transitioning and event-based within-stride control

The four experiments below illustrate the transitioning

controller developed in [33] and the event-based controller

developed in Appendix 2. Both techniques exploit freedom

in the output function parameter choice while respecting

invariance of the associated zero dynamics manifold.

4.2.1. Transitioning between controllers

This third experiment demonstrates the use of the one-step

transition controllers presented in [33, Sec. III]. A transition

controller designed according to [33, Thm. 1] is able to effect

a transition from the region of attraction of one walking

controller to another by steering the state of the system

using the same technical machinery used to render the zero

dynamics invariant. The application of the transition controller

is synchronized with swing leg touchdown.

For the experiment, the controller applied to RABBIT was

transitioned between controllers at 0.1 m/s intervals from 0.5

m/s to 0.8 m/s and then back from 0.8 m/s to 0.5 m/s twice

(see Figure 22). The transitioning controllers were designed

according to [34, Eqns. (12) and (13)]. The experiment lasted

approximately 86 seconds during which RABBIT took 139

steps.

Figures 20 and 21 are plots of the actual and desired

joint trajectories and the commanded control signals over a

representative time interval of approximately twenty-six steps

where the control was transitioned from 0.6 m/s to 0.8 m/s.

Note the change in the reference motion, hd, with no visible

difference in error, or in commanded control signal.

4.2.2. Using event-based integral control to modify the fixed

point

In this fourth experiment, the same feedback used in the

first experiment to induce walking at 0.7 m/s was applied

with the addition of an event-based PI control, developed in

Appendix 2, to modify the steady state average walking rate

from 0.7 m/s to 0.6 m/s. The event-based control acts through

modifications of the Bézier polynomial coefficients at double

support events.

The event-based control was performed on the stance and

swing leg relative angles, q1 and q2, which results in a change

of the torso angle; see Figure 4(a). This was accomplished by

setting δα to zero except for

δαi
j = 1, for i = 1, 2 and j = 2, . . . , M. (51)

The controller (71) with set-point η∗ = 0.6 and control gains

KI = 0.06 and KP = 0 was applied on the 15th step (at

approximately 11 seconds). The proportional gain, KP , was

set to zero because of the noise introduced by the variance in

step rate. The experiment lasted approximately 110 seconds

during which RABBIT took 181 steps. Figure 26 gives the

value of w given in (71) versus time. Note that the ringing in

w and, consequently, in average walking rate is likely due to

the integral gain being set too large; see Figure 27. Yet, if that

is indeed the case, it still took over 50 steps for the average

walking rate to converge to 0.6 m/s.

Figures 23–25 are plots of various quantities of interest for

the entire experiment. Note the change in the reference motion,

hd, for q1 and q2 with no visible difference (in particular, no

spikes) in commanded control signal. Figure 24 gives the torso

angle change resulting from the changing of q1 and q2 (see

the measurement conventions given in Figure 4(a)).

4.2.3. Using event-based integral control to reject a pertur-

bation

In this fifth experiment, the same feedback used in the

first experiment to induce walking at 0.7 m/s was applied but

with a 10 kg mass attached to the torso. This perturbation

resulted in a shift of the average walking rate from 0.7 m/s

to approximately 0.85 m/s (the change in average walking

rate was determined in a separate experiment not reported

here). The average walking rate of 0.7 m/s was recovered

using the event-based integral control described in the previous

experiment but with KI = 0.04 and η∗ = 0.7 applied on

the 14th step (at approximately 11 seconds). The experiment

lasted approximately 95 seconds during which RABBIT took

164 steps.

Figure 29 gives the value of w given in (71) versus time.

Again, note that the ringing in w and, consequently, in average

walking rate (see Figure 30) is likely due to the integral gain

being too large. The torso angle trace reflecting the action of

the event-based integral control is given in Figure 28. This

regulation of the torso angle by integral control was able to

recover the 0.7 m/s average walking rate (see Figure 30).

4.2.4. Using event-based integral control to stop the robot

In this sixth and final experiment, event-based integral

control was used to stop RABBIT from a steady state average

walking rate of 0.5 m/s. This was achieved by slowing

the average walking rate of RABBIT to where it did not

have enough kinetic energy to successfully complete a step;

see Figure 33. The integral control described in the fourth

experiment (Section 4.2.2) with KI = 0.04 and η∗ = 0 was

applied on the 34th step (at approximately 29 seconds) and

RABBIT was stopped by the 39th step (at approximately 34

seconds). After stopping, RABBIT rocked back and forth until

all kinetic energy from walking was dissipated.

Figure 31 is a plot of the torso angle for a time interval

including a portion of the steady state walking cycle and the

stopping of RABBIT. The increase in the torso angle reflects

the action of the integral control; see Figure 32.
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5. Conclusion

This paper presents the experimental validation of a novel

framework for the control of walking in a class of planar

bipeds using a 5-link biped prototype, RABBIT. The frame-

work builds on previous work by formalizing an approach

common to most schemes for the control of biped walking.

That approach is to structure the control in such a way as to

simplify the controller design process. The approach can be

found, for example, in the regulation of angular momentum by

Sano and Furusho [28], of total energy by Goswami, Espiau,

and Keramane [10], of the robot’s center of mass trajectory

by Kajita and Tani [18], via virtual model control by Pratt et

al. [24], [25], and of the ZMP by many [13], [21], [30], [35].

This framework is an attempt to give a rigorous formulation

of this common approach.

After incorporation of three implementation issues, the ex-

perimental performance of the closed-loop system was found

to be robust to both a sizable torso mass perturbation and

aperiodic, short duration force perturbations applied to the

torso. Two additional features of the framework were also

validated. The first is the ability to compose two fixed-

rate walking controllers to obtain walking at several discrete

walking rates with guaranteed stability during the transitions

using a one-step transition controller. The second is the ability

to regulate average walking rate to a continuum of values by

modification of stride characteristics using an improvement to

a previously published technique. The improved technique is

given in Appendix 2.

The paper also interprets the action of the fixed-rate walking

controllers as imposing virtual constraints and discusses how

virtual constraints differ from physical constraints by means

of a simple example. It is further discussed that the seem-

ing equivalence of the dynamics that result from imposing

virtual constraints to induce walking—the (swing phase) zero

dynamics—and the dynamics of a length and inertia varying

inverted pendulum does not hold.
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Appendix 1

Hypotheses

A complete list of hypotheses assumed for the N -link

robot model and the desired walking gaits taken from [34]

is enumerated.

Robot hypotheses: The robot is assumed to be:

RH1) comprised of N rigid links with mass, connected by

revolute joints with no closed kinematic chains;

RH2) planar, with motion constrained to the sagittal plane;

RH3) bipedal, with symmetric legs connected at a common

point called the hip;

RH4) actuated at each joint;

RH5) unactuated at the point of contact between the stance

leg and ground; and

RH6) modeled with N − 1 relative angular coordinates,

(q1, . . . , qN−1), plus one absolute angular coordinate, qN .

Gait hypotheses: Conditions on the controller will be imposed

and shown to ensure that the robot’s consequent motion

satisfies the following properties consistent with the intuitive

notion of a simple walking gait:

GH1) there are alternating phases of single support and double

support;

GH2) during the single support phase, the stance leg acts

as a pivot joint; that is, throughout the contact, it can

be guaranteed that the vertical component of the ground

reaction force is positive and that the ratio of the horizontal

component to the vertical component does not exceed the

coefficient of static friction;

GH3) the double support phase is instantaneous and can be

modeled as a rigid contact [15];

GH4) at impact, the swing leg neither slips nor rebounds;

GH5) in steady state, successive phases of single support are

symmetric with respect to the two legs;

GH6) walking is from left to right, so that the swing leg starts

from behind the stance leg and is placed strictly in front of

the stance leg at impact.

RH1), RH2), and GH2) imply that the robot has N -DOF

during the swing phase. RH4), RH5) and GH2) imply that

when walking the robot has one degree of underactuation, i.e.,

one less control than DOF.

Impact model hypotheses: The impact model of [15] is used

under the following assumptions:

IH1) the contact of the swing leg with the ground results in

no rebound and no slipping of the swing leg;

IH2) at the moment of impact, the stance leg lifts from the

ground without interaction;

IH3) the impact is instantaneous;

IH4) the external forces during the impact can be represented

by impulses;

IH5) the impulsive forces may result in an instantaneous

change in the velocities, but there is no instantaneous change

in the configuration; and

IH6) the actuators cannot generate impulses and hence can be

ignored during impact.

Appendix 2

Event-based PI control of average walking rate

The goal of this appendix is to design an event-based

controller10 that adjusts the parameters in the output (14) to

achieve walking at a continuum of rates. This result is an

extension to the event-based PI-control result given in [33].

The extension is nontrivial because of the difficulty of ensuring

invariance of the hybrid zero dynamics in the presence of step-

to-step stride-boundary parameter adjustments. The control

technique was developed in response to the within-stride

scheme’s inability to effectively regulate average walking rate

during experimentation. The controller design and analysis are

based on the hybrid zero dynamics. A one-parameter curve

will be defined in the set of parameters appearing in (14).

Conditions will be identified so that this one-parameter curve

will yield an effective control for the associated Poincaré map.

Updating this control at each impact event of the walking cycle

will yield a means to control average walking rate.

For a given controller11 Γα satisfying the hypotheses of

CH2)–CH5) [12, Sec. IV-B] so that Zα is invariant under the

swing phase zero dynamics in closed loop with Γα, the average

walking rate is computed from the model (5) as follows. Let

Pα : S → S be the Poincaré return map and let TI,α : TQ →
R≥0 ∪ {∞} be the time to impact function [34, Eqn. (81)].

Formally, the average walking rate is the (partial) map ν̄α :
S → R≥0,

ν̄α :=
ph
2 ◦ Pα

TI,α ◦ ∆
, (52)

where, ph
2 , when evaluated on S, computes step length; see

Figure 1. On the open subset S̃ ⊂ S where 0 < TI,α ◦∆ < ∞
and the associated impacts are transversal to S, both Pα and

TI,α◦∆ are well-defined and continuous (see [12, Sec. III.B]).

It follows that ν̄α restricted to S̃ is continuous. Since Γα is

continuous but not Lipschitz continuous, ν̄α is not smooth on

any open subset of S. However, if12 α is a regular parameter

value13 of output (14) with h0, hd, and θ as in Section 3.1,

giving rise to a hybrid zero dynamics that evolve on the

associated zero dynamics manifold Zα, then ν̄α restricted to

S̃ ∩ Zα depends smoothly on the states and the parameter

values α used to define the outputs (14).

Let A = R
(N−1)×(M+1) be the set of all Bézier polynomial

coefficients, α, for the output (14) with h0, hd, and θ as in

Section 3.1. For this appendix, it is important to note that the

10That is, one that acts step-to-step with updates occurring at impacts.
11In this appendix, to emphasize the dependence of quantities upon their

associated Bézier polynomial parameters, the associated Bézier polynomial
labels will be used as subscripts.

12The Bézier polynomial parameters, αi
k

, are grouped into an (N − 1) ×

(M+1) matrix, α, and denote the columns of α by αk := (α1
k
, . . . , αN−1

k
)′.

13That is, the output corresponding to ᾱ satisfies HH1)–HH5).
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degrees of the Bézier polynomials in hd are fixed. Partition A,

and, consequently, each α = [α0, . . . , αM ] ∈ A, into two sets:

αinvar := [α0, α1] ∈ Ainvar := R
(N−1)×2, (53)

the parameters chosen to render the swing phase zero dynam-

ics invariant under the impact mapping and

αfree := [α2, . . . , αM ] ∈ Afree := R
(N−1)×(M−1), (54)

those freely chosen to affect the shape of the walking motion.

Note that A = Ainvar × Afree and α = [αinvar, αfree].
The natural geometric object to use in the analysis of event-

based, step-to-step parameter modifications is a fiber bundle.

The fiber bundle structure will elucidate the interaction be-

tween parameter modifications and the evolution of a Poincaré-

like mapping, the flow map. To that end, define the trivial fiber

bundle

π : A × TQ → A (55)

by π(α, x) → α for α ∈ A and x ∈ TQ. Consider S ⊂
A × TQ defined by

S := {(α, x) ∈ A × TQ | α ∈ A, pv
2(x) = 0, ph

2(x) > 0}.
(56)

which is a fiber bundle with base A and fiber π−1
S (α) = S

for each α ∈ Ã ⊂ A where πS = π|S and Ã = π(S) is

the set of parameters such that there exists at least one point

where pv
2(x) = 0 and ph

2(x) > 0. Define Ā ⊂ Ã to be the set

of regular parameters, i.e., for each ᾱ ∈ Ā the corresponding

output satisfies HH1)–HH5). The set Ā is open since HH2),

HH3), and HH5) are rank conditions14 and since condition

HH4) requires a zero of a function that depends continuously

on ᾱ to remain in an open set. With Ā, Z ⊂ A×TQ may be

defined as

Z := {(α, x) ∈ A × TQ | α ∈ Ā, hα(x) = 0, Lfhα(x) = 0}
(57)

which is a fiber bundle with base Ā and fiber π−1
Z (ᾱ) = Zᾱ,

ᾱ ∈ Ā and πZ = π|Z . The fiber bundle Z corresponds to the

set of parameters giving rise to well-defined swing phase zero

dynamics along with the associated zero dynamics manifolds.

Since, by assumption, for each ᾱ ∈ Ā, the output satisfies

HH5), the intersection S ∩ Z is also a fiber bundle with base

Ā ⊂ A and fiber π−1
S∩Z(ᾱ) = S ∩ Zᾱ, ᾱ ∈ Ā where πS∩Z =

π|S∩Z .

In what follows, the fiber bundle structure of S ∩ Z will

permit the creation of event-based PI controllers which modify

parameters step-to-step—even those that change S ∩ Z step-

to-step. Let ᾱ ∈ Ā and suppose that δα ∈ R
(N−1)×(M+1) is

such that

δα �= 0 and (δα)0 = (δα)1 = 0 (58)

and that the function

α̂invar(ᾱ, v, w) := [α̂invar,0(ᾱ, v), α̂invar,1(ᾱ, v, w)] (59)

14An equivalent condition for a square matrix to be full rank is for its
determinant to be nonzero. The determinant is a continuous function of matrix
entries which, in the case of HH2), HH3), and HH5), are functions of ᾱ.

is defined to ensure invariance of the zero dynamics step-to-

step. Then, for v, w ∈ R sufficiently small in magnitude

α̂(ᾱ, v, w) = [α̂invar(ᾱ, v, w), ᾱfree] + wδα (60)

is also regular. The following lemma will be used to calculate

α̂invar,0(ᾱ, v) and α̂invar,1(ᾱ, v).
Lemma 1 (Achieving ∆(S ∩ Zα) ⊂ Zβ): Assume the exis-

tence of two outputs hα and hβ as defined above. Then,

hβ ◦ ∆(S ∩ Zα) = 0 if, and only if,
[

β0

θ+
β

]

= H∆qH
−1

[

αMα

θ−α

]

. (61)

Moreover, if δzero,α �= 0, then Lfhβ ◦∆(S ∩Zα) = 0 if, and

only if,

β1 = H0∆q̇H
−1





Mα

θ−α − θ+
α

(αMα
− αMα−1)

1





·
θ−β − θ+

β

Mβ

κ1,α(θ−α )

κ1,β(θ+
β )

1

δzero,α

+ β0 (62)

That is, if (61) and (62) hold, then ∆(S ∩ Zα) ⊂ Zβ .

Proof: The proof follows from direct calculation. The com-

plete details are given in [32].

To ease the cumbersome notation, for the remainder of this

appendix define ᾱv := ᾱ+vδα and, similarly, ᾱw := ᾱ+wδα.

Using this notation and Lemma 1, α̂invar,0 and θ+
α̂ may be

calculated as
[

α̂invar,0(ᾱ, v)

θ+
α̂

]

:= H∆qH
−1

[

(ᾱv)M

θ−ᾱv

]

(63)

to ensure that for each x ∈ S if hᾱ(x) = 0, then hᾱ ◦∆(x) =
0. If δzero,ᾱ �= 0, then α̂invar,1 may be calculated as

α̂invar,1(ᾱ, v, w) := H0∆q̇H
−1

·





M

θ−ᾱv
− θ+

ᾱv

((ᾱv)M − (ᾱv)M−1)

1





·
θ−ᾱw

− θ+
ᾱw

M

κ1,ᾱv
(θ−ᾱv

)

κ1,ᾱw
(θ+

ᾱw
)

1

δzero,ᾱv

+ α̂invar,0(ᾱ, v) (64)

which together with α̂invar,0 ensures that for each x ∈ S if

Lfhᾱ(x) = 0, then Lfhᾱ ◦ ∆(x) = 0.

Assume that there exists some ᾱ∗ ∈ Ā such that there

exists a corresponding exponentially stable periodic orbit of

the restricted Poincaré map, defined in Section 3,

ρᾱ∗ : S ∩ Zᾱ∗ → S ∩ Zᾱ∗ . (65)

Let z∗ᾱ∗ ∈ π−1
S∩Z(ᾱ∗) be the corresponding fixed point of ρᾱ∗ .

For ᾱ∗, v, and w fixed, define the induced, restricted flow map

ρ̄α̂(ᾱ∗,v,w) : π−1
S∩Z ◦ α̂(ᾱ∗, · , v) → π−1

S∩Z ◦ α̂(ᾱ∗, v, w) (66)

by ρ̄(z, α̂(ᾱ∗, v, w)) : ϕα̂(ᾱ∗,v,w)(TI,α̂(ᾱ∗,v,w)(z), z) where

ϕα̂(ᾱ∗,v,w)(t, z) is the maximal solution of the hybrid zero

dynamics (22) with initial condition z ∈ π−1
S∩Z ◦ α̂(ᾱ∗, · , v) at

time t0 = 0 associated with parameter α̂(ᾱ∗, v, w). Unlike the

restricted Poincaré map, ρ, which maps from a single fiber to
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itself, the induced, restricted flow map, ρ̄, maps from one fiber

(parameterized by vδα) to another (parameterized by wδα).

The parameters δα, v, and w will now be used to implement

event-based PI control on the induced, restricted flow map

(66).

Define the single-input, single-output dynamic system on

S ∩ Z × R
2,

z(k + 1) = ρ̄(z(k), α(k))

α(k) = α̂(ᾱ∗, v(k), w(k))

v(k + 1) = w(k)

η(k + 1) = ν̄(z(k), α(k))

y(k) = η(k)

(67)

with input w ∈ R and output y ∈ R equal to the average

walking rate. It’s linearization is

δz(k + 1) = a11δz(k) + a12δv(k) + b1δw(k)

δα(k) = δα̂(ᾱ∗, v(k), w(k))

δv(k + 1) = δw(k)

δη(k + 1) = a31δz(k) + a32δv(k) + b3δw(k)

δy(k) = δη(k)

(68)

where

a11 :=
∂ρ̄

∂z
(z(k), α̂) a31 :=

∂ν̄

∂z
(z(k), α̂)

a12 :=
∂ρ̄

∂v
(z(k), α̂) a32 :=

∂ν̄

∂v
(z(k), α̂)

b1 :=
∂ρ̄

∂w
(z(k), α̂) b3 :=

∂ν̄

∂w
(z(k), α̂),

(69)

α̂ = α̂(ᾱ∗, v(k), w(k)), and the right hand sides of (69) is

evaluated at z = z∗ᾱ∗ , v = 0, and w = 0. The linearized

system (68) is exponentially stable if, and only if, |a11| < 1.

The DC-gain is non-zero if, and only if,

a31(b1 + a12) + (a32 + b3)(1 − a11) �= 0. (70)

Theorem 1: Let ᾱ∗ ∈ Ā be a regular parameter value for

which there exists an exponentially stable periodic orbit in

Zᾱ∗ . Denote the corresponding fixed point of the Poincaré

return map by z∗ᾱ∗ . Assume there exists δα satisfying (58)

and such that the non-zero DC-gain condition (70) holds.

Then, average walking rate can be regulated via PI control.

In particular, there exist ǫ > 0, and scalars KP and KI such

that for all η∗ such that |η∗ − ν̄(z∗ᾱ∗ , ᾱ∗)| < ǫ, the system

consisting of (67) in closed-loop with the proportional plus

integral controller

e(k + 1) = e(k) + (η∗ − η(k))

w(k) = KP (η∗ − η(k)) + KIe(k)
(71)

has an exponentially stable equilibrium, and thus, when initial-

ized sufficiently near the equilibrium, limk→∞(η∗−η(k)) = 0.

Proof: The linear system (68) is exponentially stable because

the exponential stability of the fixed-point z∗ᾱ∗ implies that

|a11| < 1. This, combined with the DC-gain being non-zero,

implies the existence of a PI controller of the form

δe(k + 1) = δe(k) + (δη∗ − δη(k))

δw(k) = Kp(δη
∗ − δη(k)) + KIδe(k)

(72)

such that the closed-loop system (68) with (72) is exponen-

tially stable and satisfies limk→∞(δη∗ − δη(k)) = 0, where

δη∗ := (η∗ − ν̄(z∗ᾱ∗ , ᾱ∗)). Since the closed-loop of (68) with

(72) is the linearization of (67) in closed-loop with (71), the

result follows.
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Fig. 12. Walking at 0.7 m/s: joint angles versus time. Actual joint trajectories
are solid and hd,· is dashed.
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Fig. 13. Walking at 0.7 m/s: joint velocities versus time. Actual joint

trajectories are solid and (∂hd,·/∂θ̂)
˙̂
θ is dashed.
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Fig. 14. Walking at 0.7 m/s: q5 versus time.
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Fig. 15. Walking at 0.7 m/s: control signals versus time.
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Fig. 16. Walking at 0.7 m/s: φh versus time.
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Fig. 17. Walking at 0.7 m/s: step length, step duration, and average walking
rate versus time. Circles represent steps taken by the outer leg, squares
represent steps taken by the inner leg.
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Fig. 18. Robustness demonstration: joint angles versus time. Actual joint
trajectories are solid and hd,· is dashed.
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Fig. 19. Robustness demonstration: control signals versus time.
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Fig. 20. Transitioning: joint angles versus time. Actual joint trajectories are
solid and hd,· is dashed.
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Fig. 21. Transitioning: control signals versus time.
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Fig. 22. Transitioning: average walking rate versus time. Circles represent
steps taken by the outer leg, squares represent steps taken by the inner leg.
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Fig. 23. I-control to change fixed point: joint angles versus time. Actual
joint trajectories are solid and hd,· is dashed.
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Fig. 24. I-control to change fixed point: q5 versus time.
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Fig. 25. I-control to change fixed point: control signals versus time.
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Fig. 26. I-control to change fixed point: w versus time.
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Fig. 27. I-control to change fixed point: average walking rate versus time.
Circles represent steps taken by the outer leg, squares represent steps taken
by the inner leg.



19

q
5

(r
ad

)

t (sec)

20 40 60 80 100

−0.1

0

0

0.1

Fig. 28. I-control to reject a perturbation: q5 versus time.
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Fig. 29. I-control to reject a perturbation: w versus time.

ν̄
(m

/s
)

t (sec)

0 20 40 60 80 100

0.6

0.8

1

Fig. 30. I-control to reject a perturbation: average walking rate versus time.
Circles represent steps taken by the outer leg, squares represent steps taken
by the inner leg.
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Fig. 31. I-control to stop the robot: q5 versus time.
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Fig. 32. I-control to stop the robot: w versus time.
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Fig. 33. I-control to stop the robot: average walking rate versus time. Circles
represent steps taken by the outer leg, squares represent steps taken by the
inner leg.


