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Abstract

Weanalyze themultipole excitation of atomswith twisted light, i.e, by a vortex light field that carries

orbital angularmomentum. A single trapped 40Ca+ ion serves as a localized and positioned probe of

the exciting field.We drive the S D1 2 5 2 transition and observe the relative strengths of different

transitions, depending on the ionʼs transversal positionwith respect to the center of the vortex light

field. On the other hand, transition amplitudes are calculated for a twisted lightfield in formof a Bessel

beam, a Bessel–Gauss and a Laguerre–Gaussmode. Analyzing experimental obtained transition

amplitudeswe find agreementwith the theoretical predictions at a level of better than 3%. Finally, we

proposemeasurement schemeswith two-ion crystals to enhance the sensing accuracy of vortexmodes

in future experiments.

1. Introduction

The light with orbital angularmomentum (OAM), or the twisted light has been a subject ofmany studies for the

past 25 years. The novel features of the twisted light are due to its azimuthal phase dependence that at a quantum

level results inmultipleOAM-projection eigenstates that are orthogonal and therefore independently

detectable, leading to the applications such as enhanced quantum communications, quantum encryption, and

quantum computing. Formost recent reviews of the subject, the reader is referred to [1, 2].

In this paperwe focus on the angular-momentumquantum selection rules for the excitation of quantum

systemswith twisted light, using atomic photoexcitation as an example. On the history of this question, it was

initially shown byBabiker and collaborators [3] that in order to pass lightʼsOAM to the internal degrees of

freedomof an atom, it is required that corresponding transitions havemultipolarity higher than dipole. Direct

calculations by Picon et al [4] of atomic photoionization demonstrated that final electrons indeed carryOAMof

the incident photons. In [5], it was shown that atomic photoexcitation amplitudes with the twisted light depend

on atomʼs position through Bessel-function factors, independently of the specific atomic structure. The next

stepwasmade by authors of [6]who derived one-to-one correspondence between twisted- and plane-wave-

amplitudes for atomic photo-excitation. Based on this formalism, novel features of high-multipole transitions

with twisted photonswere analyzed theoretically in [7], with spin–orbit effects computed in [8]. The formalism

of [6]was extended to Laguerre-Gaussian (LG) beams in [9]. In other theoretical developments, the authors of

[10] considered excitation of Rydberg atomswithOAMbeams, additional quantum selection rules with recoil

effects were analyzed in [11], and optical vortex interactionwithmulti-electron atomswas formulated in the

impact-parameter space in [12].

Two circumstances, namely (a) the need to observe higher-multipole atomic transitions that aremuch

weaker than dipole, and (b) high sensitivity of the transition amplitudes to atomʼs locationwithin the optical

vortex complicate verification of the novel quantum selection rules. Thefirst experimental demonstration that
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OAMof the twisted light can be passed to the internal degrees of freedomof an atomwas done recently [13] by

measuring Rabi frequencies for 40Ca+ ions placed in a Paul trap. In suchway, the ionwavepacket with an

extension of�60nm serves as awell-localized and positioned probe of the lightfield. Using an approach [14]

relating Rabi oscillations to dipole-like and quadrupole-like interaction operators, the authors of [13]measured

relative strengths of the corresponding transitions with sub-wavelength position resolution for the target 40Ca+

ions. The data [13] appear to be sensitive to the longitudinal component of the electric field in theOAM

beam [15].

Here we present newmeasurements of the complete sets of S D4 32
1 2

2
5 2 transition amplitudes with

40Ca+ ions obtainedwith the same apparatus as in [13]. The data are presented as a function of ionʼs position

with respect to the optical vortex center and comparedwith position-dependent selection rules for variousOAM

beammodes, namely, for Bessel, Bessel–Gauss (BG) and Laguerre–Gaussian. The results allow us to claim full

understanding of the excitation strength of the atoms by the twisted light. Thework is the basis of extending the

studies of excitation in twisted lightfields from a single ion, to the excitation of ensembled, e.g. linear trapped

crystals.We further discuss twisted lightfieldmulti-ion entanglement can be generated or, alternatively,

entangled ion crystals that could be employed to analyze evenwith higher accuracy the polarization and vortex

degrees of freedomof shaped lightfields.

The paper is organized as follows. Section 2 describes a theoretical formalism of quantum selection rules for

twisted photoabsorption amplitudes for various laser beammodes, predicting relative strengths of transitions

into Zeeman sub-levels with givenmagnetic quantumnumbers. Section 3 describes the apparatus and the

experimentalmethods, section 4 presents comparison of the data with theory, and section 5 is dedicated to

summary and outlook.

2. Twisted lightmodes and planewave factorization

2.1. Besselmode

One of themost convenient and straightforwardways tomathematically describe a beam-like behavior of EM-

fields generated by lasers is by solving the scalarHelmholtz equation in cylindrical coordinates. The resulting

Besselmodes were considered byDurnin et al [16], where it was also reported onfirst generation of Bessel

beams (BBs).

Let us briefly review the formalismdescribed in [5] and consider a BBmodewith total angularmomentum

(TAM) projection gm , which is definedwith respect to the beamʼs propagation axis z. Besselmode of frequency

w = ∣ ∣k is the family of exact normalized non-diverging solutions of the scalar wave equation in cylindrical

coordinates

y r kr=k
f w-

g
g r

g( ) ( ) ( )( ) ( )z t A J, , e e 1k m
m

m
k z tBB i i

z

z

which ismathematically defined everywhere in space, and the normalization constant is k p=A 2 . Here

k = -k kz

2 2
is the transverse part of thewave-vector for a non-paraxial beam, r fr{ }z, , are the cylindrical

coordinates with r ^ z .We proceed following the notations introduced in [5], andwrite the planewave

expansion of the Besselmode
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where y ( )r t,k
pw are the planewave states and k ^g ( )a kk mz

is the corresponding Fourier amplitude
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where =^ ^∣ ∣k k and f= ^( )k k k, ,z k .

The Bessel solutions of thewave (Helmholtz) equation for the photon vector potential can bewritten in the

formof the superposition of planewaveswith thefixed longitudinalmomenta kz and pitch angle

q = ^(∣ ∣ )k karctank z as follows
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whereΛ is helicity of a plane-wave component propagating along the direction k .

The explicit formof the polarization state of a plane-wave photonwith awave vector k is
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where h hm m
L{ },

0
are the polarization basis vectors

h h= L - =m m
L ( ) ( ) ( )

1

2
0, , i, 0 ; 0, 0, 0, 1 . 6

0

The local energyflux can be expressed, e.g. [5], as a function of a pitch angle as follows
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where the topological effects are controlled both by the explicit qk-dependence in the directional cosines and the

Bessel functions.

Photo-absorption of BB by the hydrogen-like atomwas developed in [5–7, 17]. The transition amplitude can

bewritten in the form

k= á L ñgLg ( ) ∣ ∣ ( )( ) b n j m H n j m k m b; ; , 8m m m f f f i i i z
BB

int
f i

where { }n j m, ,f f f and { }n j m, ,i i i are respectively final and initial atomic states, Hint is interactionHamiltonian

(in the form-( ) ·e m p A, where p is bound electronʼsmomentumoperator), b is an impact paramer, or the

distance between the atomʼs c.m. and the optical vortex center, and some superscripts are tacit. Replacing the

planewave photon state by Besselmode, and using rotation operators with the quantization axis along z-

direction, we obtain the following factorization property of the twisted-wave transition amplitude, see [6]:
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Wenote that since specific hydrogen-like wave functionswere not used in above derivation, this factorization

property also applies to other atoms and ions as long as the atomic size ismuch smaller than thewavelength of

light. Another essential difference from [6] is that equation (9) applies to TAMof initial andfinal states, including

their spin. It allows consideration of both spin-dependent and spin-independent transitions for arbitrary

angular-momentum eigenstates.

The general equation only requires that Hint is rotation invariant. If Hint is also spin independent (as is the

interaction-( ) ·e m p A) and if the initial state is an orbital S-state, the general expression can be further

developed.We can expand the final state into its orbital and spin parts, bringing inClebsch–Gordan coefficients,

andwith suitable changes to the subscripts on the photoexcitation amplitude obtain for transitions from a

ground state ( = =l j0, 1 2i i ):
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wherewe remember that Hint is spin independent for this development and the lastmatrix element is calculated

using only the orbital parts of the electron states.

With suitablemanipulation, the overallmatrix element can be given as a product with no sums, and for a

transition to afine structure statewith fixed lf aswell as fixed jf,

k
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Twomain effects related to the topology of the incoming photon state should be noticed: rotational

transformation described by theWigner d-function and topological phase factor k- g ( )J bm mf
. These two novel

factors in the absorption amplitudemodify the angularmomentum selection rules for BB versus the plane-wave

3
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case. In the electron-photon interactionwe neglect effects of electron spin that are in general suppressed for

atomic photo-excitation if electricmultipoles are allowed. For this reasonwe can replace the difference

- = -m m m mf i lf li, where ( )m mli lf areOAMprojections of initial (final) electron states.We emphasize that
the above formalismof equation (9) automatically includes electron-spin-dependent interaction, while the next

step, i.e. separation into the orbital and spin part of the electronwave function (10) implies that the electron spin

remains intact during photo-excitation.

2.2. BGmode

Besselmodes accurately describe the observed behavior of EM-fields at the beam center. However, for the

peripheral behavior the diverging nature of this solution of theMaxwell equations becomes non-negligible. A

convenient generalization of the fundamental Besselmode, BGmode, was first considered by Sheppard and

Wilson [18]. It belongs to the family ofHelmholtz–Gauss beams and satisfies the paraxial wave equation. Its

characteristic behaviormimics BB in vicinity to the quantization axis, while secondarymaxima get strongly

suppressed by theGaussian factor

y r kr=k
f w r- -

g
g r

g( ) ( ) ( )( ) ( )z t A J, , e e e , 12m
m

m
k z t wBG i i z

2
0
2

whereA is the overall constant coming from the Fresnel expansion (e.g., see [19]). Other parameters are defined

identically to the conventions of theGaussian andBesselmodes: w0 is thewaist of the beam and qk is the pitch

angle.

After taking 2DFourier transformone can obtain the following form for the planewave expansion of the BG

mode:
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where the integral is taken over the entire reciprocal space, similar to the angular spectrum representation

technique [20], and the contribution coming from evanescent waves ( Î ¥^ [ )k k, ) is negligible. The

corresponding Fourier kernel is
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The function =g
g

g( ) ( )I z J zi im
m

m is themodified Bessel function. Applying the formalism laid out in, e.g. [6, 7],
one can obtain for electron-spin-independent part of the transition amplitude:
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This integral can be calculated, e.g. [21] (6.633 1), involving an infinite sumover hypergeometric functions. To

include the effect of electron spin in the atomicfine structure, Clebsch–Gordan coefficient factors have to be

applied as in equation (11) above.

When the parameterw0 is large comparedwith other dimensional quantities such as thewavelength, we can

evaluate theWigner function at the pitch angle qk and take it out of the integral. Further, we can approximate the

modifiedBessel function by its asymptotic value and evaluate the integral explicitly, obtaining
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which is aGaussian factor times the result equation (11) for a pure non-Gaussian BB, with relevant Clebsch–

Gordan coefficients implied. That theGaussianmodification of the starting beamprofile feeds through in such a

simpleway to the photoexcitation amplitudeworks only ifw0 is large. For parameters of interest to us,w0 is large

enough and the two photoexcitation amplitude expressions give nearly identical numerical results.

2.3. LGmode

LGmode plays a fundamental role in photonics, laser optics and resonators [22, 23]. It belongs to the family of

Gaussian solutions to the scalar paraxial equation. The spatial amplitude dependence is expressed by the

equation

4
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Here gℓ is the beam vorticity factor that coincides with its OAMprojection in paraxial approximation;

= + ( )z zw w 1z R0
2 is its spotsize; =z kw 2R 0 is the Rayleigh range; f = ( )z zarctanG R is theGouy phase of

the LGmode. The associate Laguerre polynomial is given, as can be found elsewhere, e.g. [21, 24]
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where p is the number of radial nodes ( +p 1 concentric circles). Bessel function, being a complete set of

orthogonal functions, can be used as an expansion basis. Herewewill consider themode in focus z=0 and
perform theHankel transform given as
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to obtain the expression for the LG-mode expanded in Besselmodes (1), where x Î xD and Îx Dx.We assume
that the transformation kernels are symmetric, such as
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After applying (20) to (17) andwith the help of the transform [25]
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we get the following expression for the scalar LGmode
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As a result, the vector solution of the paraxial wave equation for LGmode can be expressed as follows
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Lg^
( )r t,k m kz

defined as in (4). The polarization basis (5)was taken in its paraxial form
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Making use of the approach developed for BGmode earlier, as a step toward obtaining the (approximately)

factorized amplitudes, we arrive at the following expression
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where similarly to (11) and (15) factorization is possible, with qk angle understood asCauchyʼsmean value. The

integral on the right-hand side can be calculated analytically as in [21], equation (6.643 4)with the variable
substitution = ^x k2 . This leads to the following representation of the transition amplitude for = =ℓ m 0i li —S-

state, where the original LG-beam structure is apparent
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The parameters are x h= -gℓ(∣ ∣ ∣ ∣)0.5 and h = + -gm m mli lf . The new coefficient is
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where ( )sgn • denotes the signumof the number,⌊ ⌉!• is the Roman factorial [26] and n ( )∣ ∣ •n is the extended

Laguerre polynomial
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3.Description of the experiment

Wenowdescribe the experimental procedure to determine the position dependent selection rules.We position

the single ion in the vortex lightfield and determine its variation of excitation strength for variousmagnetic

transitions between Zeeman sublevels of the S D1 2 5 2 transition.

A single 40Ca+ ion is trapped andDoppler cooled in a segmented Paul trap to a thermal state withwave

packet size of about 60 nm. The ion position along one of the transverse axes of the probe beam is controlled by

applying programmable voltages on the trap electrodes. This allows positioning the ionwith sub nanometer

precision along one beam axis.

Each experiment startedwithDoppler cooling followed by optical pumping at a fixed position. The ionwas

then shifted to its probe position along the beam axis where the quadrupole beamwas turned on for a given

amount of time. Then the ionwas brought again to its initial positionwhere state readoutwas performed. The

final state is determined by electron shelving and state dependent fluorescence [27].We determine the final state

to be in the S4 1 2 or D3 5 2 manifolds by observing resonance fluorescence on the –S P4 41 2 1 2 near 397nm for a

fewmilliseconds on a EMCCDcamera. If the ion is in themetastable D3 5 2 manifold, then it will notfluoresce.

Contrary if is in the S4 1 2 manifold it scatter resonant 397nm light.

As a probe beamweuse a Ti:Sa laser tuned to the S4 1 2– D3 5 2 transition near 729 nm. Its frequency is

stabilized to better than 100 Hz by locking to a high-finesseULE reference (Stable-Lasers Inc.) cavity withfinesse

close to 200 000. Using an acousto-opticmodulator (AOM) in a double pass configuration, the laser can be

switched and tuned to the different Zeeman transitions spanning a range of 30MHz. This allows us to probe all

the transitions = ñ « = ñ∣ ∣S m D m4 , 3 , , ,J J
2

1 2
1

2
2

5 2
1

2

3

2

5

2
, which are Zeeman-split by an externalfield

of 13mT. After passing theAOM, the beam is coupled into a polarizationmaintaining single-mode fiber for

spatialfiltering. Finally, the beam is out-coupled into free spacewhere its polarization and spatial structure are

shaped before focusing it onto the tapped ion.

We use three different spatial distributions for the beam: a plainGaussian beam, and vortexwith chirality

(OAM) one and two. For theGaussian beamwe take the shape as filtered by the singlemodefiber. To produce

the vortex beamswith chirality 1, 2 we additionally place a holographic fork shaped phase plate in the beam

path. A full description of the apparatus is given in [13] and shown infigure 1 here.

The polarization of the beam is then set by a half wave-plate on amotorizedmount and a combination of

quarter-half-quarter wave-plates and dielectricmirrors. The combination of wave-plates andmirrors are set so

that by rotating the firstmotorizedwave-plate, the polarization of the beambefore focusing onto the ion can be

chosen to be either circular left (LCP) or right (RCP). The need of the extra wave plates is to compensate for the

polarization changes on the subsequent dielectricmirrors. Calibration of polarizations was donewith a

polarization analyzer (Schaefter-Kirchhoff SK010PA-NIR) and ametallic pick upmirror after the last dichroic

mirror. Polarizationswere set to a Stokes parameter =S 13 with a accuracy of 1%.However because of slight

misalignment of the calibration procedure we expect the actual polarizations to be correct between 1%and 3%.

This number varies in different experimental runs because re-calibration of the polarizationwas redone

periodically.

The probe beamwas focused on the ion by the use of a 50 mmachromatic lens with a 67 mm focal length and

50 mmdiameter objective, which allowed focusing to a beam to awaist of roughly 5μm.

Each profile scanwas done by probing the ion at different positionswith afixed interrogation time. This time

was chosen so that it would never exceed the pi time at any point of the beam. Themeasured excitation
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probability P is related to theRabi frequencyΩ by = - W( ( ))P t1 cos 2. By inverting this formula we obtain

the Rabi frequencies from themeasured probabilities. For each position the experiment was repeated 100 times.

The reported value is themeanwith an error given by theClopper–Pearson confidence interval at 1 sigma.

Additionally, due to the frequency-dependent diffraction efficiency of theAOMused to tune the laser, the

laser powerwas different for eachmeasured transition. Additionally, different powers were chosen in some cases

to provide a better dynamic range. To account for these changes we re-scaled the obtainedRabi frequencies with

the square root of the optical power used in each case.

Finally we note that themagnetic fieldwas set by a combination ofmagnetic coils whichwere set to nullify

the Earth and roommagnetic fields and to set afield along the beam axis of 13mT. The sense of this field could be

inverted to change the chirality of the beamʼs angularmomentumwith respect to the ions. This optionwas

chosen, rather than flipping the phase plate, because it provided amore reproducible way of shifting between

beam types. The reason for this is that this procedure did not involve complete re-alignment of the beampath

and its focus as the rotation of the phase plate does.

4. Comparison of datawith theory predictions

Let us compare the experimental data with theoretical predictions. To adjust theory parameters, wefirst use the

data on normalized Rabi frequencies for two transitions, withD = - -m 2, 1 (whereDm is themagnetic

quantumnumber change in the atomic state) shown infigure 2 caused byOAMphotonswithwavelength

λ= 729nm, TAMprojection = -gm 2 and L = -1 (LCP), i.e. with photonʼsOAMalignedwith its spin. Both

BBmodes and LGmodes have been extensively used tomodel vortex beams produced by diffraction gratings

[28–31].

We start with BBmode that has only two independent parameters: (a)an overall normalization and (b)the

pitch angle qk. Fixing the normalization to reproduce = -gm 2 amplitude at zero impact parameter, and

choosing qk= 0.095rad to reproduce positions offirstminima forD = - -m 2, 1 transitions, we see from

figure 2(a) (blue dashed and green long-dashed lines) that while BBmode reproduces the data well in the central

region of the beam at b�3μm, it overshoots the data at larger impact parameters. Introducing BGmode into

Figure 1.Experimental sequence. (i) First the initial state S42
1 2, =m 1 2i is prepared by optical pumping on the 397nm

transition, additionally re-pumping and state reset from lower-lyingD states is performed by two lasers tuned to the 866 and 854nm
transitions. (ii)Next the ion is shuttled to the a given position by sweeping the electrode voltages where the interaction along the beam
will bemeasured. (iii) Following the probe beam is turned on and the ion oscillates coherently between frequency selected Zeeman
sub-levels. (iv) Finally the ion is shuttled back to the initial position the electronic state is read out by state dependent fluorescence on
the 397nm transitionwith re-pumping on the 866nm transition. See text formore details.
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the comparison, we see that the data are well reproducedwith a choice of an additional parameter

m=w 7.3 m0
BG

= 10λ (figure 2(a), black solid and black dotted lines). BGmode behaves nearly identical to BB in

vicinity to the optical vortex center formost transitions, however in casewith BG the partial amplitudes get

suppressed on the beamʼs periphery, which better reflects the physical behavior of the laser beam.Note that the

parameter w0
BG, when combinedwith a Bessel factors of equation (7), matches the beamwaist of roughly m5 m

estimated from focusing (section 3).

Theoretical descriptionwith LGmode of a given order p (figure 2(b)) requires three independent

parameters: (1)overall normalization factor; (2)waistw0 thatfixes the position of theminima and controls

overall height of themaxima; and (3) pitch angle qk that controls relative height of themaxima.When

comparing the behavior of the LGbeam to the datawe notice that for the case of p=0 both the first node in

beam intensity and the secondmaxima are either absent or largely suppressed compared to the experimental

observation, while choosing p=1 for LGmode alone overshoots the data at large impact parameters.We found

that the theory describes the data the best if themixture of LG-modes with the orders p=0 and p=1 as

considered figure 2. This is consistent with previous observations on vortex beams generated by diffraction

gratings [28, 29]. Thewaists for these two contributions were adjusted independently by parametersw0 andw1

accordingly. Treating the relative ratio of p= 1 and p= 0 LGmodes as an independent parameter, our LGmodel

hasfive parameters in total. Using the same pitch angle as in BGmode qk= 0.095rad, we find the optimal values

of other parameters as follows: l m= =w 4.0 2.9 m0 , l m= =w 6.5 4.7 m1 , p= 1 to p= 0mode ratio (by

amplitude)=0.43.

Keeping all the above parameters unchanged, and choosing the opposite spin L = 1 (RCP), we can predict

the amplitudes for =gm 0 , when photons spin andOAMare anti-aligned. Corresponding intensity profiles of
BB, BG and LGbeamswith the above choice of parameters are shown infigure 3 as a function of the radial

distance to the optical vortex center. One can see that different theorymodels of the beamgive similar intensity

profiles in the central region and start to noticeably differ at m–b 5 6 m.

Figure 2. (a)Normalized Rabi frequencies forOAM lightwith = -gm 2 comparedwith theory predictions for BBmode (blue dashed
and green long-dashed) andBGmode (black solid and black dotted) as a function of the impact parameter b for the transitions
D = -m 2 andD = -m 1 from the ground state with = -m 1 2i , and LCP polarized photons (Λ=−1); (b)same transitions versus
theory for LGmodeswith parameters p= 0, p= 1, and their linear combination (see text for details).

Figure 3.Beamʼs local energyflux used in the theory fits as a function of impact parameter for BG (black solid), BB (blue dashed) and
LG (purple long-dashed)modes. (a) =gm 0, (b) =gm 2.
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Without further adjusting the theory parameters, full data sets with corresponding calculations are given as

grids infigure 4. The transitions all have =j 5 2f and =l 2f , and = -m 1 2i . Each plot has the impact

parameter on the horizontal axis and the reducedRabi frequency, or a number proportional to the transition

amplitudemagnitude, on the vertical axis.

For BB andBGbeams, Bessel functions determinewhere the zeros of the amplitude lie, which includes

determining if the amplitude is zero at zero impact parameter b. The cases withfinite amplitude at zero impact

parameter have = + gm m mf i and are highlighted in red on the data plots. On the other hand, the Bessel

functions all have about the same peakmagnitude for all index values, so the Bessel functions are not decisive for

setting the relative scale of the different data sets.

Additional factors come from theClebsch–Gordan coefficients andWigner d-functions. Figure 4 have

= -m 1 2i for all data sets, and for the grid in this figure, each element of a given columnhas the samemf, with

the values from left to right given as = - - -m 5 2, 3 2, 1 2, 1 2, 3 2f . The correspondingClebsch–Gordan
coefficients for the columns are

( )
5

5
,

4

5
,

3

5
,

2

5
,

1

5
, 31

in order from left to right.

More decisive for the size of the predicted amplitude isWigner d-functions. For small angles, they are

proportional to powers of the angle, as

Figure 4.Normalized Rabi frequencies as a function of impact parameter b, comparedwith theory predictions for BG and LGmodes.
The projection of initial atomic spin is = -m 1 2i . Black dashed curves (BG) and purple dashed–dotted curves (LG) correspond to
the theory predictions not accounting for the opposite-sign circular polarization admixture; solid curves in black (BG) and long-
dashed curves in purple (LG) are the theory predictionswith 3%opposite-polarization admixture (by amplitude) for rows 1%, 3%,
4% and 6%, and 10%admixture for rows 2 and 5. Columns 1 through 5 correspond to the change ofmagnetic quantumnumber by
D = - -m 2, 1, 0, 1, 2, respectively. Rows 1 through 6 correspond photonʼs total angularmomentumprojections
= - - L = - L =g ( ) ( )m 2, 1, 0 1 , 0 1 , 1, 2.
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q qµ- L
- -L( ) ( ) ( )∣ ∣d . 32m m

j
k k

m m
,f i

f i

Since q » 0.1 radk for the data in the paper, the value of the exponent is decisive in setting the overall scale of

each amplitude.

Thefirst three rows offigure 4 all have L = -1 (LCP) and the last three rows all have L = 1 (RCP). Hence as

we go across any of the first three rows from left to right, the d-functions give factors proportional to

q q q q q( ) ( ) ( ) ( ) ( ) ( ), , , , . 33k k k k k
1 0 1 2 3

The effects of these factors upon the normalization of the amplitudes is easily seen in the labeling of the vertical

axes of the respective figures infigures 4, 5: the amplitudeʼs overall scale is the largest for the closestmatch

between spin (Λ) andOAMprojection of the final state. The corresponding factors for the last three rows are

q q q q q( ) ( ) ( ) ( ) ( ) ( ), , , , , 34k k k k k
3 2 1 0 1

and the effects of these factors are equally easy to see.

For corresponding data sets with = +m 1 2i ,figures 5, themf values are again the same for each element of

a given column, and are arranged as = - -m 3 2, 1 2, 1 2, 3 2, 5 2f . TheClebsch–Gordan coefficients are in

order just the reverse of equation (31). The factors of qk are, however, the same as in equations (32) and(33).

(The value ofmi has changed by one unit, but themf labeling of the columns is also offset by one unit.)

Using the theoreticalmodel, we can evaluate the radius of prenumbra introduced in [13] that we can define as

an impact parameter b for whichD = -m 2 transitionwith = -gm 2 (forbidden for plane-wave photons)

equalsD = -m 1 (allowed for planewaves). For BBmodes the estimate ismost straightforward,

Figure 5. Same asfigure 4, but for the initial atomic state with an oppositemi= 1/2.
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Expanding above expressions for small qk, we obtain for prenumbra radius l m= =
p

b 0.26 m
5

2
for

= -m 1 2i and m= =l
p

b 0.16 m
2

for =m 1 2i , that can be checked againstfigure 2. It is about twice as

large for the initial electron spin alignedwith photonʼs TAMprojectionmγ.

Let us compare the peak values of non-vanishing amplitudes at the optical vortex center (b=0)—indicated

by red plots infigures 4, 5 with theory predictions, see tables 1, 2, with data taken from [13] (supplementary

material). They appear to be in good agreement. The relative peak values at zero impact parameter for BB and

(factorized)BBmodes are determined only byWigner d-functions. For example, for = - L = -gm 2, 1versus

for = L =gm 0, 1we compareWigner d-functions q- - ( )
( )d k2 1
2 (D = -m 2) and q( )( )d k01

2 (forD =m 0): the

latter is larger by a factor 3 2 in a small-angle limit, predicting that the ratio of squares of the corresponding

Rabi frequencies should equal 3/2. Forming an electron spin-averaged sumof the squaredRabi frequencies

from the tables1, 2, wefind the experimental value of the ratio= 1.48(8) to be a goodmatch. This is also an

experimental evidence that the twisted light should develop circular dichroism in the high-multipole absorption

by unpolarized atomic target, the effect predicted in [8]. A different approachwas used in [15] to predict ratios of

b=0Rabi frequencies, where the role of longitudinal component of the electric was analyzed; this approach is

consistent with the one presented here.

The theory calculations initially assumed that the laser beam is fully circularly polarized, i.e. L = 1 (LCP) or

-1 (RCP). Comparisonwith data suggested, however, that the beams are slightly elliptic, with deviations from

fully circular polarization at 1%or less, that is well within the accuracy ofmeasured polarization, as outlined in

section 3. Adding the amplitudes of opposite helicity (but the sameOAM)with appropriate weight bring the

theory and data into agreement. Comparing the black solid plots with black short-dashed plots (for BG) and

purple long-dashedwith purple dashed–dotted (for LG) infigures 4 and 5, one can see that the transition

amplitudesmost affected by this small ellipticity are the amplitudes that have large-strength counterparts with

opposite circular polarization. Namely, for L = -1 (LCP) the amplitudes significantlymodified by the

opposite-sign polarization admixture are forD =m 1, 2, and vice versa for the oppositeΛ.

We also present data for the topological charge º - L =g gm m 2, with the corresponding theory

predictions, infigure 6. In the paraxial limit, gm would be theOAMvalue. The previous figures all had g∣ ∣m 1.
Wefind here that the non-zero transition at the vortex center for spin andOAM anti-aligned is indeed non-zero,

indicating that photonʼsOAM fully reversed the sign of themagnetic quantumnumber compared to the plane-

wave case. However an admixture of the opposite-helicity photon state at 10% (by amplitude) obscures this

Table 1.MeasuredRabi frequencies from [1] in units of
kHz μW−1 taken at zero impact parameter b= 0 and
compared to theoretical predictions with overall
normalization fixed toD = -gm 2 transition and

= -m 1 2i initial state.

= -m 1 2i BB BG LG Data

D = -m 2 2.92 2.92 2.92 2.92 (8)

D = -m 1 27.1 29.7 21.7 31.21 (87)

D =m 0 2.76 3.11 2.76 2.78 (8)

D =m 0 2.76 3.11 2.76 2.78 (7)

D =m 1 19.2 21 15.3 19.22 (62)

D =m 2 1.3 1.31 1.31 1.26 (4)

Table 2. Same as table 1with overall normalization fixed to
D =gm 2 transition and =m 1 2i initial state.

=m 1 2i BB BG LG Data

D = -m 2 1.24 1.24 1.24 1.33 (4)

D = -m 1 18.2 19.9 14.5 23.89 (66)

D =m 0 2.62 2.95 2.62 2.87 (8)

D =m 0 2.62 2.95 2.62 2.61 (8)

D =m 1 25.7 28.2 20.6 34.08 (92)

D =m 2 2.77 2.77 2.77 2.77 (8)
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effect away from the vortex center. It follows from figure 6 that enforcing the purity of beamʼs circular

polarization—so that opposite-helicity contamination is below 1% (by amplitude) - would allow to test selection

rules for the interesting case of topological charge gm = 2.

Finally, let us discuss possible azimuthal dependence of the atomic transitions, where the azimuthal angle fb

is definedwith respect to linear polarization plane of a light beam. Inspecting fb-dependence of the factorized

transition amplitude forOAM light that is due to the fact that both photons and electrons are eigenstates of
angularmomentumprojection on the propagation direction, we see an overall phase factor f+ -g( )e m m mi i f b, as in

equation (A13) in appendix.Hence in themeasurement with afixed value ofmγ the overall phase does not affect

observables. However, forOAM light the light beam can be a coherent superposition of the states with different

values ofmγ, as in linearly polarized beams, for example. Again defining = - Lg gm m , we can derive

transition amplitudes with linearly polarized beams by adding the amplitudes with opposite values ofΛ, while

keeping gm fixed. The result reveals an azimuthal dependence that is small for all amplitudes, exceptD =m 0,

for which azimuthal variation is significant as shown in figure 7. The upper plots infigure 7 show the excitation

amplitudemagnitudes for four different azimuthal angles, as indicated in the caption, and the lower plots give

the azimuthal dependence as contour plots in the x–y plane, with lighter colors indicating a large amplitude and

darker colors indicating a small amplitude.

5. Summary and outlook

Wehave presented extensive data on the photoexcitation of atomic states by twisted photons, alongwith a

theoretical study of the selection rules and impact parameter dependence pertinent to this process. The theory

and the data are in good agreement.

All data are for S42
1 2 to D32

5 2 transitions in once ionized
40Ca. Transitions with the target atomboth on

and off the photon vortex axis weremeasured for all possible D5 2 final states, for both possible polarizations of

the initial state, and for a variety of angularmomenta of the twisted photon states. In all, there are 60 data sets

presented infigures 4, 5 and 8 data sets infigure 6.

When the atom is on the vortex axis, there is a selection rule that the angularmomentumof the photonmust

all be absorbed into thefinal electronic state. This can give highmagnetic quantumnumber final states, and is in

marked contrast towhat is possible with planewave photons. The selection rule wasfirst observed empirically in

[13], and is seen clearly in the present data. Themost relevant cases are highlightedwith red data points in

figures 4, 5.

When the target atom is away from the vortex center, the data is well predicted by theory using either BG or

Laguerre–Gauss descriptions of the twisted photon beam.

The theory for the excitation amplitudes depends on four parameters. Three of them are the overall

normalization, the spatial width of the beam, and the pitch angle. The fourth parametermeasures the small

amplitude of opposite helicity photons, in a beamnominallymade fromphotons of a single helicityΛ. All data

sets are, excepting a few cases where the data is too sparse tomake a judgement, in good agreement with

predictions based on these few parameters.

The experiments and theory on atomic photoexcitation verify and enhance our understanding of twisted

photon states. Theymay also eventually become valuable diagnostic tools. It has already been noted that the on-

axis selection rules are a way to determine a beamʼs vorticity (OAM). Further analysis away from the vortex

Figure 6. Similar to figure 4, but here the photons have =g∣ ∣m 2. (In the paraxial limit, gm would be the orbital angularmomentum.)

The quantumnumbers are = - L =gm 1, 1 (OAMand spin anti-aligned in upper plots) and = - L = -gm 3, 1 (OAMand spin
aligned in lower plots), = -m 1 2i . The curves are BG and LG theory, with the black dashed (BG) and purple dashed–dotted (LG)

curves having no admixture of opposite helicity photons, while the black solid (BG) and purple long-dashed (LG) curves have 10%by
amplitude of opposite helicity photons.
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center show larger differences betweenBG and LGpredictions. Furthermore,Wigner-suppressed smaller

amplitudes appear to showhigh sensitivity to polarization content, which can also be used for beampolarimetry.

Since other parameters can be determined fromfitting, with the demonstrated success of suchfits,

measurements like those shownheremay additionally become a tool to deduce other beam characteristics such

aswidth, pitch angle, and helicity composition.

Usual atomic spectra are dominated by electric dipole transitions. However, as transition rates increase with

the degree of ionization, the high-multipole transitions become important in highly charged ions. The longest

lifetimes are commonly observed inmoderately charged ions [32]. These properties arewidely used for

diagnostics of astrophysical and laboratory plasmas,making highly charged ions good candidates for atomic

clocks. For the case ofOAMphotons, we expect to seemodified transition rateswith the characteristic impact

parameter dependence. The effect is going to be the highest for the atoms located in the central region of the laser

spot, relaxing to the plane-wave-like behavior on the beamperiphery. This is going to be especially evident for

the transitions different in order andmultipolarity, but compatible in rates. This is a common situation in

plasma spectroscopy, e.g. [33].

The storage and recall of photon states are crucial for realizingOAMquantummemory [2, 34]. The

presented results should be instrumental for developing quantum computingwithOAM light, and provide

experimentally verified foundation for atomic spectroscopywith twisted light.

Our experiments and the comparisonwith the theoreticalmodels have proven that a single ion serves as a

high-precision andwell-localized probe of lightfields with complex vortex and polarization structures.We plan

to extend themethod of probing suchfields with a pair of two ions. Here, the inter-ion distance allows for an

accurate ruler of the length scale and the entire crystal is scanned in position through the beamprofile.We plan

to observe the ion crystals’fluorescence, but nowwith aCCDcamera that allows for parallel and independent

readout of both ions. Small differences of excitationwould be detectedwithmuch higher accuracy. Ultimately,

quantum entangled pairs of ions in a specific sensor Bell state of Zeeman sublevels = + -{ }m 1 2, 1 2 in the

S1 2 ground state would be generated. The ion crystal in this statewould be exposed to the vortexfield and a

different AC-Stark shift would be induced for both ions. This results in phase shift difference, and consequently,
a Bell state Y = + - ñ + + - ñ+ (∣ ∣ )2 1 2, 1 2 1 2, 1 2 will undergo a parity oscillation between Y+ and
Y-, which isfinally detected by a quantum state analysis. Recent workwith Bell states have demonstrated the

advantages of quantum entanglement formagnetic field differencemeasurements [35], in quite similar way this

techniquewould lead to orders-of-magnitude improvements for sensing structured lightfields.

Figure 7.Predictions, using BGmodes, for the azimuthal dependence ofD =m 0 transition amplitudes when there is a linearly
polarizedOAMbeam. In the upper rowwe have =gm 0, 1, and 2, as labeled, each plot with four azimuthal angles: fb= 0 (dashed

black), p 2 (solid green), p 3 (red dotted), and p 4 (blue long-dashed). In the lower row are contour plots showing themagnitude of
the amplitude at each location in the x–y plane. Lighter shades (white and yellow) indicate larger amplitudes and darker shades (blue)
indicate smaller amplitudes.
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Appendix.Wigner rotations of the states

Herewe give some detail regarding how twisted photonmatrix elements are related to planewavematrix

elements, where the electronʼs spin is included in the eigenstates of TAM, see [6]where onlyOAMdegrees of

freedomwere considered.

In general, the twisted photonmatrix element can be given in terms of planewave photonmatrix elements

using the Fourier decomposition,
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The lastmatrix element has atomic states quantized along the z-axis, but the photonmomentumnot in the z-

direction.We isolate the planewavematrix element as
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The technique for evaluating thismatrix element is to rotate the states so that the photonʼsmomentum is along

the z-direction, and re-expressing the rotated the atomic states in terms of states quantized along the z-direction,

using knownproperties of rotations.

The photon state is, with the phase convention of [36],
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where the last ket represents a statemoving in the z-direction. TheHamiltonian is rotation invariant, so that
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The rotated atomic states are related to states quantized along the z-axis by theWigner rotationmatrices, leading
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i i

i

f i i

where

= á ¢ ¢ Lñ¢ ¢ L( ) ∣ ∣ ( )
( ) n j m H n j m k0, 0 ; . A6
m m f f f i i i, ,

pw
int

f i

Given that themomentum and state quantization are now all in the z-direction, it follows that ¢ = ¢ + Lm mf i .

One can further develop the result by expanding the states in an LS basis. For atomic applications, only the

electric part of the electromagnetic interactionHamiltonian is needed, and the electric part is spin independent.

For simplicity and for direct use in this paper, wewill consider the case where the initial state is an orbital S-state,

or initial atomicOAM =l 0i .

The total initial angularmomentum is just the initial spin, =j si i, and the total projection is just the spin
projection, =m si iz . The planewavematrix element for arbitrary photon direction becomes,

åq f
s

s

= á ¢ñ
¢

´á ¢ Lñ á ¢ ñ

s
L

¢ ¢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ∣ ∣

∣ ∣ ∣ ∣ ( )

( )

†

j m R j m
j

m

l s

l

n l l s H n s m k s m R s m

,

00 ; . A7

m m k k
m l m

f f f f

f

f

f f

fz

f f fz f i i i i i i i

pw

int

f i

f fz i

From the spin independence of Hint, we obtain =s sf i, with both being =s 1 2e when only one electron is
under consideration, and the spin projections are the same. Thus,

14

New J. Phys. 20 (2018) 023032 AAfanasev et al



åq f q q=

´
¢ L ¢

f

s
L

- -

¢
¢ ¢

=L L

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) ( ) ( )

( ) ( )

( ) ( )

( )

d d

j

m

l s

m

, e

0, 0 , A8

m m k k
m m

m
m m

j
k m m

s
k

f

f

f e

i
l

pw i

,

,0,
pw

f i

f i k

f

f f

f

i i

e

fz

where

= á LñL( ) ∣ ∣ ( )
( ) n l l H n k0, 0 00; A9l f f fz i,0,
pw

int
fz

is calculatedwith only the orbital wave functions.

The result is not yet at its simplest. The sum can be eliminated.Oneway to do this is toworkwith the

definition of theWigner functions andwith the LS expansion to show

q q q=
¢ ¢ ¢¢ ¢ ¢

⎛

⎝
⎜

⎞

⎠
⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ( ) ( )d

j

m

l s

l s

j

m

l s

l s
d d , A10

m m

j
k

f

f

f f

z z

f

f

f f

z z
l l

l
k s s

s
k

f f

f

z z

f

z z

e

and by substitution, summing onClebsch–Gordan coefficients, andmultiplyingWigner functions, obtain the

identity

å q q

q

¢ L ¢

= -

¢ ¢
¢ ¢

- L

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )

( ) ( )

d d
j

m

l s

m

j

m

l s

m m m
d . A11

m m
m m

j
k m m

s
k

f

f

f e

i

f

f

f f

f i i
m m
l

k

,

,

f i

f f

f

i i

e

f i

f

Hence,

q f

q

= -

´

f
L

- -

- L L L

⎛

⎝
⎜

⎞

⎠
⎟( )

( ) ( ) ( )

( ) ( )

( )

j

m

l s

m m m

d

, e

0, 0 . A12

m m k k
m m f

f

f f

f i i

m m
l

k

pw i

, ,0,
pw

f i

f i k

f i

f

The same form can alternatively be obtained beginningwith the planewavematrix element for arbitrary

photon direction, and doing the LS expansions and taking the spinmatrix elements before doing any rotations.

Finally, tofinish the calculation of L
g ( )

( )
bm m

m

f i
as given in equation (A1), substitute the planewavematrix

element, either equation (A5) or (A8) or (A12), into equation (A1), and do the fk integral. This gives a Bessel

function. Using the last, no sum, result as an example,

q

=

´ -

f
L

- + -
- - ^

- L =L L

g g
g

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )

( ) ( ) ( )

( ) ( )

( )

b A J k b

d
j

m

l s

m m m

i e

0, 0 . A13

m m
m m m m m m

m m m

m m
l

k
f

f

f f

f i i
l

i

, ,0,
pw

f i

i f i f b
f i

f i

f

fz

This is the formweuse in the body of the paper for the Bessel and BGmode evaluations. Notice that only one

( )( ) 0, 0pw is needed for all the transition possibilities studied here. This can be interpreted as requiring only

one overall normalization constant tofit all the data discussed in the text of this article. The application of above

formalism to S42
1 2 to D32

5 2 transitions is discussed in section 4.
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