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SUMMARY

Optical backhaul downlinks from high-altitude platforms (HAPs) are investigated. An experiment
demonstrated the advantages of optical links: a small and lightweight terminal with low power
consumption was launched to the stratosphere and data transmitted down to a ground station at a rate of
1:25 Gbit=s: Owing to the chosen system parameters and the high budget margin, disturbing turbulence
effects did not decrease the link performance.
The scientific aspect of the experiment was to study turbulence effects in order to design future systems

with higher transmission performance. On the day of the experiment, measured scintillation and wavefront
distortions were minimal in the morning. The best atmospheric conditions were observed about 3 h after
sunrise with a peak of the atmospheric coherence length r0 at 16 cm: An r0 of 4 cm was measured as the
worst case before sunrise and later during the day. This trend could also be observed for power- ðs2PÞ and
intensity scintillation index ðs2I Þ: The latter s2I changed from 0.28 (best case) to 1.12. For small s2I ; a
lognormal intensity probability density function was measured.
Apart from the robust intensity modulation scheme with direct detection which was used for the trial,

future improved systems could benefit from a coherent transmission scheme. According to the r0
measurements and further simulations on heterodyne efficiency it turned out that the aperture size can be
decreased from 40 to 10 cm without any significant change in the link margin.
Future stratospheric optical links between HAPs or links from platforms to satellites will not suffer from

cloud blockage but it remains an issue for up/downlinks to a ground station. This can be mitigated by
ground-station diversity. Four optical ground stations in the southern part of Europe can lead to an
availability of over 98%. The separation distance of the ground stations is about 900 km with a negligible
correlation of cloud cover. A change of wavelength from the employed 1.55 to a wavelength around 11-mm
with minimum cloud attenuation would increase the link availability for thin clouds. Copyright # 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

High-altitude platforms (HAPs) that hover in a quasi-geostationary manner at an altitude

of 18–25 km combine advantages of satellite and terrestrial communications infrastructure.

This includes short deployment time, easy equipment upgrade, flexible capacity increase,

ability of substantial indoor coverage, and a geographical coverage of hundreds of kilometers.

The European CAPANINA project is developing communications technologies for use

with aerial platforms with the aim of delivering ‘broadband for all.’ The emphasis is on hard-

to-reach users and those disadvantaged by geography [1]. Investigated services like fixed

broadband wireless access up to 120 Mbit=s to end users require a broadband backhaul

network [2]. Free-space optical (FSO) communication technology has a major potential to

complement microwave technology for the backhaul traffic. High data rates in the range

of Gbit/s are the highest motivation to use FSO systems. However, low terminal size and

weight, small aperture sizes and low power consumption are clear advantages for HAP

systems. High attenuation due to clouds is not a limiting factor for inter-platform and

platform-to-satellite links, the main application of HAP-FSO. Due to a maximum cloud ceiling

of 13 km for mid-latitude locations, inter-platform link distances of up to 900 km are possible

with 100% availability [3].

In order to design reliable optical terminals, stratospheric tests are necessary. The

stratospheric optical payload experiment (STROPEX), a part of CAPANINA, was one step

in this direction by gaining system design and operations experience and by gathering

atmospheric index-of-refraction turbulence data. The experiment was focused on experimental

verification of the chosen acquisition, pointing, and tracking systems, measurement of

atmospheric impacts and successful verification of a broadband downlink from a stratospheric

testbed (balloon/aerodynamic HAP aircraft). Although the optical link between HAP and

ground station is affected by clouds, it is gaining interest in operational scenarios. Apart

from the higher data rate and lower size and weight, optical terminals consume less power

which is a limited resource on HAPs. The optical up/downlink could then work in diversity

with a microwave link in a stand-alone HAP scenario. In a multiple-HAP network with

inter-platform or platform-to-satellite links, cloud cover diversity will be used to cope with

cloud blockage.

In Section 2, the technical aspects of STROPEX are introduced and the developed hardware

including the stratospheric optical terminal and the optical ground station is explained. The

operations and main achievements of the trial, namely the Gbit transmission from the

stratosphere and the system tracking performance are highlighted in Section 3. The investigation

of atmospheric turbulence, that is the scientific aspect of the experiment, is considered in Section

4. The principle of operation of the two instruments to analyze the received field is explained

and an approach to derive turbulence profiles for this novel scenario is introduced. The

measurement results of wave front distortion, scintillation, intensity probability density

functions (PDFs), and turbulence profiles are discussed.

The link budget and a possible improvement based on gathered technical trial expertise

are explained in Section 5. A comparison with the performance of a different modulation

scheme is conducted. The important question of availability due to clouds for these optical up/

downlink scenarios is answered in Section 6. Also, the wavelength-dependent attenuation for

two different common cloud types is discussed for the scenario. The paper concludes with

Section 7.
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2. THE STRATOSPHERIC OPTICAL PAYLOAD EXPERIMENT

2.1. System concept

The overall system concept for STROPEX was to mount a free-space experimental laser

terminal (FELT) on a stratospheric balloon that would fly to an altitude of approximately

22 km: A downlink would then take place between the FELT and a transportable optical

ground station (TOGS) as depicted in Figure 1.

On the basis of various factors such as component availability and atmospheric attenuation

[4], three different wavelengths were chosen for the lasers. The TOGS used beacon lasers at

810 nm to illuminate the FELT. The FELT had two beacon lasers around 977 nm and a

communication laser at 1550 nm: At 1550 nm; the atmospheric absorption is negligible at clear

air conditions [4].

Intensity modulation (IM, on/off-keying) with direct detection (DD), common in terrestrial

fiber-optical communication, was the chosen transmission scheme. An IM/DD scheme is

advantageous because there is a range of available components with proven reliability, e.g. laser

diodes, fiber amplifiers, detectors and receiver electronics. According to theory, 10 incoming

photons per bit (mean) are sufficient for an uncoded bit error rate (BER) of 10�9 [5]. However,

in practical systems using standard APD (avalanche photo diode) detectors, the receiver

Figure 1. STROPEX scenario.
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sensitivity is usually not better than several 100 photons per bit due to thermal receiver noise

and other degrading electronic effects. The actual sensitivity of the frontend developed for

STROPEX was measured at 168 photons per bit at a data transmission rate of 1:25 Gbit=s and
a BER of 3� 10�7: This is due to the less than optimal sensitivity of the APD, thermal noise and

degrading electronic effects.

2.2. Free-space optical terminal (FELT)

The FELT was an optical transmission terminal developed mainly for the CAPANINA

stratospheric experiments. The following were the primary design constraints for the FELT:

* Stratospheric environmental conditions (temperatures down to �708C and near vacuum

conditions).
* High stratospheric carrier rotation speeds (nine rotations per minute).
* Lightweight and streamlined design.
* Autonomous and robust acquisition capability in the presence of strong background

light.

The final FELT design is shown in Figure 2 with a side access panel removed. The structural

subsystem consisted of an aluminum base plate which was also used for passive thermal control.

The final terminal weight was 17:54 kg: The housing consisted of a carbon fiber sandwich

structure that reduced the weight and maximized thermal insulation properties. Additionally,

the housing was designed to easily interface with an aerodynamic HAP (i.e. a stratospheric

airplane). The outer dimension of the terminal was 78� 33 cm:
Figure 3 shows the bottom side of the mounting plate, where the electrical power subsystem

along with the beacon laser diodes and their supporting electronics (diode drivers and thermal

control) are mounted. For redundancy, the FELT used two independent co-aligned beacon

systems at 977.53 and 977:8 nm; each with 200 mW output power. One of the beacons was

coupled with the 1550 nm signal light and used the same transmission optics. The pointing

assembly consisted of a two-axis optical periscope along with the supporting encoders, DC

motors and motor drivers. The pointing resolution was 8:7 mrad with a maximum rotation speed

of 2408=s for the main axis and 1208=s for the elevation axis. The acceleration was better than

Figure 2. Assembly photo of FELT with opened housing.
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2508=s2: The design driver for the dynamic properties of the pointing system was the possible

high spin rate of the stratospheric carrier. Five DC–DC converters of the electronic power

system were also mounted on the bottom side of the plate.

The components mounted on the top of the plate can be seen in Figure 4. An onboard

telemetry and tele-command (TMTC) subsystem enabled control of the terminal via

RS422 connection and included the monitoring of 16 temperature probes. The signal

electronics generated a pseudo random binary sequence (PRBS) with a sequence length of

1023–1 and an adjustable data rate of up to 1:25 Gbit=s: This data source drove a laser diode

module with 1 mW output power which was optically amplified to a transmission power of

100 mW: The beam was routed into the pointing assembly via the optical assembly, which

consisted of the laser collimators, optical components and the fast CMOS tracking camera with

a 48 field of view (FOV) [6]. The pointing assembly was controlled by the FELT pointing

acquisition and tracking (PAT) computer. The PAT computer took inputs from on-board

gyroscopes, the tracking camera and the periscope encoders, and controlled the motion of the

pointing assembly.

2.3. Transportable optical ground station (TOGS)

The FELT was designed to transmit data to the TOGS, which is shown in Figure 5. The central

component of the ground station was a 40 cm Cassegrain telescope. The optical communica-

tions receiver and the atmospheric turbulence measurement devices are mounted on an optical

bench attached to the telescope [7].

Figure 6 shows a sketch of the optical ground station receive path. The beam from the 40 cm

Cassegrain telescope is collimated and split up by beam splitter cubes (BSC) to the measurement

Figure 3. CAD sketch of FELT}bottom side.
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Figure 4. CAD sketch of FELT–top side.

Figure 5. Transportable optical ground station (TOGS).
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instruments and the camera of the tracking system. The first BSC of the optical system is a

chromatic one (CBSC). This CBSC deflects the 1550 nm beam to the communication receiver

with the APD communication frontend. All other instruments, the differential image motion

monitors (DIMM) camera, the profiler instrument, the tracking camera and power meter

worked with the 977 nm beacon light emitted by the stratospheric terminal. This approach had

two main advantages. The received 1550 nm light could be used for the communication receiver

only. All other instruments could use silicon technology. The variety of available cameras

especially with high sensitivity and short exposure time is higher for this technology and

wavelength range. The turbulence instruments (turbulence profiler, TP, and DIMM) are

explained in Section 4.

3. TRIAL OPERATIONS AND ACHIEVEMENTS

The Launch and operations took place at the ESRANGE facilities in northern Sweden near

Kiruna. A 12 000 m3 piloted stratospheric balloon carrying the FELT was launched at 3:54 a.m.

on 30.08.2005 and flew for approximately 8:5 h before parachuting to the ground. During the

mission acquisition, data transmission tests and atmospheric measurements were carried out.

Figure 7 shows a picture of the experiment before take off. The nacelle which housed the FELT

was located at the bottom of a 70 m flight train freely suspended on the launch vehicle during

launch. Figure 8 shows the separation distance between the TOGS and the FELT. The

maximum range during the mission was 64:15 km and occurred at 07:03 a.m. local time. The

altitude was about 23 km:

Figure 6. Details of the optical bench with the optical path for tracking camera and measurement
instruments. Measurement instruments: differential image motion monitor (DIMM) and turbulence

profiler instrument.
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3.1. Acquisition and Tracking

FELT acquisition of the ground station worked very reliably during night and day conditions.

The acquisition time depended on the pointing assembly scan speed, but even with a slow scan

speed of 108=s; the maximal acquisition time was below 30 s: Figure 10 shows the stratospheric

system after acquisition. The FELT exhibited very precise tracking capability in stratospheric

conditions. Figure 9 shows a cumulative density function of the FELT tracking deviation over

the 8 h of data collection during the trial. Seventy-five percent of the time, the FELT tracking

deviation was less than 142 mrad ð0:00818Þ which corresponded to 1 pixel on the FELT tracking

camera. During the other 25% of the time, mostly acquisition tests with different beacon powers

or FELT parameter setups were performed, or the FELT could not track the ground station due

to stratospheric wind shear that caused a large pendulous motion of the nacelle. Compared to

the high beam divergence of 1 mrad; the margin of the tracking system was very high and did

not lead to a remarkable decrease of communication system performance.

3.2. Data transmission results

The FELT was capable of data transmission at three different rates: 270 Mbit=s; 622 Mbit=s
and 1:25 Gbit=s: BERs were measured for the 270 and 622 Mbit=s links; however, due to the

Figure 7. The experiment before launch.

Figure 8. Distance between the optical ground station and the stratospheric terminal during the trial.
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limited bandwidth of the BER test receiver, no direct BER measurements could be performed at

1:25 Gbit=s:
At 622 Mbit=s; the high signal-to-noise ratio enabled a BER of less than 10�9 within an

unlimited measurement interval. Frequently, the BER went down to 10�10 for several minutes.

This high quality signal could be received up to a maximum distance of 64:15 km from the

ground station. The 622 Mbit=s eye pattern can be seen in Figure 11. The data transmission at

1:25 Gbit=s was also successful. The eye pattern of the received 1:25 Gbit=s signal is shown in

Figure 12.

Figure 9. Cumulative density function of FELT tracking deviation.

Figure 10. Near infrared picture of the stratospheric carrier with FELT from ground-station tracking
camera after acquisition at approximately 60 km range.
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During the transmission tests, several thick clouds disturbed testing from time to time. Several

very thick black clouds completely prevented communication. Thin white clouds did not severely

affect the transmission, but did lead to a slight closing of the eye pattern and an increased BER.

Late in the morning, most of the clouds disappeared resulting in near clear sky conditions.

During that time, the angular separation between the sun and the balloon was very small at

about 58 and blue sky. Despite an increase in background radiation which could have affected

the signal reception, no impairment of link quality was observed. This positive effect was

achieved by the narrow filtering ð10 nmÞ of the incoming 1550 nm signal and the reduced

sun radiance at this near-infrared (NIR) wavelength. This highlights a clear advantage of the

1550 nm technology over common NIR wavelengths like 850 nm:

4. ATMOSPHERIC TURBULENCE INSTRUMENTS AND TRIAL MEASUREMENT

RESULTS

One goal of the trial was to evaluate the impact of the index-of-refraction turbulence. Turbulent

air volumes have different temperatures and thus different indices of refraction. These air

Figure 11. Received PRBS signal eye pattern at 622 Mbit=s with bit error rate measurement receiver.

Figure 12. Received PRBS signal eye pattern at 1:25 Gbit=s:
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volumes along the propagation path act like thin lenses which focus and defocus the beam. The

wave intensity at the receiving telescope forms a speckle pattern (Figure 13, left). This speckle

pattern or spatial intensity redistribution changes in time due to the wind and turbulent mixing

process. The turbulence-induced distortions of the optical field result in a fading channel that

depends on the modulation type. Optical turbulence is quantified by means of the refractive-

index structure constant C2
n which scales the statistical variations of the refractive index n: C2

n is

related to the structure function Dn of the refractive index by [8]

DnðrÞ ¼ C2
nr

2=3 ð1Þ

where r is the separation distance between two points in the air.

The size and the strength of the speckles have a significant impact on an incoherent (e.g. IM/

DD) transmission scheme. The resulting fades and surges can be reduced by increasing the

receiving aperture and thereby averaging the spatial intensity fluctuations.

The phase distortions (which are not visible in Figure 13, left) are characterized by the

transverse coherence length and can greatly deteriorate the performance of coherent receivers

(e.g. BPSK). This is particularly the case when the transverse coherence length is smaller than

the receiver aperture (see Section 5.2).

Two instruments were integrated in the optical ground station to sense the received optical

field. The TP estimates the statistics of the received intensity and derives from them the C2
n

profile along the propagation path. The DIMM measures the image dancing of two focused

spots (Figure 13, right) and estimates the wavefront distortion which is represented by the

atmospheric coherence length r0:

4.1. Turbulence profiler instrument

The TP is based on the single-star profiler [9–11]. The single-star profiler relies on the

correspondence between the C2
n turbulence profile on the transmission path and the intensity

spatial covariance function in the aperture of the receiver. Distinct turbulence layers along the

path have different influences on the intensity covariance function BðrÞ of the received field.

Therefore, the C2
n profile can be reconstructed from the covariance function. However, this

correspondence between covariance function and C2
n profile relies on an ill-conditioned relation,

as the altitude of the C2
n has a rather weak influence on the covariance-function shape.

Therefore, profiles can be restored with only a limited resolution of the propagation path.

Figure 13. Example of gathered turbulence raw data. Recorded intensity snapshot of the 40 cm Cassegrain
telescope aperture with central obscuration in the turbulence profiler pupil (left). Recorded DIMM sample

picture with the two focal spots (right).
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The covariance function BðrÞ of the separation distance r in the receiver aperture is related to

the profile C2
nðzÞ under weak fluctuations by

BðrÞ ¼

Z L

0

C2
nðzÞWðz;rÞ dz ð2Þ

where Wðz;rÞ is the wave-dependent kernel of the transformation. In the experiment, the

transmitted beam was nearly a spherical wave and the transformation kernel has been assumed

to be equal to [12].

Wðz; rÞ ¼ 0:033 � 8p2k2
Z 1

0

k�8=3J0 kr � 1�
z

L

� �� �

1� cos
k2z

k
1�

z

L

� �

� �� �

dk ð3Þ

where k ¼ 2p=l is the wave number, z the distance from the receiver, L the link range, and J0
denotes the Bessel function of first kind and zero order. Figure 14 shows the kernel Wðz;rÞ
according to Equation (2) for the downlink beacon of the STROPEX experiment (l ¼ 977 nm

and L ¼ 60 km). This function was used for the reconstruction of the turbulence profile. The

kernel decreases to zero for both ends of the optical link, which implies that the instrument

becomes insensitive to turbulence close to the transmitter and the receiver.

It should also be pointed out that the measured spatial covariance function BðrÞ measured by

the TP contains the scintillation index given by s2I ¼ Bð0Þ and the mean speckle size rc usually

defined by BðrcÞ=Bð0Þ ¼ e�1:

4.2. Differential image motion monitor

The DIMM derives the r0 parameter from the estimated variance of the differential motion of

two spots [13, 14]. These two spots are produced by letting the received light go through two

separate apertures in the entrance pupil of the telescope. The light from the two apertures is

Figure 14. Transformation kernel of the turbulence profiler for l ¼ 977 nm and L ¼ 60 km:
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focussed by a lens, and one of the paths is transmitted through an optical wedge (Figure 6) to

obtain two distinct spots on a charge-coupled device (CCD) camera (as shown in Figure 13,

right). This instrument is mainly used by astronomers to measure r0 at observatory sites [15].

An advantage of the r0 estimation based on DIMM measurements is that this technique is

inherently insensitive to tracking errors. This characteristic is especially important for a dynamic

scenario like STROPEX.

4.3. Results from the measurement instruments

The measurements during the balloon trial started at 6:13 a.m. (local time) and ended at 11:01

a.m. During this period, 35 synchronous measurements of DIMM and profiler were performed.

The estimation of the r0 parameter from the DIMM over the daytime is shown in the upper

graph of Figure 15. An r0 peak of up to 16 cm with the best atmospheric conditions can be seen

at about 8:00 a.m. The second curve in Figure 15 shows the r0 values reconstructed from the C2
n

Figure 15. Atmospheric coherence length r0 (upper graph), scintillation index (middle graph) and sun
elevation angle (lower graph) for the main trial period between 6:00 and 11:00 a.m. local time.
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profiles measured by the TP. These reconstructed values confirm the development of r0 and also

show the increase between 8 and 9 a.m.; however, the reconstruction from the TP most of the

time overestimates r0:
The atmospheric coherence length r0 is reconstructed from the C2

n values with a spherical

wave by [12]

r0 ¼ 2:1 � 1:46 � k2 �

Z L

0

C2
nðzÞ � ð1� z=LÞ5=3 dz

� ��3=5

ð4Þ

where z is the distance from the receiver. As given by Equation (4), r0 is mainly influenced

by turbulence close to the receiver. However, the TP cannot estimate the C2
n values close

to the receiver. Therefore, the r0 as derived by the reconstructed profile might become

overestimated due to underestimated C2
n values near the receiver, where they have the strongest

impact on r0: This might explain the difference of the r0 values of DIMM and TP shown in

Figure 15.

The middle graph in Figure 15 shows the scintillation index defined as the variance of the

irradiance normalized to its mean. We show the scintillation index for two aperture sizes: a point

aperture and the 40-cm telescope aperture. The scintillation index over a point aperture is

referred to as the intensity scintillation index and is noted by s2I ; whereas that over the 40-cm

aperture is referred to as the power scintillation index and is noted by s2P: The intensity

scintillation index was evaluated from the pixel samples of the profiler camera. Both the

intensity scintillation index and the power scintillation index show a minimum around 8:00. This

corroborates the larger r0 values and thus the decrease of atmospheric turbulence during this

hour. The turbulence minimum occurs approximately 2 h after sunrise.

The lower graph of Figure 15 shows the sun elevation angle for the experiment day 30th

August 2005. Sunrise was at 5:15 a.m. local time. The drop in the turbulence level occurs when

the air and the ground have the same temperature and less turbulence is created by energy

transfer processes.

Figure 16 shows the PDF of the normalized intensity, measured at about 8:03 and

corresponding to the weakest intensity fluctuations measured during the experiment. The

intensity scintillation index was s2I ¼ 0:28 and the lognormal distribution featuring this variance

fits the measured distribution relatively well; this fit is in agreement with the weak-fluctuation

theory valid for s2I51 [12].

The intensity PDF for the strongest measured fluctuations can be seen in Figure 17. The

scintillation index was s2I ¼ 1:12: Fits with two different theoretical distribution models are

shown in the graph. As expected, the lognormal fit is not as good as in Figure 16. Under strong

fluctuations the gamma–gamma distribution, which stems from the product of two independent

gamma variables with mean of unity, has been proposed [16]. This distribution features two

parameters, a and b: However, even by considering the most suitable distribution parameters

ða ¼ b ¼ 2:2Þ; the gamma–gamma distribution does not provide a good fit.

Figure 18 is a three-dimensional plot of seven selected turbulence profiles measured during

the trial. The characteristic decrease of turbulence strength with increasing altitude and

distance from receiver, respectively, can be seen for all profiles. This tendency can be best

seen for the profile measured at 7:34 o’clock local time, where the distance between the

ground station and the stratospheric terminal was close to the maximum transmission

distance of the trial.
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5. LINK BUDGET AND POSSIBLE IMPROVEMENTS ON FUTURE

HAP-TO-GROUND LINKS

5.1. Budget elements for atmospheric optical link

Before presenting the link budget of the chosen scenarios, we briefly review the different budget

elements for FSO links as these may differ from the classical RF elements.

Figure 16. Intensity PDF measured at 8:03 o’clock local time for the moment of the weakest turbulence
during the trial and comparison with a lognormal fit.

Figure 17. Intensity PDF measured at 6:21 o’clock local time for the moment of the strongest turbulence
during the trial and comparison with two different fits.
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5.1.1. Basic link elements. In Figure 19, the basic geometrical considerations are sketched. Tx

and Rx denote the transmitter and receiver, respectively. L is the transmission distance and y is

the full divergence angle of the transmitted beam. D is the receiver aperture diameter.

With Y the solid angle associated with y; the effective transmitter gain GTx is given by [17]

GTx ¼
4p

Y
�

16

y2
with y{1 ð5Þ

We define the receiver gain as the effective angular extent of the receiver. With a as the angle

over which the receiver is viewed by the transmitter and G the corresponding solid angle, the

receiver gain is given by

GRx ¼
G

4p
�

a2

16
with a{1

�
D

4L

� �2

ð6Þ

Note that according to some other definitions, Equation (6) may combine the receiver gain and

the free-space loss [17]. With PTx the transmitted power, the received power PRx of a basic

optical link is thus given by PRx ¼ PTxGTxGRx:

Figure 18. Three-dimensional plot of seven selected C2
n turbulence profiles measured during the trial

between 6:13 and 11:01 a.m. local time. The profiles were estimated from 30-s measurements with the TP,
which equals about 180 frames.
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5.1.2. Background light. For FSO links the sun is the most powerful source of background

radiation and measures must be taken to decrease its impact. The background-light penalty or

loss depends on the level of the received background light with respect to the received signal

level. It thus increases with the FOV of the receiver. Along the same lines as in [18], loss caused

by a blue background sky was evaluated at �2:5 dB for a field of view of 100 mrad and an

optical-filter bandwidth of 10 nm:

5.1.3. Pointing loss. With y being the full beam divergence and spoint being the root mean

square (RMS) pointing deviation angle over a single axis, the pointing loss is mainly determined

by the ratio y=spoint: It can be shown that when the beam has a Gaussian profile and when the

pointing jitter angle follows a two-dimensional Gaussian distribution, the fluctuating power

follows a beta distribution [19]. The CDF of the normalized power P is then

FP;pointðPÞ ¼ Pðy=4spointÞ
2

; 04P41 ð7Þ

In our link budget, we define the pointing loss as the value of P giving FP;pointðPÞ ¼ 0:01:

5.1.4. Scintillation loss. To be able to evaluate the scintillation loss for the communication

beam, we must estimate the power scintillation index s2P;1550 nm of spherical wave with a

wavelength of 1550 nm: s2P;1550 nm can be derived from the scintillation parameters measured at

l ¼ 977 nm using the scintillation theory. The Rytov theory predicts that the intensity

scintillation indices s2I ;l1 and s2I ;l2 at l1 and l2; respectively, are related by [12]

s2I ;l2 ¼ s2I ;l1
l2

l1

� ��7=6

ð8Þ

yielding

s2I ;1550 nm ¼ 0:58s2I ;977 nm ð9Þ

It is also known that the mean speckle size increases with the square root of the wavelength:

rc;l2 ¼ rc;l1
l2

l1

� �1=2

ð10Þ

yielding

rc;1550 nm ¼ 1:26rc;977 nm ð11Þ

Figure 19. Basic geometrical considerations for transmission and detection of an optical beam.
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When the receiving aperture is much larger than the correlation lengths rc; the power

scintillation index of l1 is related to that of l2 by

s2P;l2 ¼ s2P;l1

s2P;l2
s2P;l1

rc;l1
rc;l2

� �2

with Dcrc ð12Þ

which reduces to

s2P;l2 � s2P;l1 with Dcrc ð13Þ

with the approximation ðl2=l1Þ
1=6 � 1: In STROPEX, the intensity scintillation index of the beacon

beam (l ¼ 977 nm) varied between 1.1 and 0.25, and the power scintillation index varied between

0.12 and 0.013 (see Figure 15). The estimated mean speckle size was between 3 and 5 cm for the

beacon wavelength of 977 nm: Based on these estimations, we will hold Equation (13) a valid.

In our budget calculation, we assume a lognormal distribution of the scintillating power and,

similar to the pointing loss, we define the scintillation loss as the fade level under which the

signal remains for 1% of the time [20].

5.1.5. Heterodyne efficiency. When a coherent detection is performed, the signal suffers from

turbulence-induced wavefront distortions which degrade the so-called heterodyne efficiency Zhet
[21, 22]. The heterodyne efficiency is comprised between 0 and 1 and measures the field match of

the local oscillator with the received field at a given time and is mostly determined by phase

fluctuations. Because the signal-to-noise ratio is proportional to ZhetP; with P the received

optical power, the heterodyne efficiency can be viewed as a loss in the link budget. It has been

shown that correlation between phase and amplitude decreases rapidly as the distance of

propagation through turbulence increases [8]. For a long propagation path of 60 km; we ignore
this correlation and we separate the turbulence loss into the heterodyne-efficiency loss and the

scintillation loss. To find the loss associated with the heterodyne efficiency, we must first find the

PDF of the heterodyne efficiency. For that, we resorted to simulations in which samples of the

phase field SðqÞ; where q is a two-dimensional vector, have been generated [23]. These generated

phase fields are Gaussian and feature the well-known r0-dependent structure function DSðrÞ [8]:

DSðrÞ ¼ 6:88
r

r0

� �5=3

ð14Þ

The generated fields with distorted wavefronts have been applied to a coherent receiver with

different aperture diameters D [24]. To reproduce the behavior of a realistic coherent receiver,

the angle of arrival of the wave on the aperture has been removed, yielding a tilt-removed phase

front Stilt-remðqÞ: The heterodyne efficiency was then calculated as

Zhet ¼

Z

Aperture

expðStilt-remðqÞÞ dq

�

�

�

�

�

�

�

�

2

ð15Þ

The PDFs of the square root of Zhet for different aperture sizes D can be seen in Figure 20. It can

be seen from the PDFs that the fades remain acceptable for D=r052: Similar to previous losses,

we define the heterodyne-efficiency loss as the fade level under which the signal remains for 1%

of the time.
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5.2. STROPEX link budget and comparison with a coherent link

The reviewed link budget of STROPEX is given in the second column of Table I. During the

experiment, the 1550-nm communication beam had a divergence of y ¼ 1 mrad and the single-

axis RMS pointing error was spoint ¼ 70 mrad (see also Section 3.1). For the scintillation loss, we

consider the relatively pessimistic case of s2P ¼ 0:12: STROPEX featured a link margin of about

Figure 20. PDF of the square root of the heterodyne efficiency. The distributions were obtained from the
simulation of distorted wavefronts. Different ratios of the receiver aperture D to atmospheric coherence

length r0 are considered.

Table I. Link budget of the STROPEX communication downlink compared to a coherent link budget with
decreased aperture size is shown.

Budget elements Capanina (Incoherent) Coherent

Tx optical power 0.10 0:10 W
Tx divergence angle 1:0E� 03 1:0E� 03 rad
Link distance L 6:0Eþ 04 6:0Eþ 04 m
Rx-aperture diameter 4:0E� 01 1:0E� 01 m
Tx optical power 20 20 dBm
Tx Gain 72.0 72:0 dBi
Rx Gain �115:6 �127:6 dBi
Pointing loss (Prob ¼ 1E� 2) �1:6 �1:6 dB
Background-light loss �2:5 0:0 dB
Atmospheric attenuation �2:6 �2:6 dB
Scintillation loss ðProb ¼ 1E� 2Þ �3:3 �5:8 dB
Heterodyne efficiency ðProb ¼ 1E� 2Þ �2:4 dB
Rx optical loss �3:0 �3:0 dB
(Equivalent) Received power �36:5 �50:9 dBm
Required Rx-power ðBER ¼ 1E� 9Þ �44:9 �54:0 dBm
Link margin 8:4 3:0 dB
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8:4 dB: Note that, in reality, the combination of beam jitter, scintillation and heterodyne

efficiency leads to a compound distribution of the fluctuating signal, which may correspond to

slightly different losses (see for example [25]). It is therefore an approximation to consider the

different losses independently as we have done here.

An idea to improve future HAP feeder links would be to use an advanced transmission

scheme like coherent BPSK. In terms of receiver sensitivity, coherent detection is unrivaled for

high data rate links in space applications. In the shot-noise-limited case, the difference is small

(9 photons=bit for coherent and 10 photons=bit for incoherent systems to achieve BER ¼ 10�9).

But practical coherent systems work closer to that of the theoretical limit. Background radiation

can be neglected due to the extremely small-noise bandwidth of the receiver which is in the order

of the data bandwidth (e.g. 1-GHz signal bandwidth corresponds to only about 0:0035 nm

optical bandwidth for 1 mm wavelength). Accordingly, data reception with the sun in the FOV

would be possible. Note, however, that the STROPEX system, which featured incoherent

detection, could dispose of the background radiation by means of a 10-nm optical filter. This

bandwidth was sufficiently small to track the stratospheric terminal as close as about 58 close to

the sun without remarkable decrease of BER (Section 3.1).

It has been demonstrated experimentally that coherent detection could also be used for long

atmospheric links [26]. Considering the coherent detection for the HAP downlink scenario, we

present the associated link budget in the third column of Table I. To keep the heterodyne

efficiency reasonably high, the size of the receiving aperture must approximately match the r0
parameter. To derive an r0 value from our measurements, we note that parameters r0;l2 and r0;l1
at wavelengths l1 and l2; respectively, are related by [9]

r0;l2 ¼ r0;l1
l2

l1

� �6=5

ð16Þ

Therefore, the r0 for 1550 nm is related to the r0 measured at 977 nm by r0;1550 nm ¼ 1:74r0;977 nm:
Choosing the measured value r0;977 nm ¼ 4:0 cm (see Figure 15), we obtain the value r0;1550 nm ¼

7:0 cm for our link budget. Accordingly, the diameter of the receiving aperture was taken as 10 cm;
resulting in a heterodyne efficiency of�2:4 dB:With a smaller aperture, the scintillation loss for the

coherent link is higher than for the incoherent link because less aperture averaging occurs [16]. A

scintillation loss of�5:8 was estimated. Finally, to calculate the required optical power, we consider

a rather realistic coherent receiver that requires, on average, 25 photons per bit to achieve a BER of

10�9 [27]. This coherent link, although feasible, has a lower link margin than the STROPEX link.

6. AVAILABILITY OF HAP UP/DOWNLINKS

6.1. Cloud coverage in Europe

In the atmosphere, clouds are the most disturbing factors regarding the attenuation of the light

beam. Most of the clouds attenuate so strongly that there cannot be a link established when

passing through. Therefore, it is beneficial to identify specific ground station locations with low

probability of cloud occurrence. This section deals with cloud coverage statistics and link

availabilities using data from the European Cloud Climatology (ECC) Project. These data were

derived from the advanced very high resolution radiometer (AVHRR) sensors on board of the

NOAA (National Oceanic and Atmospheric Administration) satellites. The sensors work with
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a resolution of about 1:1� 1:1 km2 which is high enough for the purpose being addressed.

Figure 21 shows the mean cloud coverage of a year in Europe based on data from the years

2000/04/05. One can see in the figure the typical north–south decrease in mean cloud coverage.

Hence, the amount of cloud occurrence in higher latitudes is bigger than in lower ones. For

instance, Kiruna has a mean coverage of 74% and Calar Alto of 38%. Due to this fact, one is

supposed to prefer locations in southern Europe for setting up an optical ground station. In the

case of a ground-station diversity concept this should count for all stations.

Because cloud coverage in Europe is for example higher in winter months than in summer

months, we subdivide the year into its quarterly periods:

Quarter 1: January, February, March

Quarter 2: April, May, June

Quarter 3: July, August, September

Quarter 4: October, November, December

Figure 22 illustrates the mean cloud coverage corresponding to each quarter. For instance, a

chosen location nearby Marseille would have a mean coverage over the year of about 32%,

which stands for a link availability of 68%. This value might be good for a single station, but

going through the quarters of the year, varying availabilities of 63%, 75%, 83% and 54% are

observed.

6.2. Ground-station diversity

To raise link availability one can set up a system of several ground stations. Table II presents the

availabilities in the quarterly periods of the year for four chosen locations. According to the

Figure 21. Average cloud coverage in Europe derived from ECC data. The values are a mean over the
year.
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analysis of weather correlation in [28], the cloud cover correlation around the chosen locations

for the years 2004/05 in dependence of the distance was determined. Figure 23 shows an

exponential best-fit curve of the correlation coefficient values between Marseille and its

surrounding locations. One can see the decrease in the correlation curve. Therefore, it is

assumed that for distances over 900 km the weather cells are uncorrelated.

Hence, four sites with this least distance have been chosen to study compound link

availability: the observatory on Calar Alto (Spain) and locations in the near of Marseille

(France), Catania (Italy) and Heraklion (Greece) as illustrated in Figure 24. These sites feature

low mean cloud coverage over the year and infrastructural accessibility.

Figure 22. Mean of cloud cover over the quarterly periods of the year.
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Table III gives the compound availabilities for different ground-station diversity systems. For

this calculation, statistical independence of the weather conditions is assumed and the

availability pdiv is given by

pdiv ¼ 1�
Y

n

i¼1

pi ð17Þ

with pi the probability of cloud cover of the ith station and n the number of stations used. The

first system is set up with two stations having the best individual availabilities, the second with

Table II. Individual link availabilities in percentage for the considered locations.

Station availability in Heraklion (HER) Catania (CAT) Marseille (MAR) Calar Alto (CAL)

Quarter 1 57 62 63 61
Quarter 2 83 72 75 62
Quarter 3 97 87 81 78
Quarter 4 63 54 54 49
Year 75.0 68.8 68.3 62.5

Figure 23. Best-fit curve for correlation over distance around Marseille.

Figure 24. Locations of the stations. From left to right: Calar Alto Observatory, Marseille,
Catania, Heraklion.

EXPERIMENTAL VERIFICATION OF OPTICAL BACKHAUL LINKS 523

Copyright # 2007 John Wiley & Sons, Ltd. Int. J. Satell. Commun. Network. 2007; 25:501–528

DOI: 10.1002/sat



the three best and the third one with the four best. The link availability in system 3 is higher than

96% for each quarter and over 98% over the whole year. Especially remarkable is Quarter 3

which reaches an availability of 99.9% in systems 2 and 3. Reason for this is the extraordinary

low cloud coverage over Heraklion for this time period. Remarkably, all quarters show an

availability of over 90% for a joint of three stations and 95% for four stations. The system

performance of the four stations joint could be further improved by searching for locations with

a lower variance of cloud occurrence and still lower mean cloud coverage. This could result in a

joint availability of 99.9% for the whole year.

6.3. Wavelength dependency of cloud attenuation

Avoiding clouds should be the first priority in stratospheric up/downlinks. But if this is not

possible the influence of the cloud on the light beam attenuation has to be examined. To

estimate the possible cloud attenuation, a calculation of the Mie scattering for the particle size

distribution of a Stratus and a Cumulus cloud was done. A description of the formation and

characteristics of theses cloud types is depicted in [29].

Stratus clouds are one of the most frequent clouds and normally reach vertical thicknesses

between 200 and 800 m [30]. The chosen particle size distribution for this cloud is based on

LOWTRAN and FASCODE models [31]. For the Cumulus cloud, the C1 model from

Dermendjian [32] was taken. The corresponding particle distribution functions can be seen in

Figure 25 (left). Both calculations were performed using the Mie-tool from the libRadtran

simulation suite [33]. Stratus has moderate attenuation and a vertical extension of only a few

hundred meters.

In the right part of Figure 25, the total attenuation over wavelength for a given minimum and

maximum geometrical thickness in vertical direction z can be seen. This determines the

minimum and maximum attenuation, respectively. The progression of the curves is qualitatively

similar for the Cumulus and Stratus model. This can be observed with most of the cloud types

having a similar particle size distribution. But there are cloud types with stronger

(Nimbostratus, Cumulonimbus) or weaker (Altostratus, Stratocumulus) attenuation. Remark-

able for most cloud types is the local minimum at wavelengths between 10 and 12 mm: A stratus

cloud of 200-m thickness features 22 dB less attenuation at 11:13 mm compared with NIR

wavelengths like 1:5 mm which have been used for STROPEX. For future systems, CO2 Lasers

or Quantum-Cascade Lasers could be used for wavelength which matches the attenuation

minimum around 11:0 mm: However, for most clouds the attenuation even at this minimum is

too high to establish an optical downlink.

Table III. Joint availability for the different possibilities of ground station diversity.

System
availability in

System 1 HER,
CAT

System 2 HER,
CAT, MAR

System 3 HER,
CAT, MAR, CAL

Quarter 1 83.7 94.0 97.6
Quarter 2 95.2 98.8 99.5
Quarter 3 99.6 99.9 99.9
Quarter 4 83.0 92.2 96.0
Year 90.4 96.2 98.3
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7. CONCLUSION

The stratospheric optical experiment performed the first known optical Gbit/s downlink to a

ground station. The chosen system concept with a relatively large transmit divergence of 1 mrad

for about 64 km resulted in a nearly error free transmission with 1:25 Gbit=s at BER510�9 with

a large pointing margin for the transmitter. The concept with an optical periscope also has the

advantage that fast tip/tilt mirrors as fine pointing assembly can be easily incorporated into the

design, allowing applications at stratospheric platforms which feature more complex vibration

spectra at higher frequencies than the balloon in STROPEX. Blue sky background radiation is

not a problem at 1550 nm because of the sufficiently low sun irradiance at this wavelength. BER

did not change remarkably when the filter bandwidth in the receiver was changed from

10 to 60 nm:
The measurement of the scintillation has shown that significant aperture averaging occurred

during the trial, preventing deep fades from deteriorating the data reception. The intensity

scintillation index s2I ranged from 0.28 to 1.12, and the PDF of the intensity was lognormal only

when the scintillation index had low values. Although the coherence length had no impact on

the IM/DD system, it has been measured for investigations of possible other modulation

schemes.

Considering pessimistic turbulence parameters, the link budget of the experiment has been

reviewed and compared with that of a coherent transmission link. It was shown that the

coherent link, which must feature a smaller receiving aperture, provides a lower link power

margin.

A ground-station diversity system in southern Europe with a combination of four stations is

able to assure a high availability over the whole year. For improvement of individual and joint

link availability one can use a wavelength of around 11 mm which is able to propagate through

thin clouds.

Figure 25. The size distribution of a Stratus cloud as it is used in LOWTRAN and FASCODE and a
Cumulus C1 model of Dermendjian. The right graph depicts the attenuation variations of these models

over the wavelengths.
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APPENDIX: ABBREVIATIONS

APD Avalanche photo diode

BER bit error rate

BSC beam splitter cube

CCD charge coupled device

DD direct detection

DIMM differential image motion monitor

ECC European cloud climatology

HAP high-altitude platform

FSO free-space optics

FOV field of view

FELT free-space experimental laser terminal

IM/DD intensity modulation with direct detection

NIR near-infrared

NOAA National Oceanic and Atmospheric Administration

PRBS pseudo random binary sequence

PAT pointing acquisition and tracking

STROPEX stratospheric optical payload experiment

TOGS transportable optical ground station

TMTC telemetry and tele-command

Tx transmitter

Rx receiver

TP turbulence profiler
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