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A boson sampling device is a specialized quantum computer
that solves a problem that is strongly believed to be computa-
tionally hard for classical computers1. Recently, a number of
small-scale implementations have been reported2–5, all based
on multiphoton interference in multimode interferometers.
Akin to several quantum simulation and computation tasks,
an open problem in the hard-to-simulate regime is to what
extent the correctness of the boson sampling outcomes can
be certified6,7. Here, we report new boson sampling exper-
iments on larger photonic chips and analyse the data using a
recently proposed scalable statistical test8. We show that the
test successfully validates small experimental data samples
against the hypothesis that they are uniformly distributed. In
addition, we show how to discriminate data arising from
either indistinguishable or distinguishable photons. Our
results pave the way towards larger boson sampling exper-
iments whose functioning, despite being non-trivial to simu-
late, can be certified against alternative hypotheses.

Large-scale quantum computers hold the promise of efficiently
solving problems that are believed to be intractable for classical
computers, such as integer factoring9. We are, however, far from
being able to experimentally demonstrate a large-scale, universal
quantum computer10. This has motivated the recent study of
different classes of restricted quantum computers11,12, which
may provide a more feasible way of experimentally establishing
what has been called quantum computational supremacy13 over
classical computers.

One example of such restricted quantum computers comprises
multimode interferometers designed to solve the boson sampling
problem1, as recently demonstrated in small-scale photonic experi-
ments2–5. The boson sampling problem consists of simulating the
following quantum experiment (Fig. 1a,b): input n bosons in differ-

ent modes of an m-mode linear interferometer (m. n) and
measure the distribution of bosons at the interferometer’s output
modes. If performed with indistinguishable bosons, this experiment
results in an output distribution that is hard to sample, even
approximately, on classical computers1 (under very mild compu-
tational complexity assumptions). In fact, the calculation of the
probability associated with each observed boson sampler (BS)
event requires the estimation of a permanent, a notoriously
intractable matrix function1. The input for the classical simulation
consists of the m×m unitary matrix U describing the inter-
ferometer and the list of n input modes used. It is desirable to
choose U randomly, both to avoid regularities that could simplify

the classical simulation and because the main hardness-of-
simulation argument of ref. 1 holds only for uniformly sampled
unitaries. These recent theoretical and experimental results
motivated further investigations on error tolerances14,15, as well as
additional analyses of optical implementations16,17. Other
approaches have been proposed to implement boson sampling,
among them the use of trapped ions18.

The significant development of quantum technologies in the last
few years has led to the implementation of platforms where non-
trivial quantum tasks can be addressed, ranging from quantum
simulation to quantum computing6. An open problem is to what
extent the correctness of the outcomes can be certified. In this
framework, boson sampling represents a relevant benchmark for
testing different procedures to validate the obtained calculation/
simulation. Indeed, the number of possible experimental outputs
is given by the binomial coefficient m

n

( )

, which increases exponen-
tially with n (in the hypothesis that m≫ n). Consequently, it
seems hard to validate the obtained outcome distributions with an
experimental data set of polynomial size (in n). Recently, a first
insight into this issue was obtained by Gogolin and colleagues,
who showed that so-called symmetric algorithms fail to distinguish
the distribution of experimental data even from the trivial, uniform
one7. This analysis positively stimulated research on the complexity
of linear optics and put in question the notion that larger boson
sampling experiments could be shown to decisively outperform
classical computers.

Recently, the argument developed in ref. 7 has been refuted by
Aaronson and Arkhipov8, who argued that it was unreasonable to
restrict the statistical analysis to symmetric algorithms only.
Moreover, Aaronson and Arkhipov proposed to discriminate
data against the uniform distribution by taking advantage of the
input information of the boson sampling problem (unitary U
and the list of input modes). They proposed a scalable validation
test that, for large enough n and uniformly drawn unitaries, suc-
ceeds with high probability using only a constant number
of samples.

Here, we report photonic boson sampling experiments per-
formed with three photons in randomly designed integrated chips
with 5, 7, 9 and 13 modes, corresponding to 10, 35, 84 and
286 different no-collision outputs, that is, outputs with at most
one photon per mode. We analyse the experimental data
using the Aaronson–Arkhipov validation test8, showing that the
test works in practice, even in the presence of experimental
imperfections. We also show how we can successfully discriminate
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Figure 1 | Boson sampling and its certification. a, The boson sampling problem consists of sampling from the output distribution of n bosons evolving

according to a linear transformation U. The m×m unitary matrix U together with the input state are known quantities in the problem. b, Photonic

implementation of boson sampling: n indistinguishable photons interfere in a random, linear m-mode interferometer, with photodetection at the output

modes. Let us call the boson sampler (BS) an agent that provides events generated by a boson sampling experiment; our implementation is shown

schematically. c, The uniform sampler (US) is an agent that generates events classically according to a uniform distribution over outputs. d, A third agent,

the certifier Caesar, exploits information about U to distinguish the output data sets generated by the boson sampler from those generated by the

uniform sampler.
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Figure 2 | Experimental validation of boson sampling. a–d, Performance of the validation test proposed in ref. 8 using experimental data sets of varying

sizes. Here, we show Caesar’s success rate Psuccess in distinguishing the sets, as a function of set size Nset, in experiments using one random Haar-uniform

5-mode interferometer (a), one random 7-mode interferometer sampled with four different three-photon input combinations (b), one random 9-mode

interferometer sampled with two different three-photon input combinations (c), and one random 13-mode interferometer (d). Error bars are due to the

number of collected events. Grey dashed line: level for 95% success probability. Square points: numerical simulations, averaged over 1,000 data sets of size

Nset, of the validation test for data generated by the uniform sampler. In all plots, blue shaded regions correspond to the theoretical prediction of the boson

sampling validation, reported as 1.5 standard deviations and obtained by averaging over a numerical simulation with 1,000 Haar-uniform unitaries. Green

shaded regions correspond to the theoretical prediction for the validation of a uniform sampler, reported as 1.5 standard deviations over a numerical

simulation with 1,000 Haar-uniform unitaries. e, Minimum data set size Nmin to obtain . 95% success probability for boson sampling experiments and to

obtain , 5% success probability for uniformly sampled experiments, as a function of the number of photons n and of the number of modes m obtained

through a numerical simulation. For each point, the simulation is averaged over 50 or 100 Haar-uniform unitaries.



electronic acquisition apparatus were used to reconstruct the prob-
abilities associated with all three-photon coincidence events at the
chip’s output. Further details on the integrated circuits and the
experimental set-up are provided in the Methods and in
Supplementary Fig. 1 and Supplementary Section ‘Experimental
apparatus, generated state and six-photon contributions’.

Let us now discuss how a certifier (Caesar) can validate, already
with small sets, boson sampling data generated by an agent we call
the BS, against the hypothesis that they might have been generated
by uniform sampler (US), an agent that samples from the uniform
probability distribution (Fig. 1b–d). Caesar succeeds by applying the
Aaronson–Arkhipov statistical test8 to a small sample of output
data. Caesar calculates an estimator P, correlated with the associated
BS probability, which, differently from the permanent, is efficiently
computable. P is expected to be higher, on average, for observed
events, which signals a departure from the uniform distribution
(see Methods for details). We have applied this test to multiple,
random experimental data sets of varying sizes so as to gauge the
trade-off between set size and success rate, which has been theoreti-
cally studied8 only for large enough n. The results are shown in
Fig. 2. For the experiments with the 5-, 7-, 9- and 13-mode chips,
Caesar reaches a 95% average success rate using very modest set
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Figure 3 | Full validation of the boson sampling experiments. Here, we compare the experimentally measured probabilities Pout of all no-collision outputs of

our boson sampling experiments (blue bars), based on the full set of experiments we performed, with the expected probabilities (yellow bars) for a random

7-mode chip with input modes (3, 4, 5) (a), a random 9-mode chip with input modes (4, 5, 6) (b), a random 13-mode chip with input modes (6, 7, 8) (c).

The expected probabilities take into account the partial photon distinguishability of the source and multiphoton events (see Methods and refs 2 and 26).

Lighter regions of the blue bars correspond to experimental error, which is due to the Poissonian statistics of the events. d–g, Application of the Aaronson–

Arkhipov test to the full set of experimental data. C is a counting variable that is increased by 1 for each event assigned to the boson sampler, and decreased

by 1 for each event assigned to the uniform sampler. When C. 0, the complete data set is assigned to the boson sampler. Blue points: test applied on the

experimental data. Green points: test applied on simulated data generated by the uniform sampler.

data corresponding to distinguishable and indistinguishable 
photons in these experiments.

To perform boson sampling experiments we used three ingredi-
ents: a three-photon source, randomly designed interferometers and 
a detection apparatus able to record all the three-photon coinci-
dence events at the output of the interferometer (Fig. 1b). The 
three-photon input state is produced by exploiting the second-
order parametric downconversion process, with three photons 
sent into the interferometers and a fourth used as a trigger. We fab-
ricated stable, integrated interferometers with 5, 7, 9 and 13 modes 
in a glass chip by femtosecond laser waveguide writing19–21. This 
technique consists of a direct inscription of waveguides into the 
glass volume, exploiting the nonlinear absorption of focused femto-
second laser pulses to induce a permanent and localized increase in 
the refractive index. Single photons may jump between waveguides 
by evanescent coupling in regions where waveguides are brought 
close together, thus realizing the beamsplitter transformation. 
Precise control of the coupling between the waveguides and of the 
photon path lengths, enabled by a three-dimensional design2, 
allowed us to engineer arbitrary interferometers by cascading direc-
tional couplers and phase shifters with different layouts (Fig. 1b and 
refs 2, 22–26). Finally, single-photon counting detectors and an



sizes of just≏100 events. This establishes experimentally the useful-
ness of the Aaronson–Arkhipov test8 for the analysis of small-
scale experiments.

To show the test will also work in as yet unperformed, larger-scale
experiments, in Fig. 2e we numerically determine the minimum data
set size Nmin for which the Aaronson–Arkhipov test discriminates
boson sampling data from the uniform distribution (and vice versa)
with a success rate of.95%. Not only is Nmin small for all the experi-
ments we simulated, it actually decreases as we increase m. Despite
proving successful for all the interferometers we implemented experi-
mentally, our numerical simulations reveal that the test fails for some
interferometers if the ratio m/n is too low.

In the probed experimental regime it is possible to perform a full
validation of the boson sampling experiments by reconstructing all
probabilities associated with no-collision events. This requires
experimental data sets of a larger size to be recorded; for the m¼

7 chip, for example, we recorded ≏2,100 events. The experimentally
reconstructed probabilities are then compared with the theoretical
prediction1 based on the theoretical unitary U. The results are
reported in Fig. 3, and show good agreement between the exper-
iments and the predictions. In Supplementary Section
‘Experimental output distributions’ we provide details on other
figures of merit for the quality of our manufacturing technique.
Furthermore, we have also applied the Aaronson–Arkhipov test8

to the full data set (Fig. 3d–g), showing how the confidence in the
test results increases monotonically with sample size.

In addition, we experimentally test another protocol to
validate boson sampling data against arbitrary probability distri-
butions, including those that exploit information on the
unitary U. One possible way of cheating is to use distinguishable

photons, instead of indistinguishable ones, as input to the
unitary U. The former do not undergo multiphoton interference
and can be mimicked by a set of independent single-photon exper-
iments or simulated in a classically efficient way. In the Methods
such a protocol is described, based on a standard likelihood ratio
test27. We applied the test to successfully discriminate
boson sampling experiments performed with either indistinguish-
able or distinguishable photons in interferometers with 7, 9 and
13 modes (Fig. 4). The regime of distinguishable photons was
obtained experimentally by introducing a relative temporal
delay between the three photons that is longer than their
coherence time.

The likelihood ratio test requires calculation of only the probabil-
ities associated with the observed outcomes. As we will discuss in
the following, the number of observed outcomes that is necessary
to achieve the desired discrimination confidence is exponentially
smaller than the total number of possible outcomes (whose prob-
abilities should be calculated for a full simulation of the output dis-
tribution). This test can therefore be used in an experimental regime
that is non-trivial to simulate classically. To date, no boson sampling
simulation algorithm is known that is significantly faster than com-
puting the full output probability distribution, which requires an
exponential number of permanents to be calculated. According to
our simulations (Fig. 4d; see Supplementary Section ‘Validation
against distinguishable sampler’), the required number of observed
outcomes for discriminating between a distinguishable sampler and
a boson sampler with success rate .95% is almost constant and is
,100 measurements. The number of permanents that need to be
calculated for a full simulation of the output distribution, on the
other hand, scales as m

n

( )

. This means that, in the absence of
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Figure 4 | Discrimination between alternative distributions. Experimental results of the discrimination between boson sampling and distinguishable sampling

for the 7-mode chip with input modes (3, 4, 5) (a), the 9-mode chip with input modes (4, 5, 6) (b) and the 13-mode chip with input modes (6, 7, 8) (c).

Evaluation of discriminator D of the likelihood ratio test (see Methods for definition) for data collected with indistinguishable photons (blue points) and

distinguishable photons (red points). More experimental data are reported in Supplementary Figs 3–6. d, Numerical simulation of the minimum set size Nmin

to obtain . 95% success probability for boson sampling experiments and to obtain , 5% success probability for distinguishable sampling experiments, as a

function of number of photons n and number of modes m. For each point, the simulation is averaged over 100 Haar-uniform unitaries.



further theoretical progress, there is a de facto exponential gap
between the computational complexities of validation and simu-
lation. As an illustration, an experiment with n¼ 8 photons interfer-
ing in a 100-mode interferometer could be validated by calculating
≏100 permanents, which, on a current standard laptop, requires
≏10 ms. The brute-force simulation, on the other hand, would
involve the calculation of ≏1× 1011 permanents of 8× 8 matrices,
which would require ≏8 months. This (conjectured) gap between
the complexities of simulation and validation could help guide the
design of future boson sampling devices whose functioning,
despite being non-trivial to simulate, can be feasibly validated
against many alternative explanations.

Our results provide experimental support for the recent refu-
tation8 of a criticism of boson sampling experiments7. We have
also shown the feasibility of certifying boson sampling experiments
against various alternative hypotheses. This will be decisive in future
experiments that use boson sampling devices to establish the
quantum information processing supremacy over classical compu-
ters. Another approach, based on Fourier matrices, for the vali-
dation of boson sampling experiments against alternative
distributions has been recently proposed28.

Note added in proof: After completion of this manuscript, a paper
on the experimental verification of quantum complexity in linear
optics was reported online29.

Methods
Fabrication. Multimode integrated interferometers were fabricated in glass chips
by femtosecond laser writing20,21 with a layout as described in refs 2 and 26. To
inscribe the waveguides, laser pulses with 220 nJ energy and 1 MHz repetition rate
from an Yb:KYW cavity dumped oscillator were focused through a 0.6 NA
microscope objective 170 mm under the sample surface. The laser pulses were
≏300 fs long with a wavelength of 1,030 nm. The sample was translated at
constant speed, drawing in the three dimensions the desired waveguide paths
into the boro-aluminosilicate glass (EAGLE2000, Corning). The fabricated
waveguides yielded single-mode behaviour at a wavelength of 800 nm, with
propagation losses of ≏0.5 dB cm21.

The architecture of the interferometers is shown in Fig. 1b. The m¼ 5 device
corresponds to a Haar-random unitary, and was implemented by decomposing the
unitary in beamsplitter operations and phase shifters according to the procedure
shown in ref. 22. The m¼ 7, 9, 13 interferometers were obtained by drawing a set of
random phases, and by implementing the corresponding network with balanced
50/50 directional couplers.

Experimental set-up. Four photons were produced in the pulsed regime at 785 nm
by exploiting the second-order parametric downconversion process and pumping a
2-mm-long b-barium borate (BBO) crystal with the 392.5-nm-wavelength pump
field. Typical count rates for the source were ≏250,000 Hz for the four signals,
40,000 Hz for the twofold coincidences and 20 Hz for the fourfold coincidences.
One of the photons, adopted as a trigger, was filtered by 3 nm interferential
filters, coupled into a single-mode fibre, and detected by a single-photon counting
detector. For the other three photons, spectral filtering by 3 nm interferential filters,
coupling into single-mode fibres, polarization compensation and propagation
through different delay lines were performed before coupling into the chips. At the
output of the chip, multimode fibres were connected to single-photon counting
detectors. The fourfold coincidences between the three-photon state and the
trigger signal were acquired by an electronic system (see Supplementary Fig. 1
and Supplementary Section ‘Experimental apparatus, generated state and
six-photon contributions’ for more details).

Validation test of Aaronson and Arkhipov. Let us assume that the n input
photons occupy the set of modes S¼ {s1 , s2 , . . ., sn} of the m-mode interferometer,
which is described by anm×m unitary matrixU. Each single experimental outcome
consists of photons leaving the interferometer in a set of modes T¼ {t1, t2 , . . ., tn},
where we have assumed an experiment that only detects no-collision events.
Define an n× n submatrix A of U with elements Ai,j = Usi,tj

. Now calculate the

estimator P =
∏n

i=1

∑n
j=1 |Ai,j|

2 . P was shown to be correlated with the boson

been proven to succeed with probability8 1–O(d) and for sufficiently large n,
provided m. n5.1/d. To increase the success rate, the process is repeated with a
sample of Nset experimental outcomes and majority voting is used to decide which
case is more likely to hold.

Validating boson sampling data against distinguishable photon distribution. The
test to validate boson sampling data against the hypothesis that the photons are
distinguishable is an adapted version of the likelihood ratio test27, which
incorporates a discrimination threshold to compensate for experimental noise. Let
pindi and qdisi be the probabilities associated with indistinguishable and
distinguishable photons for the measured outcome, and let D be the discrimination
parameter, initialized to the value D¼ 0. For each experimental outcome, we
calculate the ratio of the expected probabilities for indistinguishable and
distinguishable photons. If the ratio is close to one, up to a threshold
k1 , pindi /qdisi , 1/k1 , the event is considered to be inconclusive and D is left
unchanged. These inconclusive events, however, are still counted as a resource and
do contribute to the effective number of events required to discriminate the two
distributions. If 1/k1 ≤ pindi /qdisi , k2, the event is assigned to the boson sampler
by adding þ1 to D. If the ratio between the two probabilities is high, pindi /qdisi ≥ k2 ,
the event is assigned to the boson sampler by adding þ2 to D, thus reflecting the
higher level of confidence in this case. Conversely, if 1/k2 , pindi /qdisi ≤ k1 and
pindi /qdisi ≤ 1/k2 the event is assigned to the distinguishable sampler by adding 21
and 22 to D, respectively. Finally, after N experimental outcomes, if D. 0 the
whole data set is assigned to the boson sampler and conversely if D, 0. In our
analysis we set k1¼ 0.9 and k2¼ 1.5.
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