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Experimental validation of FINDSITEcomb virtual
ligand screening results for eight proteins yields
novel nanomolar and micromolar binders
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Abstract

Background: Identification of ligand-protein binding interactions is a critical step in drug discovery. Experimental

screening of large chemical libraries, in spite of their specific role and importance in drug discovery, suffer from the

disadvantages of being random, time-consuming and expensive. To accelerate the process, traditional structure- or

ligand-based VLS approaches are combined with experimental high-throughput screening, HTS. Often a single

protein or, at most, a protein family is considered. Large scale VLS benchmarking across diverse protein families is

rarely done, and the reported success rate is very low. Here, we demonstrate the experimental HTS validation of a

novel VLS approach, FINDSITEcomb, across a diverse set of medically-relevant proteins.

Results: For eight different proteins belonging to different fold-classes and from diverse organisms, the top 1% of

FINDSITEcomb
’s VLS predictions were tested, and depending on the protein target, 4%-47% of the predicted ligands

were shown to bind with μM or better affinities. In total, 47 small molecule binders were identified. Low nanomolar

(nM) binders for dihydrofolate reductase and protein tyrosine phosphatases (PTPs) and micromolar binders for the

other proteins were identified. Six novel molecules had cytotoxic activity (<10 μg/ml) against the HCT-116 colon

carcinoma cell line and one novel molecule had potent antibacterial activity.

Conclusions: We show that FINDSITEcomb is a promising new VLS approach that can assist drug discovery.

Keywords: Drug discovery, Virtual ligand screening (VLS), High-throughput screening (HTS), Differential scanning

fluorimetry (DSF), Ligand homology modeling

Background
Traditional experimental approaches to drug discovery

rely on two different strategies [1]. The first selects a re-

liable therapeutic target that might be essential for an

organism’s or cell’s survival, and then, using chemical li-

brary screening, potential leads that bind to and modu-

late the activity of the target in vitro and subsequently,

in vivo, are identified. The second approach tests small

molecules on animal disease models or cell cultures

(called phenotypic screening), and once activity is

gleaned, the protein target is experimentally identified

by target deconvolution [2]. Both approaches have con-

tributed to the discovery of new drugs despite suffering

from substantial disadvantages of high cost and time.

Fragment-based drug discovery approaches have recently

gained prominence as a distinct and complementary ap-

proach to drug discovery [3]. Integration of a robust

VLS methodology with experimental HTS approaches

constitutes one of the many methods that might acceler-

ate the drug discovery process [4].

Despite its current limitations, VLS may be employed

as a possible first step in drug discovery [5]. It not only

aids in the selection of an appropriate protein target but

also narrows down the chemical space that is experi-

mentally screened to arrive at significant protein-ligand

interactions. In practice, both ligand- and structure-

based VLS approaches [6] have been used. The principal

disadvantage of a ligand-based approach is the need for

a priori knowledge of a set of ligands known to bind to

the target [7]. Structure-based approaches require a

high-resolution structure of the target; this situation
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typically only holds for a minority of proteins in a given

proteome [8]. To overcome these limitations, ligand

homology modeling (LHM) was developed to predict li-

gands that bind to the protein target [9-11]. LHM relies

on the fact that evolutionarily distant proteins share

functional overlap and their ligand-binding information

provides diverse bound ligands that can be employed in

a general VLS approach. Thus, it does not suffer from

the limitations of quantitative structure-activity relation-

ship (QSAR)-based approaches. In large scale bench-

marking, the FINDSITEcomb LHM approach exhibited

significant performance advantages over traditional ap-

proaches in terms of enrichment factor, speed, and in-

sensitivity as to whether experimental or predicted

protein structures are used [12]. However, experimental

assessment of the method, where blind predictions are

made and then experimentally tested, has not been done.

To ensure robustness, a diverse set of proteins and li-

gands must be examined, and the strengths and limita-

tions of the approach demonstrated.

A reliable and fast method that would test VLS predic-

tions and identify hits could help accelerate the drug-

discovery process. This could help alleviate the inherent

complexity of treating diseases due to cross-reactivity and

could address the rapid evolution of resistance to available

drugs by pathogenic microbes. We have resorted to the

thermal shift assay methodology to assess the predictions

from VLS [13]. The methodology is an inexpensive way to

assess the binding of small-molecules by the stability they

confer on thermal denaturation of the protein target of

interest. Upon thermal denaturation, the hydrophobicity

of proteins increases, leading to an increase in fluores-

cence of an extrinsic fluorophore reporter dye. This

method is amenable to miniaturization and can screen

hundreds of molecules simultaneously for their ability to

bind to the protein target of interest.

Recognizing the importance of these issues, in the

present paper, to assess if FINDSITEcomb [12] can improve

VLS, we selected an assortment of medically-relevant pro-

teins with differing fold-architectures from diverse organ-

isms including the causative agents of human and primate

malaria, Plasmodium falciparum and Plasmodium know-

lesi, an opportunistic pathogen Escherichia coli, and pro-

teins implicated in mammalian disorders (from Homo

sapiens and Rattus norvegicus). For these proteins, top

ranked ligands predicted by FINDSITEcomb are experi-

mentally assessed for binding by thermal-melt assays.

After validating the small molecule binding predictions,

we tested their physiological function by their ability to kill

bacteria such as multi-drug resistant E. coli (MDREC),

methicillin-resistant Staphylococcus aureus (MRSA),

Vancomycin-resistant Enterococcus faecium (VREF), and

their cytotoxic activity using HCT-116 colon carcinoma

tumor cell line. The encouraging experimental results

for both binding and physiological activity show that

FINDSITEcomb is an effective VLS tool.

Results
The section summarizes the results from FINDSITEcomb

’s

VLS predictions on eight different proteins and their val-

idation by the thermal shift assay methodology.

Prior to assessing the VLS results on the eight protein

test set, the thermal shift methodology was validated on

three proteins having known binding and nonbinding li-

gands. Only cognate protein-ligand pairs showed shifts

in the transition mid-point of thermal melt curves, Tm,

while non-cognate ligands displayed no such shifts

(Additional file 1: Figure S1 and SI).

We next applied the methodology, as shown in Figure 1,

in benchmark mode to eight diverse proteins, viz.,

FINDSITEcomb only considered template proteins whose

sequence identities to the target was <30%. Typically on

the order of 50 ligands per protein gave interpretable ther-

mal shift curves. Of these, the experiments identified a

total of 47 small-molecule/protein binding interactions

with μM or better affinities. Ten ligands with apparent

nM binding affinities (less than 1 μM) were identified

for dihydrofolate reductase from E. coli and the two

mammalian protein tyrosine phosphatases (PTPs).

Except for a small fraction of known inhibitors, which

further validated the methodology, most are novel. The

prediction percentage success rate ranged from 3.9%

of ligands tested for the P. falciparum ubiquitin-

conjugating enzyme to almost 47% for dihydrofolate

reductase from E. coli (Table 1). This is a major advance-

ment over previously reported success rates [14]. The

small-molecules that displayed biological activity had low

μM or nM affinities in the in vitro thermal shift assay

(Table 2; Additional file 1: Tables S3-S5). This supports

the conjecture that their in vivo biological activity might

result from binding of the small-molecule with the

intended target protein. A more detailed summary of the

results is presented below.

E. coli dihydrofolate reductase (DHFR)

In silico screening of E. coli DHFR was carried out with

FINDSITEcomb in benchmarking mode (Additional file 1:

Table S2A). The top 1% of predictions, with 83 small-

molecules, was assessed for binding (Table 1). Fifteen

ligands, representing 47% of interpretable curves, showed

binding (Figure 1 and Table 1). Of these 15 hits, represent-

ing μM or better binders, six were previously reported

inhibitors of DHFRs from various organisms [15-19].

Among these known binding molecules, methotrexate

(NSC740) showed the maximum thermal shift of ~30°C

followed by 7H-Pyrrolo(3,2-f) quinazoline-1, 3-diamine

(NSC339578) [15], methylbezoprim (NSC382035) [16],

pralatrexate (NSC754230) [17], pemetrexed (NSC698037)
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[18] and 6,7-bis(4-aminophenyl) pteridine-2,4-diamine

(NSC61642) [19]. The approximate dissociation constant

(KD) of 62 nM for the enzyme-methotrexate (NSC740)

complex matches reported literature values, which range

from 2 to 50 nM [20-22], within experimental error. Thus,

the thermal shift methodology provides an approximate

Figure 1 Flowchart of the overall approach and the thermal shift assay results. The first panel shows the in silico approach to predicting

protein-small molecule interactions. All predictions were in benchmarking mode with a 30% template SID cutoff and the top 1% of the hits tested

using thermal-shift assays. The second panel shows a representative fraction of the thermal melt curves that showed positive shifts for the tested

proteins. The numbers are the NSC notation that identifies each small-molecule. DHFR is E. coli dihydrofolate reductase, 1000001 is a PTP from

R. norvegicus, 1000006 is a PTP from H. sapiens, TrpRS is tryptophanyl tRNA synthetase from H. sapiens, UCE is ubiquitin-conjugating enzyme from

P. falciparum, NAP1 is nucleosome assembly protein 1 from P. knowlesi, TP2 is thioredoxin peroxidase 2 from P. falciparum and cDPK is the

wild-type cAMP-dependent protein kinase, catalytic subunit from H. sapiens. Small-molecule binders were tested for their antimicrobial & cytotoxic

activity against HCT-116 colon carcinoma cell line.
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KD. The five other known inhibitors bind DHFR with low

μM or nM KDs (Additional file 1: Table S3).

Nine small molecules are novel hits with no reported

binding to/activity against DHFRs. These molecules are

chemically diverse. The 15 different hits cluster into 10

distinct chemical classes based on a Tanimoto coefficient

(TC) cutoff of 0.7 (Additional file 1: Figure S2A).

NSC309401, the top novel hit in Table 1, showed appar-

ently better binding to E. coli DHFR than methotrexate

(KD of 48 nM and a thermal shift of almost 31 degrees)

and showed inhibition against several antibiotic-resistant

microbial strains (Table 2). It displayed a promising MIC

of 7.8 μg/mL against E. coli DH5α and a reasonable

MIC (31.25 μg/mL) against MRSA and VREF. It also has

very potent activity against the HCT-116 colon carcin-

oma cell line with an IC-50 of 0.13 μg/mL (Table 2).

This corroborates findings from the NCI human tumor

cell line growth inhibition assay showing that this

molecule has activity (potency not revealed) against sev-

eral cancer cell lines including melanoma, prostrate,

colon, and breast (http://pubchem.ncbi.nlm.nih.gov, CID:

24198955, substance SID: 573494, compound name:

MLS002701801) [23]. We posit that its activity is at least

partly due to DHFR inhibition. Since NSC309401 inhibits

both prokaryotic and eukaryotic systems, it might be a

broad specificity antifolate. 2, 4-diaminoquinazolines and

Table 1 Results from the thermal shift assays on eight proteins, ranked by best ligand binding*

Protein Organism No. of ligands
tested

No. of good
curves

No. of + vea

shifts/% +
vea shifts

Best hit (NSC) ΔTm (°C) KD (nM)b Best hit structure

DHFR E. coli 83 32 15/46.9 309401 30.74 48.21

1000006 H. sapiens 59 43 6/13.9 133351 16.76 168.29

1000001 R. norvegicus 86 42 10/23.8 134137 12.30 406.0

TrpRS H. sapiens 94 12 5/41.7 750690 14.57 1277.51

UCE P. falciparum 80 51 2/03.9 93427 14.86 1376.09

TP2 P. falciparum 67 12 2/16.7 106231 5.7 40872.77

cDPK H. sapiens 80 19 3/15.8 27032 2.95 48538.90

NAP 1 P. knowlesi 82 54 4/07.4 36398 2.21 180135.58

1000001: Carboxy-terminus phosphatase domain of protein tyrosine phosphatase (2NV5), DHFR: Dihydrofolate reductase, UCE: Ubiquitin conjugating enzyme,

TrpRS: Tryptophanyl tRNA synthetase, TP2: Thioredoxin peroxidase 2, 1000006: catalytic domain of protein tyrosine phosphatase (2G59), cDPK: Catalytic subunit

of cAMP-dependent protein kinase, NAP1: Nucleosome assembly protein 1. aPositive thermal shift is indicated by the notation + ve. KD indicates dissociation

constants. bThe dissociation constant reported in this table are computed from the thermal shifts obtained. *The values reported in this table are experimental

in-vitro values.
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their derivatives are known to inhibit DHFR (a prominent

example is trimetrexate) (Rosowsky, et al., 1995) but

their structures are different from NSC309401, a 7-[(4-

aminophenyl) methyl]-7Hpyrrolo [3, 2-f] quinazoline-1,

3-diamine, in that the latter compound has a novel tricyc-

lic heterocycle.

Another interesting small molecule, with no previously

reported binding to DHFR, was NSC80735, with a KD of

1.7 μM and a MIC of 10.9 μg/mL against HCT-116

(Additional file 1: Table S3). The other novel hits had af-

finities ranging from 6-75 μM; these hits represent po-

tential compounds that could be improved to increase

their medical significance vis-à-vis DHFR inhibition. A

single novel hit had a poor affinity of ~460 μM.

Protein tyrosine phosphatases (PTP)

The top 1% of VLS predictions (Additional file 1: Table

S2B and S2C), representing 86 and 59 molecules, were

tested on PTPs 1000001 and 1000006, respectively. Ten

molecules, 24% of the interpretable curves, showed posi-

tive shifts for PTP 1000001, and six molecules, 14%

of the interpretable curves, showed positive shifts for

PTP 1000006 (see Figure 1 and Table 1). However, it

should be noted here that a few of the reported mole-

cules have low Q values representing poor signal com-

pared to the thermal unfolding curve of the protein

alone (see Materials and Methods) (Additional file 1:

Table S4). All these compounds are novel hits, with no

reported binding to/activity against PTPs. At a TC cutoff

of 0.7, the 10 ligands showing experimental binding

to 1000001 clustered into eight different subgroups

(Additional file 1: Figure S2B), while the six ligands

showing experimental binding to 1000006 clustered into

four different subgroups (Additional file 1: Figure S2C).

This again demonstrates the diversity of ligands selected

by FINDSITEcomb. Next, 32 predictions ranked below

the top 1% from VLS were randomly selected and tested

experimentally on 1000001 and 1000006 to demonstrate

that the obtained hit rate for the top 1% was appreciably

better than the background. Convincingly, as inferred by

the lack of shift in Tm, none showed any binding.

Among the ten hits for 1000001, seven had μM

affinities, three had nM affinities with the compound

NSC134137 showing a maximal thermal shift of ~12°C.

This translates into an approximate KD of 406 nM

(Additional file 1: Table S4). Five of these compounds,

50% of the hits, displayed cytotoxic activity against

HCT116. Valrubicin (NSC246131), (a known anticancer

agent that intercalates with DNA [24]), was also shown

to bind to PTP1000001 with an approximate dissociation

constant of 1.5 μM. NSC246131 binding to PTP 100001

hints at promiscuity of this molecule. Three hits,

NSC111552, NSC30205 and NSC88882 also showed po-

tent cytotoxic activity (IC-50 of 2.20 μg/mL, 0.15 μg/mL

and 4.44 μg/mL, respectively), while NSC106863 showed

reasonable cytotoxic activity with an IC-50 of 14.5 μg/mL

against the HCT-116 colon carcinoma cell line (see Table 2;

Additional file 1: Table S4). We note that a single paper

reports the cytotoxic activity of NSC111552 derivatives

against cancer cell lines [25]. While there is no literature

Table 2 Antimicrobial and anticancer activities of a representative set of small-moleculesb

Proteina Identity (NSC) DH5α (MIC) MDREC (MIC) MRSA (MIC) VREF (MIC) HCT-116 (IC-50)

DHFR 309401 7.813 125 31.25 31.25 0.130

740* ND ND ND 500 0.048

339578* 62.5 250 31.25 31.25 6.11

382035* ND ND 31.25 31.25 0.182

754230* ND ND ND ND <<0.031

1000001 111552 NA NA NA NA 2.2

246131@ NA NA NA NA 0.024

30205 NA NA NA NA 0.146

88882 NA NA N A NA 4.44

106863 NA NA NA NA 14.5

1000006 92794 NA NA NA NA 9.78

TrpRS 750690¥ NA NA NA NA 1.11

88882 NA NA NA NA 4.44

37168 NA NA NA NA 1.34

*Reported inhibitors of DHFR independently picked up by our predictions and validated experimentally. @Small molecule with known anti-cancer properties

(valrubicin). ¥Small molecules with known anticancer properties (Sunitinib), MIC: Minimum inhibitory concentration required for 90% clearance, μg/mL units. ND:

No significant inhibition. NA: not applicable. DH5α: E. coli strain DH5α, MRSA: Methicillin-resistant S. aureus, MDREC: Multi-drug resistant E. coli, VREF: Vancomycin-resistant

E. faecium, HCT-116: Colon carcinoma cell line. IC-50: inhibitory concentration for 50% growth inhibition, μg/mL units. aFor additional details, see legend from Table 1. bThe

values reported in this table are experimental in-vitro values.
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describing the anticancer properties of either NSC30205 or

NSC88882, 9-aminoacridine-based compounds are known

to be cytotoxic towards cancer cell lines [26-33]. Thus, the

mode of action of NSC30205 could be similar [31]. We also

posit that the PTP human homologue is one of the targets

responsible for the cytotoxic activities of these molecules.

All six hits for 1000006 have apparent KDs that range

from 168 nM-271.5 μM (Additional file 1: Table S4).

The top hit was NSC133351 with an approximate dis-

sociation constant of 168.3 nM. NSC92794, with a KD of

161.9 μM, displayed reasonable cytotoxic activity with

an IC-50 value of 9.8 μg/mL against HCT-116 colon car-

cinoma cell line. None of the other hits of 1000006 dis-

played discernible cytotoxic activity. Since 1000001 and

1000006 are both PTPs and share substantial structural

similarity, there were instances where 1000001 binders

also bind 1000006 (Additional file 1: Table S6 and SI).

Ubiquitin-modifying enzyme (UCE)

For P. falciparum UCE, 80 molecules from the top 1% of

FINDSITEcomb predictions (Additional file 1: Table S2G),

were experimentally tested for binding (Table 1); only 51

gave interpretable thermal shift curves. Two molecules,

4% of the interpretable curves, showed binding (see

Figure 1 and Table 1). NSC93427 binds to UCE, with a

thermal shift of ~15°C that translates into an approximate

KD of 1.4 μM. Another compound, NSC50651, showed an

apparent KD of 197 μM (Additional file 1: Table S5).

Future studies to assess the inhibition of in vitro cultures

of P. falciparum by these small-molecules are needed to es-

tablish their utility as lead compounds for malaria treatment.

Tryptophanyl tRNA synthetase (TrpRS)

For TrpRS, 94 compounds from the top 1% of the VLS

(Additional file 1: Table S2D) were experimentally

screened (Table 1). Five, constituting 42% of the inter-

pretable curves, showed thermal shifts (see Figure 1 and

Table 1). The ligands clustered into three different sub-

groups (Additional file 1: Figure S2D) based on a TC

cutoff of 0.7. The most interesting small-molecule that

binds TrpRS was Sunitinib (NSC 750690) with an ap-

proximate KD of 1.3 μM and an IC-50 of 1.1 μg/mL for

HCT-116. The observed effect might be due to its inhib-

ition of multiple targets (receptor tyrosine kinases are

known Sunitinib targets [34]).

Two other small molecules, NSC88882 and NSC37168,

with ~KDs of 3.8 μM and 9.1 μM respectively, also

showed potent inhibition of HCT-116, with IC-50s of

4.44 μg/mL and 1.34 μg/mL, respectively (Table 2).

NSC88882 has been shown to possess activity in the

several bioassay trials undertaken by the NCI suggesting

high promiscuity across several protein targets (http://

pubchem.ncbi.nlm.nih.gov/, substance SID: 26665273,

CID: 68249) [31]. NSC37168 also binds multiple targets

within different cell types [3,35]. However, none of

these reports suggest binding/inhibition of TrpRS. Other

compounds that bind TrpRS were NSC50690 and

NSC55152, having KDs of 7.7 μM and 39.6 μM, respect-

ively (Additional file 1: Table S4).

Thioredoxin peroxidase2 (TP2), cAMP-dependent protein

kinase (cDPK) and nucleosome assembly protein 1(NAP1)

TP2 from P. falciparum, the catalytic domain of the

cDPK from H. sapiens and NAP1 from P. knowlesi were

tested with moderate success. Their thermal melt assay

results are collated in Table 1 and Additional file 1:

Table S5, with additional VLS results summarized in

Additional file 1: Table S2F, S2E and S2H, respectively.

Experimental thermal melt curves are shown in Figure 1.

As can be seen in Additional file 1: Table S5, all these

small-molecules bind with μM affinities (ranging from

41 μM-371.5 μM), making a few of them potential can-

didates for further development.

Discussion
In this paper, we describe the large-scale experimental

validation of the FINDSITEcomb VLS methodology and

demonstrate that the approach is applicable to a wide

variety of proteins. In contrast, previous instances of

VLS coupled to experimental screening of ligands re-

ported in the literature mostly concentrate on either

a single enzyme or a single enzyme family [36-41].

FINDSITEcomb, being a hybrid of structure-based and

ligand-based VLS approaches, has many advantages: It

identifies a structurally diverse set of ligands as potential

hits, retains the speed of traditional ligand-based ap-

proaches, and removes the requirement of traditional

structure-based approaches that a high-resolution struc-

ture of the protein target of interest be solved. Thus,

~75% of a given proteome is accessible to this VLS meth-

odology. This affords the possibility not only of identifying

novel hits, but also for repurposing FDA approved drugs,

and concomitantly suggesting possible drug side effects.

Demonstration of the methodology on a diverse set of

proteins with differing folds suggests that the method is

a general and effective approach to discovering novel

protein-ligand binding interactions. The primary success

rates of 4%-47% are dramatic when compared to rates

reported in the literature. Since only a tiny fraction of

the protein/ligand binding predictions were assessed ex-

perimentally (20-50 of the top ranked predictions from

FINDSITEcomb), these success rates are even more sig-

nificant than the raw numbers would suggest. For in-

stance, in another study describing the HTS of a diverse

library of 50,000 small-molecules against E. coli DHFR,

the primary hit rate was 0.12% [14], whereas 47% of the

32 molecules predicted by FINDSITEcomb bind with μM

affinities or better. Indeed, the finding that many ligands
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have KDs in the nM and μM range is encouraging. For

three different proteins, novel nM binders were identi-

fied. Demonstration of antibacterial and cytotoxic activ-

ity by some of these compounds further suggests that

the present methodology is a promising approach to

identify novel hits and could help enrich the drug dis-

covery pipeline. However, we are aware that hits gener-

ated through thermal-shift methodology relying on an

extrinsic fluorophore will require additional validation.

Not only has a methodological advance been demon-

strated, but also the results hold possible medical signifi-

cance. We have identified several interesting hits that

might represent starting scaffolds for drug design for a

number of clinically important protein targets. For ex-

ample, DHFR, a pivotal enzyme in the nucleotide bio-

synthetic pathway in E. coli [42] evolves resistance to

available inhibitors by several mechanisms [43,44]. This

is a major problem because drug-resistant E. coli causes

the highest number of infections in hospitalized patients

[35]. Thus, there is an urgent need to identify novel po-

tent inhibitors of DHFR. In that regard, the current

study provides nine novel structurally diverse small-

molecule binders with apparent affinities ranging from

nM to μM that are interesting hits that could be devel-

oped as lead molecules for E. coli DHFR inhibition. By

assessing the potential of these ligands against a diverse

set of drug-resistant microbial strains and colon cancer

cells, we established the range of effectiveness of these

compounds. A potent antibacterial and 7 molecules with

cytotoxic effect against HCT-116 colon carcinoma cell

line were found. This information can be exploited in

designing species-specific inhibitors. Yet other examples

are the pathogens P. falciparum, which causes malignant

malaria in humans, and P. knowlesi, implicated in an

emergent form of malaria that can infect humans [45].

Rapid evolution of resistance to known antimalarials is a

major issue [46]. The present study yielded 8 hits to

three different enzymes that carry out critical processes

of ubiquitin-mediated post-translational modification

(UCE) [47], oxidative protection of the parasite during

its intraerythrocytic stages (TP2) [48] and histone trans-

port & chromatin assembly (NAP1) [49], in the patho-

gen. Finally, four distinct target proteins representing

members of three families, tRNA synthetases [50], phos-

phatases and kinases [51,52] implicated in diseases such

as cancer, were examined with 24 novel protein-ligand

binding interactions reported. Interestingly, these studies

also identified unanticipated binding interactions of

well-known drugs with alternative targets. Sunitinib, a

well-documented inhibitor of receptor tyrosine kinases

[34], binds to TrpRS with high-affinity. This reinforces

the belief that drug molecules, at least partly, work by

interfering with the function of multiple targets within

the cellular milieu. It is well known that developing a

new drug is a time consuming and expensive process

that can take 12–15 years. Such off-target interactions

could be exploited towards repurposing available drugs

for alternative protein targets, thus reducing the cost

and time duration of drug-discovery.

Conclusions
In conclusion, we have demonstrated that FINDSITEcomb

is an automated, robust and rapid methodology that can

identify novel protein-ligand binding interactions that are

often in the nM range or better, and which, in combin-

ation with appropriate mechanistic studies and biological

activity assays can be a promising tool for lead identifica-

tion/drug discovery. The presented results show that pre-

dicted structures can be successfully used for virtual

ligand screening, and by exploiting the ideas of LHM, di-

verse novel small molecule binders can be identified even

when the closest template is distantly related to the

protein target of interest. Since medically relevant pro-

teins often have a large number of evolutionarily related

solved, holo protein structures that can serve as tem-

plates, they are a particularly good class of targets for

the present methodology. However, we note that the

methodology also works when there are few solved holo

templates structures in the PDB, e.g. for GPCRs [12].

Work is now in progress to extend and experimentally

validate the approach on a broader class of proteins

and small molecule ligands.

Methods
Details about reagents are provided in SI

Figure 2 shows the flowchart of FINDSITEcomb method-

ology [12] in combination with experimental validation

protocol. FINDSITEcomb is a composite approach con-

sisting of the improved FINDSITE-based approach [9]

FINDSITEfilt and the extended FINDSITE-based ap-

proach FINDSITEX [53]. In what follows, we detail the

two FINDSITE-based component approaches and their

benchmarking and prediction results.

FINDSITEfilt for ligand virtual screening using

experimental bound structures

The FINDSITEfilt flowchart is shown in Figure 3(A) and

consists mainly of three steps: (A) Finding a sub-set of pro-

tein template in the library of holo PDB structures (experi-

mental structures with bound ligands) that are putatively

evolutionarily related to the target using target sequence

and threading approaches; (B) Filtering the sub-set of holo

PDB structures using the target structure (experimental or

modeled) and structure comparison methods; (C) Select-

ing pockets and ligands from the filtered sub-set for bind-

ing site and virtual screening predictions.

FINDSITEfilt [12] employs a heuristic structure-pocket

alignment procedure and a sequence dependent scoring
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Figure 2 Flowchart of FINDSITEcomb.

Figure 3 Flowchart of two FINDSITE-based component approaches (A) FINDSITEfilt (B) FINDSITEX.
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function to rank the holo templates in step (B) above. The

alignment is evaluated using the sequence dependent score:

SP−score ¼
X

aligned residue a;b

BLOSUM62 a; bð Þ; ð1Þ

where BLOSUM62(a,b) is the BLOSUM62 substitution

matrix [54]. Templates are ranked by their SP-scores and

the ligands corresponding to the top 100 templates are se-

lected as template ligands for ligand virtual screening.

FINDSITEX for ligand virtual screening using experimental

binding data without bound structures

FINDSITEfilt’s performance relies on the existence of a

sufficient number of holo PDB structures homologous to

the target. This is not true for most membrane proteins

where even apo structures (structures without bound li-

gands) are rare. Thus, for some of the most interesting

drug targets, such as the G-Protein Coupled Receptors

(GPCRs) and ion-channels, FINDSITEfilt has limited per-

formance. The FINDSITEX approach [53] was developed

to overcome the shortcomings of FINDSITEfilt on these

kinds of targets. The flowchart of FINDSITEX is shown in

Figure 3(B). FINDSITEX utilizes experimental binding

data without ligand bound experimental structures. To

use the benefits from structure comparison, structures of

proteins in experimental ligand binding database are mod-

eled. FINDSITEX uses the fast version of the structure

modeling approach TASSERVMT [55] (TASSERVMT-lite

[53]) to create a virtual library of protein-ligand structures

analogous to the PDB holo structures but without experi-

mentally solved protein-ligand complex structures. Since

there is no reliable pocket information for the virtual holo

structure, whole structure comparison of the target to the

templates (in the virtual holo structures) using fr-TM-

align [56] is used. To reduce false positives, especially for

targets like GPCRs where almost all structures are similar

(TM-score > 0.4), a sequence dependent score similar to

the SP-score in Eq. (1) over the fr-TM-aligned residues is

used instead of the TM-score. The ligands of the top

ranked templates are used as template ligands for searching

against compound library. To identify template-ligand

pairs, the DrugBank drug-target relational database [57]

and the ChEMBL bioactivity database [58] are used.

FINDSITEcomb for ligand virtual screening

FINDSITEcomb is the combination of FINDSITEfilt that

uses holo PDB structures as templates and FINDSITEX

that utilizes two independent ligand binding databases.

For a given target and compound library, if there is no tar-

get structure input, TASSERVMT-lite [53] models the

structure. Then, three independent virtual ligand screen-

ing runs are conducted: (a) FINDSITEfilt using the holo

PDB structure library; (b) FINDSITEX using the DrugBank

virtual holo structure library; and (c) FINDSITEX using

the ChEMBL virtual holo structure library. For each vir-

tual screening library, the following score is used to meas-

ure the likelihood of a compound to be a true compound

of the target:

mTC ¼ w

X

N lg

l¼1

TC Ll; Llibð Þ

N lg

þ 1−wð Þ max
l∈ 1;…;N lgð Þ

TC Ll; Llibð Þð Þ; ð2Þ

where TC stands for the Tanimoto Coefficient [59], Nlg

is the number of template ligands from the putative evo-

lutionarily related proteins; Ll and Llib stand for the tem-

plate ligand and the ligand in the compound library,

respectively; w is a weight parameter. The first term is

the average TC [11]. The second term is the maximal

TC between a given compound and all the template li-

gands. Here, we empirically choose w = 0.1 to give more

weight to the second term so that when the template li-

gands are true ligands of the target, they will be favored.

For a given compound, three independent virtual screen-

ings give three mTC scores and the maximal score is

used for the combined ranking.

In this study, to experimentally validate FINDSITEcomb

under non-trivial conditions, i.e. there are no close hom-

ologous templates to the target, we have excluded all

templates having sequence identity > 30% to given target

in the PDB holo structures, DrugBank targets and

ChEMBL targets.

Comparison of FINDSITEcomb to traditional docking-based

methods

We previously conducted a benchmarking test of

FINDSITEcomb on the DUD set (A Directory of Useful

Decoys set [60]) and compared our results to the state-

of-the-art docking-based methods for ligand virtual

screening. The DUD set is designed to help test docking

algorithms by providing challenging decoys. It has a total

of 2,950 active compounds and a total of 40 protein tar-

gets. For each active, there are 36 decoys with similar

physical properties (e.g. molecular weight, calculated

LogP) but dissimilar topology. Two freely available trad-

itional docking methods AUTODOCK Vina [61] (http://

vina.scripps.edu/) and DOCK 6 [62] (http://dock.compbio.

ucsf.edu/DOCK_6/) were compared to FINDSITEcomb.

AUTODOCK Vina was tested on the DUD set and shown

to be a strong competitor against some commercially dis-

tributed docking programs (http://docking.utmb.edu/

dudresults/). DOCK 6 is an update of the DOCK 4 pro-

gram [62]. These two methods represent state-of-the-art

traditional docking-based approaches that are computa-

tionally expensive, but do not require a known set of
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binders for a given target as opposing to traditional ligand

similarity-based approaches. FINDSITEcomb also does not

require a known set of binders for the target, but is an

order of magnitude faster than docking methods. Most im-

portantly, FINDSITEcomb does not require a high-

resolution experimental structure of the target. Thus, it is

applicable for screening both large compound library and

for genomic scale targets.

The performance of a given approach for virtual

screening is evaluated by the Enrichment Factor (EF)

within the top x fraction (or 100x%) of the screened li-

brary compounds defined as:

EFx ¼
Number of true positives within top 100x%

Total number of true positives � x
:

ð3Þ

A true positive is defined as an experimentally known

binding ligand/drug or one that has a TC = 1 to an ex-

perimentally validated binding ligand/drug. For x = 0.01,

EF0.01 ranges from 0 to 100 (100 means that all true pos-

itives are within the top 1% of the compound library).

Another evaluation quantity employed here is the AUAC

(area under accumulative curve of the fraction of true

positives versus the fraction of the screened library).

The performance of the three approaches on the DUD

set using experimental target structures is shown in

Table 3. FINDSITEcomb shows about 3 times the EF0.01
of AUTODOCK Vina or DOCK 6 for the top 1% se-

lected compounds, with an EF0.01 of 13.4 versus 4.80

and 3.72, respectively. FINDSITEcomb has significantly

better overall performance in terms of its AUAC (0.774

vs. 0.586 and 0.426). Although we do not have direct ac-

cess to some of the commercially available approaches

compared in Ref. [63], we note that FINDSITEcomb has a

better AUAC than the best performing GLIDE (v4.5)

[64,65] (mean AUAC = 0.72) and all other compared

methods: DOCK 6 (mean AUAC = 0.55), FlexX [66]

(mean AUAC = 0.61), ICM [67,68] (mean AUAC =

0.63), PhDOCK [69,70] (mean AUAC = 0.59) and Sur-

flex [71-73] (mean AUAC = 0.66) [63]. The results of

DOCK 6 in Ref [63] are better than that in Table 3 is

due to the use of flexible docking and expertise in input

preparation in Ref. [63], whereas here we employed de-

fault input and rigid docking.

We next examined the effect of target structure quality

on the performance of methods. In Table 4, we show the

enrichment factors EF0.01 and EF0.1 of different methods

using experimental and modeled target structures for a

subset of 30 targets from DUD set. The other 10 targets

are not included because the modeled structures have

extended long tails (not compact) and their dimensions

are too large for docking methods. The results of

FINDSITEcomb change very little when modeled struc-

tures as compared to experimental structures are used.

This is not the case for either DOCK6 or AUTODOCK

whose performance significantly deteriorates.

Large scale testing of FINDSITEcomb on generic drug

targets

Since FINDSITEcomb is much faster than traditional

docking approaches and can use modeled as well as ex-

perimental structures, we can perform large-scale testing

on drug targets (some of which lack experimental struc-

tures). This kind of test is not feasible for traditional

docking methods. We tested FINDSITEcomb on a set of

3,576 DrugBank [57] targets that we can confidently

model using TASSERVMT-lite [53]. We use modeled tar-

get structures even for those targets that have experi-

mental PDB structures. Drugs of all the 3,576 targets are

buried in a background of representative compounds

that are culled to TC < 0.7 to each other from the

ZINC8 library [74]. The total number of screened com-

pounds for each target is 74,378 (6,507 drugs +67,871

ZINC8 compounds).

The test results are shown in Table 5. FINDSITEcomb

achieves an average enrichment factor of 52 for the top 1%

of (viz. ranked within the top 744) selected compounds;

moreover, about 65% of the targets have an EF0.01 > 1

(EF = 1.0 is by random selection). Thus, on average about

half of the true drugs of typical target will show up within

top 1% of the screened compounds. FINDSITEcomb will be

helpful in enriching true binders for 65% of the targets in a

typical genome sequence. We note that FINDSITEcomb is

better than any of its individual components. The major

Table 3 Performance of methods on the 40 protein DUD

set using experimental structures

Method Average
EF0.01

Average
EF0.05

Average
EF0.1

Average
AUAC

FINDSITEcomb 13.4 6.56 4.37 0.774

AUTODOCK Vina 4.80 3.01 2.40 0.586

(5.3×10-4)a (9.4×10-4) (7.7×10-4) (3.0×10-7)

DOCK 6 3.72 1.79 1.24 0.426

(1.5×10-4) (1.8×10-5) (9.9×10-7) (1.3×10-12)

aNumbers in parentheses are two-sided p-values of Student-t test between

FINDSITEcomb and docking methods.

Table 4 Comparison of methods for the 30 protein DUD

set using experimental and modeled structures

Method Ave. EF0.01
(expt.

structure)

Ave. EF0.01
(modeled
structure)

Ave. EF0.1
(expt.

structure)

Ave. EF0.1
(modeled
structure)

FINDSITEcomb 14.1 13.3 4.54 4.53

AUTODOCK Vina 5.45 2.39 2.48 1.40

DOCK 6 3.82 3.05 1.29 0.87
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contribution to FINDSITEcomb is from FINDSITEfilt or

holo PDB structure templates.

Experimental validation of FINDSITEcomb

For the experimental blind validation of this work, a

compound library with molecules from the National

Cancer Institute (NCI) and ZINC8 [74] (TC < 0.7) as

background was used. The open chemical repository

maintained by the Developmental Therapeutics Program

(DTP) at NCI/NIH is a comprehensive set of small mol-

ecules consisting of compounds from the diversity set,

mechanistic set, natural product set and approved oncol-

ogy drug set. Compounds constituting the diversity set

were derived from a parent library of ~140,000 com-

pounds based on the following criteria: (1) Distinctness

of the molecule, its pharmacophores and its conform-

ational isomers, (2) Rigidity (5 or fewer rotatable bonds),

(3) Planarity and (4) Pharmacologically desirable fea-

tures. Compounds constituting the mechanistic set were

selected from a seed library of 37,836 compounds tested

on the NCI human tumor 60 cell line screens and repre-

sent compounds that show a broad range of growth in-

hibition. Compounds in the natural product set were

selected from 140,000 compounds in the DTP open re-

pository collection based on (a) origin, (b) purity, (c)

structural diversity (differential scaffolds structures with

varied functional groups), and (d) availability. The com-

pounds in the approved oncology drug set consist of

current FDA-approved drugs.

The reason for using NCI molecules was that they are

easy to obtain. The NCI molecules are downloaded from

NCI (http://dtp.nci.nih.gov/branches/dscb/repo_open.html)

and consist of 1597 molecules from the Diversity Set III, 97

from the Approved Oncology Drugs Set IV, and 118 from

the Natural Product Set II (total 1812 NCI molecules). The

important fact is that no a priori target-compound binding

information is used in both virtual screening and experi-

mental validation. Together with the ZINC8 background, a

total of 69683 molecules are screened by FINDSITEcomb.

NCI molecules ranked within the top 1% (i.e. higher

than ~700th) for each target are subsequently consid-

ered for thermal shift experimental validation.

Acquisition and quantification of thermal shift assays

High throughput thermal shift assays were carried out

following established guidelines (Additional file 1: Table

S1) [13,75]. Protein melting curves were obtained from

samples aliquoted in 96-well plates using a RealPlex

quantitative PCR instrument from Eppendorf (Eppendorf,

NY, USA), with Sypro orange dye from Invitrogen as

the fluorescent probe. A uniform final concentration of

5 X (supplied as a 5000 X stock solution) was used in

all experiments. The dye was excited at 465 nm and

emission recorded at 580 nm using the instrument’s fil-

ters. A heating ramp of 1°C/min from 25°C to 74°C was

used, and one data point acquired for each degree in-

crement. For standardization, different buffers and pH

were checked. Thereafter, 100 mM HEPES pH 7.3 and

150 mM NaCl were used in all unfolding experiments.

The volume of each reaction was 20 μl, and appropriate

dye and protein controls were included. All experi-

ments were done with a minimum of two replicates,

with the mean value considered for further analysis.

Several drugs/small molecules interact with Sypro or-

ange and lead to aberrant signal enhancements. An

additional control to rule out drug-dye interaction was

carried out with all the constituents kept constant except

for the protein of interest. The protein/protein-drug

curves were reported after subtracting the respective

dye alone/drug-dye curves.

Each melting curve was assigned a quality score (Q), the

ratio of the melting-associated increase in fluorescence

(ΔFmelt) to the total fluorescence range (ΔFtotal). Q = 1 is a

high-quality curve, while Q = 0 indicates no thermal tran-

sition [75]. Though an arbitrary Q value cutoff was not ap-

plied to judge curve quality, the curves were manually

curated with Q values reported. A substantial fraction of

ligands tested against the various proteins displayed no

thermal transitions, Q = 0, or showed multi-step unfolding

behavior. These were ignored (see Table 1).

Data analysis

Subsequent to standardization, (see SI Methods), the val-

idity of the top 1% of FINDSITEcomb
’s predictions on the

test set of eight diverse proteins was examined. To be

conservative, we focused only on those protein/ligand

pairs showing single sigmoidal thermal transition curves.

The fit to Boltzmann’s equation (Eq. 1) was employed

to estimate the melting temperature from the observed

intensity, I.

I ¼ Imin þ
Imax−Imin½ �

1þ e
Tm−T

að Þ
ð4Þ

Imin and Imax are the minimum and maximum inten-

sities; a denotes the slope of the curve at the transition

midpoint temperate, Tm [13]. To estimate thermodynamic

Table 5 Performance of FINDSITE methods for 3,576 drug

targets

Method (binding database) Average EF0.01 # (%) of targets
having EF0.01 > 1

FINDSITE (PDB) 31.7 1526 (43%)

FINDSITEX (DrugBank) 36.6 1714 (48%)

FINDSITEX (ChEMBL) 9.5 566 (16%)

FINDSITEfilt (PDB) 46.0 2080 (58%)

FINDSITEcomb 52.1 2333 (65%)
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parameters, both van’t Hoff [76] and Gibbs-Helmholtz

analyses were done [77]. To estimate the approximate

ligand-binding affinity at Tm, Eq. (2) from reference [78]

was used with slight modifications; ΔCp is ignored.

KL Tmð Þ ¼
exp −ΔH

R
1
Tm

−
1
To

� �� �

L
ð5Þ

KL(Tm) is the ligand association constant and [L] is the

free ligand concentration at Tm ([LTm] ~ [L]total, when

[L]total > > the total concentration of protein. KD is the

inverse of KL(Tm).

To eliminate the possibility of thermal shifts arising

because organic molecules form colloidal aggregates

[79], the complete NCI set was compared to the data-

base of known aggregators maintained at http://advisor.

bkslab.org/search/. Since the thermal shift assay is in-

compatible with the presence of detergents, (the method

of choice to eliminate aggregation-based thermal shifts),

we limited ourselves to estimate chemical similarity to

known aggregators. At a stringent TC cutoff of 0.9, none

of the molecules reported as possessing either binding

or antimicrobial/cytotoxic activities are similar to known

aggregators.

Antimicrobial and cytotoxic assays on cancer cell lines

Antimicrobial and anti-cancer tests were performed as

in [80]. DHFR binders were tested on E. coli DH5α

[positive control: Nitrofurantion (10 mg/ml in DMSO,

negative control: DMSO], multi-drug resistant E. coli

SMS-3-4 (ATCC BAA-1743) (MDREC) [positive control:

Nitrofurantion (10 mg/ml in DMSO), negative control:

DMSO], methicillin-resistant S. aureus (ATCC 33591)

(MRSA) [positive control: Vancomycin (10 mg/ml in

DMSO), negative control: DMSO], vancomycin-resistant

E. faecium (ATCC700221) (VREF) [positive control:

Chloramphenicol (10 mg/ml in DMSO), negative con-

trol: DMSO], and colon carcinoma cells HCT-116 [posi-

tive control: etoposide (20 μg/ml in DMSO), negative

control: DMSO]. Phosphatase (1000001 and 1000006)

binders and tryptophanyl tRNA synthetase binders were

tested on the colon carcinoma cell line HCT-116.

Additional file

Additional file 1: Detailed FINDSITEcomb VLS results, Thermal shift

assay standardization: methods and results, HTS protocol table,

detailed results on the thermal shift assay and biological activity

assay for the eight protein in tabular form, discussion on the

differences between 1000001 and 1000006 VLS and experimental

overlap and figure depicting the diversity of compounds picked up

by the current methodology.
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