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Abstract: In a previous study, we developed a classification model to detect fall risk for elderly adults
with a history of falls (fallers) using micro-Doppler radar (MDR) gait measurements via simulation.
The objective was to create daily monitoring systems that can identify elderly people with a high
risk of falls. This study aimed to verify the effectiveness of our model by collecting actual MDR
data from community-dwelling elderly people. First, MDR gait measurements were performed in a
community setting, and the efficient gait parameters for the classification of fallers were extracted.
Then, a support vector machine model that was trained and validated using the simulated MDR data
was tested for the gait parameters extracted from the actual MDR data. A classification accuracy of
78.8% was achieved for the actual MDR data. The validity of the experimental results was confirmed
based on a comparison with the results of our previous simulation study. Thus, the practicality of
the faller classification model constructed using the simulated MDR data was verified for the actual
MDR data.

Keywords: micro-Doppler radar; gait measurement; fall risk; faller classification; elderly people;
support vector machine

1. Introduction

Falling is a common occurrence in elderly adults, and it is a leading cause of morbidity
and disability. As most falls that result in injuries occur during walking [1], daily monitoring
systems are required for elderly adults to prevent future falls. For this purpose, a method
of assessing fall risk using gait must be developed. The gait information that shows the
differences in fall risk can be useful for screening people with high fall risk. Numerous
studies have verified that fall risk varies significantly with the gait of different types of
people, such as the young, elderly, and those with a history of falling (elderly fallers) [2–4].
In particular, the fall risk of elderly fallers is considerably larger than that of healthy elderly
people. Thus, the early detection of fall risk in elderly adults is essential for reducing and
preventing critical accidents due to falling [4].

Most conventional studies have used optical motion capture techniques [2,5,6] or
accelerometry [3,5,7–9] to perform detailed gait analysis, which measures the gait param-
eters related to fall risk. However, these techniques require participants to wear sensors
or markers, and thus they are unsuitable for daily gait assessment. Although various
wearable sensors with sufficient comfortability to the users have been proposed [10–12],
these techniques also require the users to wear specific devices. Therefore, the remote
sensing technique is promising to develop simpler systems that do not require wearing any
devices. Optical sensing techniques, such as depth sensors and camera-based approaches,
have been widely studied in recent years to remotely measure gait information [13–17].
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The effectiveness of the depth sensors-based gait measurements has been verified for the
differences in gait parameters for the subjects with stroke or elderly fallers [13,14]. In [15],
the level of frailty was estimated for elderly people using a depth sensor to measure various
motions including walking. Furthermore, several gait parameters, such as the gait speed
and cadence, have been measured to a certain extent using a smartphone camera and depth
sensor [16]. In [17], classification of fall risks using video cameras was performed. However,
their accuracy depends on lighting conditions and the clothing of subjects. In addition, all
the above methods have a major problem in that they cannot directly measure the velocity
information of human body parts in gait.

Micro-Doppler radar (MDR) is a promising solution to these problems. MDR can re-
motely measure the velocity of entire human body parts without placing any constraints on
participants [18–20]. There are no limitations of lighting conditions and clothing. Moreover,
MDR devices are sufficiently small for daily monitoring in homes, hospitals, senior day
care centers, rural community centers, etc. The effectiveness of MDR for gait classification
has been verified in rehabilitation and hospital applications [21–23]. In addition, detailed
gait analysis methods based on biomechanical approach using MDR have recently been
developed [24,25]. In recent years, machine-learning-based approaches that use MDR data
have been employed to recognize various types of motion [26,27]. In particular, MDR-based
fall detection systems have been developed, and their effectiveness has been demonstrated
in realistic situations [28–30]. However, these systems aim to detect fall events and do not
detect fall risk. To prevent future falls, fall risk must be detected using gait information
before a fall occurs.

In our previous study, we developed a method for detecting fall risk without the
direct measurement of fall events. We utilized the MDR-based gait classification of healthy
young and elderly adults based on the gait parameters related to their fall-risk-related
gait differences [31–33], indicating the possibility of remotely measuring gait differences.
In [31], we demonstrated the gait classification of young (aged in their 20s) and elderly
(65 years and older) groups with over 90% accuracy using a recurrent neural network with
time–velocity signals extracted from MDR data. However, the detection of elderly fallers
is more important for fall prevention. We presented the classification of elderly fallers
using only simulated MDR data [32,33]. To our best knowledge, our previous paper [32]
is the first report on the radar-based faller classification (not the detection of fall events)
and there are no other studies except for the authors’ recent work [33] that deal with this
classification problem. We constructed a support vector machine (SVM) model using the
kinematic gait parameters to classify elderly fallers and non-fallers [33]. We achieved a
classification accuracy of 78%, which was better than that of a deep-learning-based model.
Furthermore, the efficient gait parameters for faller classification were clarified (e.g., leg
velocity in leg swinging motion during walking). In [33], simulated MDR data were
generated using the AIST Gait Database 2019 [34], which is composed of the optical motion
capture data of various participants including fallers. These data were used for model
construction, validation, and the clarification of efficient gait parameters. However, the
drawback of this method was that the simulation-based examination and the acquisition of
the data in the AIST Gait Database 2019 were conducted in laboratory settings, and realistic
situations (e.g., community settings) were not considered. Thus, it is necessary to validate
our gait classification method for elderly fallers/non-fallers using MDR data collected in
an actual environment.

This study demonstrates the gait classification of elderly non-fallers and fallers using
actual MDR data collected from community-dwelling elderly participants. Based on our
previous study [33], the classification model was developed using the simulated MDR data
and was used to classify the actual MDR data. The classification model used the SVM
whose feature parameters were the gait parameters extracted from received MDR signals.
These parameters were determined to be efficient for detecting fallers. The contributions of
this study are summarized below.
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• The effectiveness of the classification model constructed based on simulated MDR
data was verified using actual MDR data. Thus, this study experimentally verified our
previous simulation study.

• The actual MDR data of elderly fallers were collected via experiments in a community
setting (not in a laboratory setting). In other words, similar data on the practical use of
monitoring systems for community-dwelling elderly adults were collected.

• A classification accuracy of 78.8% was achieved for the actual data through the training
and validation process of the classification model using only the simulated data.

• The comparison of the results of gait parameter extraction and classification based on
the simulated and actual data indicated the validity of both types of data.

The remainder of this paper is organized as follows: Section 2 describes the experi-
mental participants, MDR experiments used to generate datasets, classification procedures,
and analyses. Section 3 presents the classification results and clarifies the contribution of
this study. Finally, Section 4 highlights the main contributions of this study and discusses
topics for future research.

2. Methods
2.1. Participants and Experimental Protocol

Experimental MDR data were collected in a community setting, i.e., at senior day care
centers and a health checkup event held at a rural community center. The participants for
the MDR gait measurement experiments were 33 community-dwelling elderly adults aged
65 years and above. The participants responded to a questionnaire about the history of falls
within a year. We used this questionnaire to classify the participants into the non-faller
group (19 people; 2 men; mean age: 78.8 ± 7.06 years; mean height: 150.8 ± 9.66 cm) and
faller group (14 people; 2 men; mean age: 82.5 ± 3.90 years; mean height: 150.6 ± 9.16 cm).
There were no significant differences in the age and height between the two groups (Welch’s
t-test results: p > 0.05).

All participants were able to walk without the assistance of another person or walking
aids. The participants walked for 10 m, and their gait was measured using MDR. Then,
we extracted the gait parameters that are known to be efficient for the fallers/non-fallers
classification from the measured MDR data. The details of these experiments and parameter
extraction methods are described in Section 2.2. Finally, the classification accuracy of the
model for the collected experimental data was evaluated; this is explained in Section 2.3.

2.2. MDR Gait Measurement and Gait Parameter Extraction

An MDR gait measurement system similar to that utilized in [31] was used in this
study. Figure 1 shows the MDR system setup and experimental site. The participants
walked toward the MDR system along a 10 m walkway (with 1 m areas for acceleration
before walking and deceleration before stopping) at a self-determined comfortable pace.
The walkway was flat, and no restrictions were imposed on the type of clothes and shoes.
None of the participants wore unstable footwear such as high heels or slippers or used a
walking aid.

The commercial continuous-wave MDR (ILT Office Inc., Toyama, Japan, BSS-110)
operating at 24.0 GHz frequency was used. The specifications of the MDR system are
summarized in Table 1, and the block diagram of the used radar system is shown in
Figure 1c. The MDR system was composed of two antennas and transmitted a continuous
sinusoidal wave with a frequency of f 0 = 24.0 GHz to a walking participant. The signals
received after synchronous detection s(t) were composed of the Doppler frequencies f d
corresponding to the Doppler velocities vd = cf d/(2f 0) (c: speed of light) of the scattering
centers on the body parts, such as the legs and torso [18,19] (i.e., the Fourier transform of
s(t) is expressed as S(f ) = ∑Aiδ(f−f di) where δ(f ) is Dirac’s delta function and Ai and f di are
received amplitude and Doppler frequency of i-th scattering center). We collected the data
of the participants in the measurement area shown in Figure 1a. These data corresponded
to steady-state walking. The sampling frequency of demodulated received signals was set
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as 600 Hz, which corresponded to the maximum measurement velocity of 3.75 m/s. This
velocity was sufficient for measuring the walking motion, including the motions of toes
during the leg-forward motion. The beamwidth and effective isotropic radiated power
were set to measure the data for the entire body and measurement area.

Figure 1. Micro-Doppler radar (MDR) sensing system for gait measurement. (a) Measurement system
model; (b) Experimental site; (c) Block diagram of the MDR.

Table 1. MDR specification.

Transmitting frequency 24 GHz
Transmitting waveform Sinusoidal

Detector for received signals Synchronous detector
Sampling frequency of received signals 600 Hz

Effective isotropic radiated power 40 mW
3 dB beamwidth ±35◦ (H-plane), ±14◦ (E-plane)

Physical size 6 cm (W), 2 cm (D), 7 cm (H)

The gait parameters were extracted by generating the spectrograms (time–velocity
distributions) of the received MDR signals using the short-time Fourier transform (STFT)
|S(t, f d)|2 = |

∫
s(τ)w(τ−t)exp(−j2πf dτ)dτ|2 (w(t): window function) [31]. Before the

calculations of the STFT, we applied a high-pass filter to the received MDR signals to
eliminate the components corresponding to a Doppler frequency of 0 Hz. These components
corresponded to echoes from static targets. The high-pass filter was a one-dimensional
Butterworth filter with a cutoff frequency of 20 Hz, which corresponded to a Doppler
velocity of 0.125 m/s. Then, we applied the STFT with a Hamming window function
with a width of 128 samples (213 ms) and an overlap length of 127 samples. Figure 2
shows an example of the spectrogram of the measured MDR data. The figure clearly
shows the features of the Doppler velocities of the walking motion [24]. For example,
the maximum velocity component for each time corresponds to body velocity in gait
and includes information on walking speed [25]. We used the process employed in our
previous study [33] to extract the upper envelope vu(t) (significant peaks corresponding
to the maximum Doppler velocity for each time t), lower envelope vl(t) (significant peaks
corresponding to minimum Doppler velocity for each t), and mean envelope of vm(t)
(power-weighted mean velocity for each t), as shown in Figure 2. Vu(t), vl(t), and vm(t)
correspond to leg-forward motion, motion of legs in contact with the floor, and body motion,
respectively (information of the arm motions is less, or not, included in these envelopes
because the powers of the reflected echoes of the arms were relatively weak and the
previous study confirmed that vu(t) almost corresponds to the movements of toes [20,25]).
These envelopes were used to extract the following four gait parameters, which were
determined to be efficient for the fallers/non-fallers classification in our previous simulation
study [32,33]:
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Figure 2. Representative spectrogram of experimental MDR data for gait measurement. vd is the
Doppler velocity calculated using the Doppler frequency.

• The mean body velocity, vm,mean = E[vm(t)], where E[ ] indicates the mean with respect
to t.

• The mean leg velocity during the leg-forward motion, vu,mean = E[vu(t)].
• The degree of variation in leg velocities during the leg-forward motion, vu,std = STD[vu(t)],

where STD[ ] indicates the standard deviation with respect to t.
• The degree of variation in leg velocities in the stance phase, vl,std = STD[vl(t)].

2.3. Gait Classification Based on SVM Model Constructed Using Simulated MDR Dataset

To classify the fallers/non-fallers using the MDR data, a gait-parameter-based classi-
fication model was constructed using the SVM and simulated MDR dataset used in our
previous study [33]. Then, the constructed classification model was evaluated for the gait
parameters extracted from the actual MDR data. In other words, the simulated data were
used for training and validation and the actual data were used for testing.

The classification model was constructed using the gait parameters (vm,mean, vu,mean,
vu,std, vl,std). Note that our conventional study used the twelve gait parameters presented
in [33]. However, this study used only four parameters because they were determined
to be efficient for the faller classification problem, and a simpler model was preferred
for practical use. The Gaussian kernel function was selected for the SVM because it is a
general-purpose function [35]. The classification hyperplane parameters were determined
by utilizing a soft-margin optimization process, and the SVM parameters were optimized
via a validation process by performing a grid search [36]. We investigated the classification
performance for the two SVM models: the model whose parameters were optimized for
the accuracy and the model whose parameters were optimized for the sensitivity. We used
480 simulated MDR data points generated from the AIST Gait Database 2019 for training
and validation. A total of 70% of the data were used for training, and the remaining 30%
for validation.

Finally, classification of the actual MDR data was performed using the constructed
SVM model, and its accuracy was evaluated. Thirty-three experimental data of the partici-
pants described in Section 2.1 were used as the test data.

3. Results and Discussion
3.1. Gait Parameter Extraction

Figure 3 shows the examples of the extracted spectrograms of six participants. We
can see the slight tendency that the velocities of the fallers were smaller than those of the
non-fallers. However, the differences are unclear. Thus, we extracted the gait parameters to
classify the data of both groups. Table 2 summarizes the four gait parameters extracted
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from the experimental MDR data, and Figure 4 shows the plots of all parameters. All
parameters of the non-faller group were larger than those of the faller group. Significant
differences were observed only for vu,mean and vl,std (significance level was 0.05). However,
as shown in Figure 3, the divergence of the two groups was confirmed to a certain extent,
particularly in the plots of vu,mean and vu,std. Thus, non-fallers and fallers were classified
using these parameters.

Figure 3. Examples of the measured spectrograms of six participants. (a–c): Non-fallers; (d–f): Fallers.

Table 2. Extracted gait parameters.

Parameter Fallers
(Mean ± SD)

Non-Fallers
(Mean ± SD) p from Welch’s t-Test

vm,mean (m/s) 0.787 ± 0.281 0.982 ± 0.293 0.0630
vu,mean (m/s) 1.66 ± 0.578 2.19 ± 0.581 0.0151
vu,std (m/s) 0.605 ± 0.170 0.647 ± 0.178 0.493
vl,std (m/s) 0.144 ± 0.0817 0.210 ± 0.0854 0.0308

Figure 5 shows the plots of the gait parameters obtained from the simulated MDR data
in our previous study [33]. The comparison of Figures 4 and 5 shows similar trends for the
parameters obtained from the experimental and simulated data. However, the parameters
obtained from the experimental data were relatively smaller than those obtained from the
simulated data. This was because the data used for the simulations, including the AIST
Gait Database 2019, were collected in laboratory settings [34]. In contrast, the experimental
data were collected in an actual community setting. These results can be considered valid
because the gait pattern is affected by the surrounding environment [37]. Furthermore, the
age and gender in the simulated and experimental data were different: the number of male
participants was quite small, and the ages of the participants in this study were larger than
those in our previous simulation study with mean age of approximately 67 years. However,
as the parameters obtained using the experimental and simulated data showed similar
trends, the classification model constructed using the simulated data can be applied to the
experimental data.
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Figure 4. Gait parameters extracted from the experimental data. (a) vu,std vs. vu,mean; (b) vl,std vs.
vu,mean; (c) vm,mean vs. vu,mean.

3.2. Classification Results

First, we investigated the classification performance using the model tuned for the
classification accuracy. Table 3 shows the results of the classification test conducted using
the actual MDR data. The classification accuracy, sensitivity, specificity, and precision
were 78.8%, 64.3%, 81.8%, and 89.5%, respectively. Although the sensitivity was not
relatively high, the other classification indices were sufficiently better. The classification
accuracy was similar to our simulation results (the classification accuracy for the simulated
data was 78.9% [33]). Then, we investigated the performance using the model tuned
for the sensitivity, and Table 4 shows the results. The classification accuracy, sensitivity,
specificity, and precision were 72.7%, 71.4%, 66.7%, and 73.7%, respectively. Over 70%
sensitivity was achieved for this model. However, other performance indices were relatively
worse. Thus, when the sensitivity is important for the assumed application, this model is
efficient. These results demonstrated that the classification model constructed using the
simulated MDR data was effective for the actual MDR data. Furthermore, the effectiveness
of the gait parameters, which may reflect the fall risk during walking, was experimentally
demonstrated.

Table 3. Confusion matrix of the classification results of the test performed using actual data using
the model tuned for the accuracy.

True\Predicted Fallers Non-Fallers

Fallers 9 5
Non-fallers 2 17
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Figure 5. Gait parameters extracted from the simulated data [33]. (a) vu,std vs. vu,mean; (b) vl,std vs.
vu,mean; (c) vm,mean vs. vu,mean.

Table 4. Confusion matrix of the classification results of the test performed using actual data using
the model tuned for the sensitivity.

True\Predicted Fallers Non-Fallers

Fallers 10 4
Non-fallers 5 14

3.3. Comparison with Other Studies

This subsection discusses the differences between our study and the conventional stud-
ies on the faller classification including using other sensors and those on the radar-based
gait measurements. Table 5 summarizes the conventional studies on the faller classification
using various sensors. For the accelerometry technique, a relatively large number of studies
have been reported. However, as described in Section 1, these require the contact of the
sensor devices to the human body. Thus, the use of remote sensors has the advantage
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of practicality. However, the number of studies on the faller classification using remote
sensors, such as cameras, depth sensors, and radars, is quite small (note that although there
are many reports on fall event detection, the classification of fall risks is not widely studied).
Some studies, including [13], used depth sensors and reported significant differences in
the gait parameters between the fallers and non-fallers. However, their classification was
not conducted. In [17], the video camera measured the Timed Up and Go Test, which is
composed of standing up, walking, and sitting down movements, and fall risks of the
participants were classified. However, its accuracy was 62.5%. In contrast, we achieved
over 70% accuracy using the MDR remote sensing, which clearly indicates the effectiveness
of our present study. Furthermore, as indicated in Table 5, our achieved accuracy and
sensitivity values were acceptable compared with the accelerometry-based methods.

Table 5. Comparison of conventional and present studies on the faller classification.

Study Sensor
(Other Conditions)

Sensor
Type Accuracy Sensitivity

Daines et al. (2021) [7] Accelerometer (smartphone, 6 min walk test) Contact 81.3% 57.2%

Meyer et al. (2020) [8] Accelerometer and gyro sensor
(deep learning model, 1 min walk data) Contact 86% 88%

Bet et al. (2021) [9] Accelerometer
((measuring the timed up and go test) Contact 75% 71%

Latorre et al. (2019) [13] Depth sensor (Microsoft Kinect, 10 m walk test) Remote N.A. (Results of paired
t-tests were only presented)

Gandomkar et al. (2014) [17] Video camera
(measuring the timed up and go test) Remote 62.5% N.A.

This study

Doppler radar
(model was tuned for the accuracy, 10 m walk test)

Remote

78.9% 63.2%

Doppler radar
(model was tuned for the sensitivity, 10 m walk test) 72.7% 71.4%

Next, we compared with other studies on the radar-based gait analysis [24,25]. These
conventional studies proposed methods for efficient gait parameter extraction from MDR
data. A similar extraction method was used in this study. However, the following three
points are novel compared with these conventional studies on radar-based gait measurements:

• The conventional radar-based techniques including these conventional studies did not
deal with the faller classification problem. Thus, the novelty of our previous and present
studies is in performing the faller classification using the radar gait measurement.

• In [24,25], general gait parameters were extracted. In contrast, our study extracted the
gait parameters related to the fall risks clarified in our study [32,33] and verified the
effectiveness of the extracted parameters for the faller classification.

• The radar data of the actual community-dwelling elderly adults collected in the real
environments (not in the laboratory settings) were used to show the feasibility of
radar-based monitoring for daily healthcare applications.

3.4. Limitation of the Study

This study had three main limitations. First, the experiments were conducted for
particular situations, and the number of male participants was quite limited. Furthermore,
the ages of the participants were relatively large. For these reasons, the distributions of the
simulated and experimental data were different (although their trends were matched to
some extent) because the simulated data sufficiently included the various types of data.
Thus, to improve the reliability of our study, further experiments should be conducted for
a larger number of participants, including men and relatively younger participants, and
various situations including homes and hospitals.
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Second, because we used only the MDR, the data corresponding to the motion of arms
were not sufficiently obtained (as explained in Section 2.2). The arm motions in gait also
have the information of the gait changes, and acquisition of their parameters may improve
the classification accuracy. To obtain arm motion information, other sensors can be used,
such as inertial sensors. Furthermore, acceleration information, which is easily obtained
using inertial sensors, is not directly obtained using the MDR. Thus, the sensor fusion of
the inertial (acceleration) and MDR sensors can improve the classification accuracy and is
an important research problem for the future.

Third, we assumed only the participants walking toward the MDR and those walking
in other directions such as lateral directions were not considered. In the MDR measure-
ments, the velocities along the radial direction only were obtained. Thus, it is difficult to
accurately measure the participants walking in other directions using the single MDR. Thus,
the experiments using multiple MDRs to measure the participants walking in arbitrary
directions [20] is required for future study.

4. Conclusions

We performed MDR experiments on community-dwelling elderly participants for
the early detection of fall risk in elderly adults using a remote monitoring system. Our
aim was to verify the effectiveness of the model for the fallers/non-fallers classification
constructed based on our previous simulation study [33]. Actual MDR data were collected
from elderly adults in a community setting. The four gait parameters that were proven to
be efficient for classification were extracted from the collected data. The SVM model for the
classification was constructed using the gait parameters extracted from simulated MDR
data. Thus, training and validation were performed using the simulated data. Then, testing
was conducted using the actual data. The gait parameters extracted from the simulated
and actual MDR data showed similar trends. We achieved a classification accuracy of
78.8% for the test process. These results verified the validity of our previous simulation
study and effectiveness of the SVM model for the fallers/non-fallers classification in an
actual environment.

Future experiments are needed to resolve the limitations described in the previous sec-
tion. In addition, the classification accuracy and sensitivity can be improved by employing
a data assimilation approach using simulated and actual data.
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