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Abstract (335/350 word count) 18 

1. Extreme precipitation events are expected to become more intense and frequent with climate 19 

change. This climatic shift may impact the structure and dynamics of natural communities and 20 

the key ecosystem services they provide. Changes in species abundance under these extreme 21 

conditions are thought to be driven by functional traits, morpho-physiological characteristics 22 

of an organism that impact its fitness. Future environmental conditions may, therefore, favour 23 

different functional traits to those in present-day communities. 24 

2. Here, we measure functional traits on 586 vascular plants in a temperate grassland where 25 

precipitation has been experimentally manipulated for six years. We calculated community-26 

weighted means of five functional traits (plant height, leaf dry matter content, leaf thickness, 27 

specific leaf area, and leaf phosphorus concentration) and compared community-weighted 28 

means between three levels of precipitation: drought (-50%), irrigated (+50%), and control. 29 

Additionally, we contrasted treatments at two different timings along the growing season: mid-30 

season and late-season.  31 

3. We expected altered community-weighted means for traits associated with a conservative use 32 

of water that will result from increased summer stress-induced intraspecific variability in the 33 

mid-season and from community composition changes in the late-season, after the field is cut, 34 

a common management action across most European grasslands.  35 

4. In the drought treatment, we found significantly lower community-weighted mean plant height 36 

and leaf dry matter content. However, we only observed these differences after the mid-season 37 

cut. We also observed an increase in leaf phosphorus concentration in the drought treatment 38 

before the mid-season cut. A combination of changes in community composition and 39 

intraspecific variation contributed to these differences, with community composition being 40 

more important after the cut. Species with higher height, leaf dry matter content, and lower 41 

leaf thickness showed a more pronounced abundance decline at the drought plots. We observed 42 

no changes in functional traits community-weighted means in the irrigated treatment compared 43 

to those in control and drought treatments.  44 

5. Synthesis. Our results suggest how the functional trait composition of grassland communities 45 

may shift under climate change-induced drought, stressing the interacting effects with growing 46 

season stages. 47 

  48 
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Introduction 49 

Climate change is predicted to radically alter the structure and function of biological communities 50 

worldwide (Diaz and Cabido, 1997; IPCC, 2022). Along with increasing global temperatures, 51 

climate change will increase the intensity and frequency of extreme precipitation events (Fischer 52 

et al., 2013). Changes in the precipitation regime are likely to favour certain plants over others 53 

(MacGillivray et al., 1995; White et al., 2000; Mueller et al., 2005; Lavorel et al., 2011). Species 54 

favoured under these novel environments may have different functional traits - individual’s 55 

features that affect fitness through their influence on survival, growth, and reproduction (Díaz et 56 

al., 2016; Laughlin et al., 2020; Violle et al., 2007) - to those found under previous regimes 57 

(Lavorel et al., 2011; White et al., 2000). Changes in functional traits of individuals are expected 58 

to scale through the community level to impact ecosystem functioning (Suding et al., 2008; 59 

Woodward & Diament, 1991). Besides, because the effect of a functional trait on fitness depends 60 

on the environment, climate change is expected to alter ecosystem functioning through shifts in      61 

mean community trait values (i.e. community-weighted means) in functional traits in natural 62 

communities (Lavorel et al., 2011; McGill et al., 2006). 63 

 Functional trait-based approaches provide a promising tool for predicting community responses 64 

to climate change (Lavorel & Garnier, 2002; Quétier et al., 2007; Brodribb, 2017). However, the 65 

ability to predict changes in ecosystem functioning from environmental changes via changes in 66 

traits is considered one of the main challenges in ecology (Funk et al., 2017; Lavorel & Garnier, 67 

2002; Suding & Goldstein, 2008). Functional traits have so far fallen short of fulfilling these 68 

ambitions (Shipley et al., 2016; Green et al., 2022). Identifying response traits, those that respond 69 

strongly to environmental gradients, is critical to predict changes in ecosystem structure and 70 

functioning in the context of climate change (Andrew et al., 2022; Lavorel & Garnier 2002; 71 

Lavorel et al., 2011; McGill et al., 2006).  72 

Much remains unknown regarding how changes in precipitation under climate change will affect 73 

the functional traits of plant communities. Observational studies using natural precipitation 74 

gradients have shown significant correlations of functional traits along the environmental gradient 75 

(e.g., specific leaf area; Dwyer et al., 2014; Harrison et al., 2015; Wright et al., 2005). These 76 

studies, however, often struggle to attribute changes to specific environmental drivers, highlighting 77 

the need for experimental approaches (Hoover et al., 2014). However, most experimental studies 78 
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to date have focused on the effect of precipitation on ecosystem functioning rather than explicitly 79 

investigating the role of functional traits in mediating community changes (Grime et al., 2000; 80 

Hoover et al., 2014; Jamieson et al., 1998; Kröel-Dulay et al., 2022). Furthermore, whether 81 

differences in community-level functional traits are driven by changes in community composition, 82 

intraspecific variation, or both, remains unknown. Failure to account for intraspecific variation is 83 

one reason why functional trait ecology has fallen short of fulfilling its predictive potential 84 

(Shipley et al., 2016; Yang et al., 2020). Indeed, functional traits vary significantly within species 85 

(Violle et al., 2012; Siefert et al., 2015; Moran et al., 2016), potentially shifting mean community 86 

trait values even if species composition remains unchanged (Pichon et al., 2022; Bricca et al., 87 

2022). The contribution of community composition and intraspecific variation to functional traits 88 

of plant communities may also change during the growing season. For instance, early-successional 89 

communities are more sensitive to environmental changes (Grime et al., 2000; Odum, 1969). 90 

However, the interacting effects of climate gradients and vegetation developmental stage during 91 

the growing season are very complex and evidence is still scarce (Vitra et al., 2019). 92 

To study the effect of precipitation on grassland community-level functional traits, we 93 

experimentally manipulated precipitation at RainDrop, a natural grassland near Oxford, UK. We 94 

characterised the functional trait composition in plots receiving a drought (-50% precipitation) or 95 

irrigated treatment (+50% precipitation), vs. control plots, which recorded the background 96 

precipitation. We calculated community-weighted means by measuring five functional traits that 97 

relate to the leaf      economics spectrum and plant height, the two main axes of variation in the 98 

global spectrum of plant form and function (Díaz et al., 2016) on the most abundant species in 99 

each treatment. To measure changes in functional trait composition through the growing season, 100 

we repeated the measurements in the mid vs. late growing season, after a cut of the field site, a 101 

common practice across most European grasslands. We used these data to test the following 102 

hypotheses: (H1) community-weighted mean trait values will differ between precipitation 103 

treatments due an increased presence of traits associated with a more conservative use of water 104 

(Pérez-Harguindeguy et al., 2013). Specifically, we expect mean height and specific leaf area to 105 

be lower in the drought treatment with increases in leaf dry matter content and leaf thickness, and 106 

converse effects in the irrigation treatment. Leaf phosphorus concentration will decrease in the 107 

drought treatments because this trait typically correlates with specific leaf area along the leaf 108 

economics spectrum (Wright et al., 2004); (H2) community composition will differ between 109 
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precipitation treatments because species with traits advantageous in drought (e.g. higher leaf 110 

thickness; Pérez-Harguindeguy et al., 2013) will increase in relative abundance in the drought 111 

treatment, with converse effects in the irrigation treatment; (H3) there will be a substantial stress-112 

induced intraspecific variability due to species ability to adjust their physiological strategy to novel 113 

environments (Helsen et al., 2017) and contribute to community mean trait values (Hoover et al., 114 

2014; Pichon et al., 2022), with species showing lower height and specific leaf area and higher 115 

leaf dry matter content and leaf thickness in the drought treatment, for the same reasons in H1; and 116 

(H4) community-weighted means treatment differences in the mid-growing season will be mainly 117 

influenced by increased intraspecific variability due to the annual maximum temperatures in this 118 

period (July) contributing to stress-induced variability (Helsen et al., 2017), whereas in the late-119 

growing season community composition change may be determinant for community-weighted 120 

means due to community regrowth after the seasonal cut of the field site, as early-successional 121 

communities are more sensitive to environmental changes (Grime et al., 2000). 122 

 123 

Material and Methods 124 

Study site 125 

The experiment was located at the Upper Seeds field site (51°46'16.8"N 117 1°19'59.1"W) in 126 

Wytham woods, Oxfordshire, UK. This is a calcareous grassland ecosystem and is managed with 127 

cuts twice per year. The first mowing takes place mid-growing season (at the end of July), and the 128 

second mowing takes place at the end of the growing season (at the end of September). To measure 129 

changes in traits through time (H4), we collected data in two different parts of the growing season; 130 

we performed initial fieldwork mid-growing season (July 2021) and again in the late-season 131 

(September 2021), just before each seasonal cut. The site has a low average soil depth (300-500 132 

mm), generally alkaline soils (Gibson & Brown, 1991), a daily average temperature range of -5 °C 133 

to 26 °C (2016-2020), a daily total precipitation range of 0-40 mm (2016-2020). We 134 

experimentally manipulated precipitation levels using the RainDrop long-term ecological 135 

experiment which forms part of the DroughtNet global coordinated research network 136 

(https://drought-net.colostate.edu/). The experiment has been running since 2016 and consists of 137 

25 5m2 plots distributed across the grassland. Each plot receives one of three precipitation 138 

treatments: drought (-50% rain), irrigated (+50% rain), and control (no manipulation). Rain 139 
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shelters intercepting 50% of rain simulate drought. This rainwater is intercepted by gutters and 140 

collected in deposits situated next to each shelter. Pipes connect these deposits to sprinklers that 141 

spray the water onto an adjacent plot. This forms the irrigated treatment. This design ensures that 142 

the precipitation that each experimental treatment receives is proportional to the average natural 143 

precipitation across the site. A further set of plots undergo no precipitation manipulation and serve 144 

as ambient control plots. Additionally, to control for shelter effects, each block has one procedural 145 

control plot. These consisted of rain shelters with inverted gutters, allowing 100% of precipitation 146 

to pass through. However, previous work at this field site revealed no differences in community 147 

composition between the procedural and ambient controls (John Jackson, Personal 148 

communication). Therefore, we did not measure traits from the procedural control plots, focussing 149 

sampling effort on the precipitation treatments and ambient control plots. Each treatment is 150 

replicated across five blocks, with each block consisting of one drought plot, one irrigated plot,  151 

two ambient controls, and one procedural control. The experimental manipulations (drought and 152 

irrigation) are applied only during the main growing season (May – September). Within each 153 

block, treatments are randomly assigned with the only restriction being that the drought and 154 

irrigated plots must be next to each other for logistical reasons. To minimise edge effects, we split 155 

the 5m2 plot into four quarters and marked out a 1m2 quadrat in the centre of the study quarter 156 

from which we made all trait and abundance measurements. 157 

 158 

Abundance counts 159 

To obtain abundance data to further calculate community weighted means (H1) and evaluate 160 

community composition dissimilarity between precipitation treatments (H2), we quantified 161 

species-level percentage cover for all vascular plant species using a 1m2 gridded quadrat (10 cm 162 

grid) in each plot. We estimated the percentage cover independently for every species in each 163 

quadrat, then transformed raw abundance data into relative abundances that sum to 100%. Because 164 

the mid-season cut removed the inflorescence from all grasses, species ID was not possible for 165 

many graminoid species during the late-season period, which may impact the observed community 166 

effects. Two graminoid species (Brachypodium pinnatum and Brachypodium sylvaticum) were 167 

identifiable to species-level because of their distinctive leaves. For these two species, we recorded 168 

percentage cover as normal. Separately, we recorded the pooled abundance of all other graminoid 169 
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species. Although we identified graminoid species in the mid-season, in order to ensure a like-for-170 

like comparison between mid-season and late-season abundance data, we combined the mid-171 

season abundance of non-Brachypodium graminoids prior to analysis to matched the way in which 172 

we recorded the abundance of non-Brachypodium graminoids in the late-season.  173 

 174 

Trait measurement 175 

To test how functional traits of grassland communities (H1) and species (H3) respond to changes 176 

in precipitation, we measured height, specific leaf area, leaf thickness, and leaf dry matter content 177 

on the most abundant species in each quadrat. For the selected species to be representative of the 178 

community, we aimed to sample species with a cumulative abundance of at least 80% within each 179 

quadrat, following Garnier et al. (2004) and Pakeman & Quested (2007). Having selected the 180 

species to be sampled in each quadrat, we randomly selected three individuals per species for trait 181 

measurement. We measured traits using standardised protocol (Pérez-Harguindeguy et al., 2013), 182 

summarised briefly in Table 1. We selected mature, healthy individuals where possible. For 183 

measuring leaf traits, we sampled one young but fully developed leaf per individual and measured 184 

all leaf traits on the same leaf.  185 

To test how leaf nutrient content responds to the precipitation treatments, we measured leaf 186 

phosphorus concentration using inductively coupled plasma mass spectrometry (ICP-MS). 187 

Because this technique requires 50 mg of material, we could only perform this analysis on a subset 188 

of all leaf samples. We pooled together the three replicate leaf samples per species per plot and 189 

performed the analysis on all samples where the pooled mass was at least 50 mg. After pooling, 190 

we obtained 69 samples eligible for analysis. We measured out 50 mg of each of these samples 191 

before digesting with 1 mL of concentrated nitric acid and 0.7 mL of hydrogen peroxide at 50ºC 192 

overnight. We diluted the resulting solution 25 times with MiliQ water before performing the ICP-193 

MS (Esslemont et al., 2000). 194 

[Table 1] 195 

 196 
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Community-weighted means 197 

To compare community-level trait values between the different treatments (H1), we calculated the 198 

community-weighted mean of each trait in each quadrat. Community-weighted means are widely 199 

used to quantify shifts in community mean trait values due to environmental selection (Garnier et 200 

al., 2004). We calculated community-weighted means by multiplying the mean trait value per 201 

species in each treatment (from all collected individuals) by each species’ relative abundance in 202 

the quadrat and summing the products across all species. We rescaled the relative abundances after 203 

removing species for which no trait data was collected, following de Bello et al. (2021). We 204 

assigned trait values to each species by taking the mean across all replicates of each treatment in 205 

order to reach our target of sampling species with a cumulative abundance of 80% in almost all 206 

quadrats (Table S1). 207 

Because of the mid-season cut, it was not appropriate to use a mid-season height value in the 208 

calculation of a late-season community-weighted mean, and vice versa. We therefore used 209 

different values for height for each part of the growing season. Because the other traits did not 210 

vary across the growing season (Table S3), we used the same trait values for both growing season 211 

stages. We used the height of Brachypodium pinnatum as the height of late-season graminoids as 212 

B. pinnatum was the only graminoid for which we measured late-season traits. For all other traits, 213 

we used the mean mid-season values across all graminoid species as the trait values of the late-214 

season graminoids. 215 

 216 

Statistical analysis  217 

We analysed data in R (R Core Team, 2021), fitting mixed-effects models using the package lme4 218 

(Bates et al., 2015), analysing community composition using the package vegan (Oksanen et al., 219 

2020) and performing principal component analysis using the package PCAtools (Blighe & Lun, 220 

2022). When interpreting the output of mixed-effects models, we opted to focus on differences 221 

based on the 95% confidence intervals rather than relying on p-values. We did this because we felt 222 

that confidence intervals provide better information about the precision of our results (Flechner & 223 

Tseng, 2011). Additionally, use of p-values has generally been discouraged with mixed-effect 224 

models (Bates et al., 2015). We considered responses to be significant if there was no overlap in 225 
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the 95% confidence intervals of the treatment (drought or irrigated) and controls, highlighting 226 

cases of borderline significance.  227 

 228 

Does experimentally manipulated precipitation alter community-weighted functional traits? 229 

We fitted a series of models to compare community-weighted means between the precipitation 230 

treatments (H1) at the different points of the growing season (H4). To account for the blocked 231 

experimental design, we fitted hierarchical linear mixed-effect models to our data using maximum 232 

likelihood. We treated precipitation treatment and period of the growing season (mid- vs late-233 

season) as fixed effects and used a hierarchical random effect structure of treatment within block. 234 

To comply with the assumptions of linear modelling, we log-transformed height, with all other 235 

trait data remaining untransformed. We fit four models that explored different combinations of 236 

fixed effects and their interactions. This involved fitting models that included only one fixed effect 237 

(treatment and growing-season period separately), both fixed effects, and both fixed effects with 238 

their interaction (Table S2). We compared these models to a base model which only fitted an 239 

intercept by comparing their Bayesian Information Criterion (BIC).  240 

 241 

Do changes in community composition contribute towards community-weighted functional traits 242 

changes? 243 

To assess changes in community composition between the treatments (H2) at the different growing 244 

season stages (H4), we performed non-metric multidimensional scaling (NMDS). NMDS is a form 245 

of dimension reduction that allows for differences in communities to be visualised. It is based on 246 

the rank-order of species abundances and aims to maximise the correlation between real-world 247 

distance and distance in the ordination space. We assessed the significance of any differences in 248 

community composition using analysis of similarity (ANOSIM). We used similarity percentage 249 

(SIMPER) analysis to determine which species were responsible for any dissimilarities between 250 

the treatments.  251 

 252 
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Does intraspecific variation contribute towards community-weighted functional traits changes? 253 

To measure intraspecific differences within individual species (H3) in the two parts of the growing 254 

season (H4), we fit a further set of linear mixed-effects models for each species separately. Here, 255 

we fit models with only precipitation treatment as a fixed effect. As with our models for 256 

community-weighted means, we used a hierarchical random effect structure of treatment within 257 

block in all models. For every species that we analysed, we fit a separate model for each trait. 258 

Because of the mid-season cut, we analysed height separately for the mid-season and late-season 259 

stages. 260 

 261 

Results 262 

Overall, we collected functional trait data on 586 individual plants across both growing season 263 

stages. These samples belonged to 22 different species in the grassland community. For most of 264 

the traits, we successfully sampled species with a cumulative abundance of 80% in 70% of quadra     265 

ts (Table S1). The exception was leaf phosphorus concentration, where we achieved the 80% 266 

threshold in only 25% of quadrats across both growing season stages (Table S1). 267 

 268 

 269 

Community-weighted means 270 

Precipitation treatment affected community-weighted mean trait values, but the effects were 271 

observed more strongly in the estimated values at the late-season (post-cut) than in the mid-season 272 

(pre-cut) (Figure 1). In the mid-season, community-weighted mean height, leaf dry matter content, 273 

leaf thickness, and leaf phosphorus concentration were higher in the drought plots compared to 274 

control, with only specific leaf area decreasing (Figure 1). However, only the change in leaf 275 

phosphorus concentration had non-overlapping 95% confidence intervals. In the irrigated 276 

treatment, estimates for height, leaf dry matter content, specific leaf area, and leaf phosphorus 277 

concentration were higher than in the control plots, whilst leaf thickness was lower. None of these 278 

changes had non-overlapping 95% confidence intervals. 279 

In the late-season, community-weighted mean leaf thickness, specific leaf area, and leaf 280 

phosphorus concentration were higher in the drought plots compared to control, whilst height and 281 
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leaf dry matter content decreased (Figure 1). Only the changes in height and leaf dry matter 282 

content were outside the 95% confidence intervals, with leaf thickness having very slightly 283 

overlapping intervals (control: 0.139 mm, CI 0.126 - 0.152; drought: 0.175 mm, CI 0.151 - 0.198). 284 

In the irrigated plots, leaf dry matter content and leaf thickness were higher than control plots, with 285 

height and specific leaf area decreasing and no change in leaf phosphorus concentration. None of 286 

these changes had non-overlapping 95% confidence intervals. 287 

Only community weighted means for plant height showed non-overlapping 95% confidence 288 

intervals between growing season stages (Figure 1A). As expected following the cut and in the 289 

later part of the growing season, all precipitation treatments showed reduced plant height values 290 

(ca. 15cm) at the late-season (after seasonal cut) in comparison to pre-cut height values (ca. 50cm). 291 

[Figure 1] 292 

 293 

Changes in community composition 294 

One of the components of community-weighted means, community composition was different at 295 

plots with reduced precipitation in contrast with control and irrigated plots at the late-season. When 296 

plots from both growing season stages are looked at simultaneously (n = 45), there is little 297 

difference in the community composition between the treatments. This is shown by the 298 

overlapping groups in the NMDS plot (Figure 2a). The analysis of similarities (ANOSIM) 299 

revealed that both field work periods and treatments configure different groups. This led us to 300 

analyse the communities from each field work period (mid- vs late-season) separately. Community 301 

composition in the drought treatment cluster separately in the late-season, (n = 20, p = 0.002), but 302 

not in the mid-season (n = 25, p > 0.05) (Figure 2b, c).  303 

Focusing on the differences between the control and irrigated treatments with drought treatments 304 

in the late-season, similarity percentage (SIMPER) analysis revealed that three species were 305 

responsible for 70% of this difference (Table 2). For the comparison between control and drought 306 

treatments, these species were Brachypodium pinnatum (tor grass), non-Brachypodium 307 

graminoids, and the legume Lotus corniculatus (bird’s-foot trefoil, Table 2). For the comparison 308 

between irrigation and drought treatments the only difference was Trifolium repens (white clover), 309 

which had a higher contribution to treatment dissimilarity than L. corniculatus. In both 310 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2023. ; https://doi.org/10.1101/2023.01.12.523738doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523738
http://creativecommons.org/licenses/by-nd/4.0/


12 

 

comparisons, the graminoids (including B. pinnatum) and T. repens had a lower relative abundance 311 

in drought plots compared to controls whilst L. corniculatus had a higher relative abundance 312 

(Table 2). However, only the difference in graminoids abundance (including B. pinnatum) had 313 

non-overlapping 95% confidence intervals between control and drought treatments.  314 

[Figure 2] 315 

[Table 2] 316 

 317 

Intraspecific variation 318 

Because we sampled species depending on whether or not they were abundant in a given plot, the 319 

number of samples collected per species was not consistent. We therefore restricted analysis of 320 

intraspecific variation to the seven species with at least 30 total samples that were measured in 321 

each of the three precipitation treatments, considering the recommended replicates number to 322 

account for natural trait variation (Pérez-Harguindeguy et al., 2013). These species consisted of 323 

three graminoids (Brachypodium pinnatum, Trisetum flavescens, and Arrhenatherum elatius), 324 

three legumes (Medicago lupulina, Trifolium repens, and Trifolium pratense), and one forb (Crepis 325 

capillaris, Figure 3). 326 

Of the five functional traits we measured, only height showed significant intraspecific variation 327 

between the precipitation treatments (Figure 3). We observed this variation only in the late-season, 328 

with two species (M. lupulina and T. repens) having a lower height in the drought treatment (M. 329 

lupulina control: 3.83 log(mm), CI 3.66 - 3.99; drought: 2.75 log(mm), CI 2.29 - 3.22; T. repens 330 

control: 4.3 log(mm), CI 4.08 - 4.51; drought: 3.74 log(mm), CI 3.41 - 4.08). T. repens also had a 331 

higher height in the late-season irrigated treatment (irrigated: 4.85 log(mm), CI 4.57 - 5.13). We 332 

saw a marginally significant increase in height for C. capillaris in the mid-season drought plots 333 

(control: 5.9, CI 5.77 - 6.03; drought: 6.14, CI 6.01 - 6.27). Other than plant height, the only other 334 

trait which varied was specific leaf area, which was marginally higher in the drought plots for B. 335 

pinnatum (control: 18.9 mm2mg-1, CI 17.9 - 19.7; drought: 21.8 mm2mg1, CI 19.6 - 23.8). Model 336 

output with complete means and confidence intervals for each of these seven species is 337 

summarised in Table S3. 338 
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When considering the four traits with most representation among species (SLA, Height, LDMC 339 

and Thickness) through principal component analysis (PCA), almost 75% of variance was explain 340 

by the two first components (Figure 4). The main axis of variation (PC1) was mainly positively 341 

driven by LDMC and Height and negatively by SLA, whereas Thickness was the main driver of 342 

PC2. In this bidimensional space, species with higher relative abundance differences between 343 

control and drought plots were distributed with increasing values from lower PC1 and PC2 values 344 

to higher PC1 and PC2 values. Those species that have decreased relative abundance at the drought 345 

in contrast to the control plots at the late growing season (drought sensitive species) have higher 346 

height, LDMC and may have smaller leaf thickness and SLA. For instance, this may be the case 347 

for B. pinnatum, that has a mean height of 610±34.5 mm, a LDMC of 433±8.30 mgg-1, a leaf 348 

thickness 0.11±0.002 mm and SLA of 19.2±0.32 mm2mg-1. On the opposite side of the plot, we 349 

can see more drought tolerant species, those that have increased relative abundance at the drought 350 

plots at the late growing season, such as L. corniculatus, which generally has high leaf thickness. 351 

This species most differentiated trait is its leaf thickness, around 0.25±0.006 mm, and a mean 352 

height of 140±17.1mm, LDMC of 245±9.43 mgg-1 and SLA of 21.5±1.00 mm2mg-1. 353 

[Figure 3] 354 

[Figure 4] 355 

 356 

Discussion  357 

In this study, we investigated how community-level functional traits respond to experimentally 358 

manipulated levels of precipitation. We found some evidence for shifting community-weighted 359 

mean functional trait values, but two traits (leaf phosphorus concentration and leaf dry matter 360 

content) varied in the opposite direction than we had hypothesised (H1). A combination of species 361 

turnover (H2) and intraspecific variation (H3) contributed to these changes. As hypothesised (H4), 362 

the relative importance of each source of variation depends on the trait in question and the different 363 

stages of the growing season (mid- vs. late-season).  364 

 365 
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Community-level functional traits shift under drought 366 

A 50% precipitation reduction in the temperate grassland studied communities induced shifts on 367 

three of the five studied functional traits community-weighted means. These shifts were observed 368 

according to the proposed hypothesis for plant height, but to the contrary of predictions for leaf 369 

dry matter content and phosphorous leaf content (H1). As expected, plant height community-370 

weighted mean was significantly lower under the drought treatment, although only in the late-371 

season. The described drought effects agree with results from observational (Fonseca et al., 2000; 372 

Moles et al., 2009) and experimental (Zuo et al., 2021) studies investigating how mean height 373 

varies along precipitation gradients in grasslands. However, no height increase was observed under 374 

the irrigated treatment. Previous work on the same field site reported high levels of 375 

evapotranspiration which may limit the effectiveness of the irrigation treatment (Jamieson et al., 376 

1998). Plant communities at our field site may not have been water limited, meaning that individual 377 

plants would not respond to an increase in precipitation. 378 

Contrary to our hypotheses, we observed a lower leaf dry matter content in the late-season and a 379 

higher leaf phosphorus concentration in the mid-season. Both of these hypothesised changes were 380 

originally linked to our expectation that specific leaf area would decrease in the drought treatment, 381 

as reported in observational studies (Dwyer et al., 2014; Harrison et al., 2015; Wright et al., 2005). 382 

A lower specific leaf area could have increased leaf dry matter content because of the geometric 383 

relationship between the two traits through the following equation: LDMC=1/(SLA×Leaf 384 

thickness) (Vile et al., 2005). In our results, the marginal evidence for an increased leaf thickness 385 

was countered by a lower leaf dry matter content. These joint changes cancel each other out, with 386 

the net effect being no change in specific leaf area. Likewise, specific leaf area has been shown to 387 

correlate with leaf nutrient content in the leaf economics spectrum (Wright et al., 2004). Because 388 

we did not observe the expected specific leaf area response, other processes may have led to the 389 

measured changes in leaf dry matter content and phosphorus concentration. LDMC is a measure 390 

of investment of the plant species in defence and structural components and therefore is strongly 391 

related to plant productivity (Pérez-Harguindeguy et al., 2013). A possible explanation of the 392 

observed LDMC reduction under the drought treatment could be a consequence of a delayed leaf 393 

development in the drought treatment. Indeed, LDMC is strongly related to seasonal and 394 

developmental effects, with younger leaves having lower LDMC values (Palacio et al., 2008). 395 
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In contrast to our hypotheses, we found increases in leaf phosphorus concentration under drought 396 

conditions in the mid-season. Our result matches the finding of Wright et al. (2001), who reported 397 

higher leaf phosphorus concentrations in species growing in dry sites compared to wet sites in an 398 

observational study. They explained this result in terms of a greater investment in photosynthetic 399 

enzymes, leading to a higher nitrogen concentration (a trait that scaled with phosphorus 400 

concentration). This would allow plants to achieve a high photosynthetic rate whilst maintaining 401 

low stomatal conductance, limiting water loss. Another reason we might expect to find an 402 

increased leaf phosphorus concentration in the drought treatment is that the soil nutrient content 403 

may be higher. Jamieson et al. (1998) used a similar experimental design on the same field site as 404 

the present study and measured higher levels of nitrogen mineralisation under drought conditions. 405 

They suggested that this was linked to higher inputs of leaf litter resulting from higher rates of 406 

senescence. Although we did not measure soil nutrient content, we did observe high levels of dead 407 

plant matter in the drought plots. Additionally, Sternberg et al., (1999) used the same field 408 

experiment as Jamieson et al. (1998) and showed that leaf litter was higher in the drought plots. If 409 

this effect results in higher soil phosphorus content, and P assimilation is not limited by other 410 

factors, we would expect plants growing in these plots to have a higher leaf phosphorus 411 

concentration (Wright et al., 2001). Our result of an increased leaf phosphorus concentration in the 412 

mid-season should, however, be treated with caution. Because we could only measure phosphorus 413 

concentration on the leaves with the highest mass, we could not collect data for many of the 414 

species. This trait did not meet our sampling objective of species with a cumulative abundance of 415 

80% in any of the 20 mid-season quadrats (Table S1). Therefore, our values may not be 416 

representative of the communities found in each quadrat (Garnier et al., 2004; Pakeman & Quested, 417 

2007). 418 

The difference in community-level traits between the mid- and late-season stages may be linked 419 

to the mid-season cut of the field site. Previous studies have found that early-successional 420 

communities are more sensitive to environmental changes (Grime et al., 2000; Odum, 1969). This 421 

effect could explain our finding of more changes in community-weighted mean trait values after 422 

the cut than before the cut. Furthermore, stronger effects of drought on community-weighted 423 

functional traits were observed after the growing peak (late- season) in two permanent grassland 424 

experimental sites at the Swiss Jura Mountains, which coincide with the longer and warmer 425 

summer days (Vitra et al., 2019). In our study, increased temperature and lower humidity may 426 
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contribute to enhanced drought effects at the late-season. As highlighted by Vitra et al., (2019), 427 

the interacting effects of the timing of drought and the development stage of the vegetation during 428 

the growing season are very complex and evidence is still scarce. 429 

 430 

Drought induced community reassembly contributes to community-weighted functional traits 431 

shifts at the late-season 432 

As hypothesised (H4), we found differences in community composition between the precipitation 433 

treatments in the late-season, that contribute to community-weighted functional traits shifts in the 434 

grassland community. The absence of this effect in the mid-season may be related to the increased 435 

environmental sensitivity of early-successional communities (Grime et al., 2000; Odum, 1969). 436 

Short-term (1-3 years) manipulative precipitation experiments report absent or small effects on 437 

community reassembly (Batbaatar et al., 2021; Vitra et al., 2019). In the short term (1-2 years), 438 

Vitra et al. (2019) reported that the observed changes in community-weighted functional traits in 439 

response to drought were mainly related to changes in plant traits rather than changes in species 440 

abundance (Vitra et al., 2019), instead of species turnover and community composition change, 441 

which would occur over longer drought perturbations (Smith et al. 2009). After six years of 442 

manipulated precipitation, we have observed community composition changes with an important 443 

decrease of graminoid abundance under drought. The lower abundance of grasses in drought plots 444 

agrees with other experimental studies in calcareous grasslands (Morecroft et al., 2004; Sternberg 445 

et al., 1999). Interestingly, similar effects were observed under a comparative between 446 

manipulated and observational precipitation gradients with both species turnover and intraspecific 447 

variations contributed to community-weighted functional traits responses of grass community 448 

traits to precipitation changes (Zuo et al., 2021). 449 

 450 

Intra and interspecific functional traits variability for drought resistance  451 

Contrary to our      hypotheses (H3, H4) and studies that have stressed the importance of 452 

intraspecific trait variation (Pichon et al., 2022; Shipley et al., 2016; Violle et al., 2012), we found 453 

limited evidence of intraspecific variation in our data. Our results found that only one of the five 454 

traits we studied (plant height) varied significantly between the precipitation treatments and in 455 

more than one species. It is possible that we did not have sufficient sample sizes to detect 456 
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intraspecific variation in this study. Our sampling was primarily aimed at sampling a range of 457 

different species to calculate community-level trait values. This meant that our sampling was 458 

spread out across many species, limiting our ability to detect intraspecific changes. Non-significant 459 

intraspecific differences in trait values may still contribute to significant differences seen at the 460 

community level. This is likely the source of the mid-season increases in community-level leaf 461 

phosphorus concentration. For abundant species such as the graminoid B. pinnatum (tor grass) and 462 

the legume T. repens (white clover), there was a non-significant increase in leaf phosphorus 463 

concentration in the drought treatment. Despite this increase being non-significant when analysed 464 

at the species level, these differences may combine to form a significant difference at the 465 

community level. Therefore, intraspecific variation may be more important in determining 466 

community-level trait values than our results suggest. 467 

Rather than intraspecific variation, interspecific differences (i.e. differences between species) were 468 

determinant for community-weighted functional traits shifts, as certain trait syndromes contribute 469 

to species drought resistance. From the perspective of functional traits, the lower abundance of 470 

grasses in drought plots is to be expected as grasses are taller plants with thinner leaves. Here, the 471 

graminoid B. pinnatum (tor grass) was the tallest species in the late-season and had the second 472 

thinnest leaves of all species. Those traits, together with a high LDMC may be disadvantageous in 473 

drought, explaining the grasses absence at the drought treatment. Although we did not measure 474 

root traits, the low root depth in many grass species may also contribute to their lower abundance 475 

in drought plots (Morecroft et al., 2004; Sternberg et al., 1999). The legume Lotus corniculatus 476 

(bird’s-foot trefoil) was notably more abundant than the grasses in the late-season drought plots. 477 

The traits of L. corniculatus are generally on the opposite end of the spectrum to grasses. In other 478 

words, L. corniculatus tends to be a short plant, with the second thickest leaves of all species 479 

measured. The relative success of L. corniculatus in the drought plots suggests that it has traits that 480 

are more suited to growing at low precipitation levels. 481 

 482 

Conclusions 483 

Our results provide insights into how grassland communities will respond to climate change. 484 

Overall, we found evidence that short, thick-leaved plants may be favoured under extreme drought 485 

conditions, whilst grasses may become less abundant. We observed some intraspecific trait 486 
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plasticity in response to drought, but the most dramatic effects were the changes in community 487 

composition. Although we did not observe changes in community structure in the mid-season, 488 

such changes are generally expected to take place over longer timescales than changes in plant 489 

morphology (Suding et al., 2008). In this context, it is perhaps not surprising that we have not yet 490 

seen changes in year-round community structure given that the experiment is still in its sixth year. 491 

The temporal variation of our community-weighted mean trait values suggests that any effect of 492 

traits on ecosystem functioning would not be consistent across time. Any trait-based attempt to 493 

predict ecosystem functioning must account for such temporal variation in community-level trait 494 

values. This may prove to be an important step towards the “Holy Grail” of predicting ecosystem 495 

functioning from changes in traits. 496 

The trait changes that we observed may have key implications for ecosystem functioning. For 497 

example, increasing leaf thickness has been linked to a lower litter decomposition rate and lower 498 

palatability to consumers, affecting nutrient cycling and trophic interactions (Díaz et al., 2004). 499 

Lower plant height decreases carbon storage, whilst a high leaf phosphorus concentration is 500 

thought to provide a higher quality of food to consumers (Díaz et al., 2004; Moles et al., 2009). 501 

Some of these changes may cancel each other out. For example, we observed some evidence for a 502 

higher leaf thickness and higher leaf phosphorus concentration in the drought treatment (albeit at 503 

different parts of the growing season). These traits are predicted to influence processes such as 504 

litter decomposition in opposite ways (Díaz et al., 2004). In this study, we focussed on identifying 505 

response traits without simultaneously measuring ecosystem functioning. An important next step, 506 

therefore, is to verify whether the community-level trait changes that we have outlined have the 507 

expected effects on ecosystem functioning. This would strengthen predictions about how climate 508 

change-induced extreme precipitation events will impact ecosystem functioning. 509 
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Table 1. Brief descriptions of functional traits measured in this study and measurement protocol. 739 

Descriptions summarised from Pérez-Harguindeguy et al., (2013). 740 

Trait Description 

Height Shortest distance between ground and the highest photosynthetic tissue 

(excluding inflorescences). Measured using tape measure. 

Leaf dry matter 

content (LDMC) 

Dry mass of a leaf divided by its water-saturated mass. Dry mass obtained 

by drying leaf at 70ºC for 72 hours. Water-saturated mass measured within 

five hours of sampling, with leaves being kept in vials containing water to 

prevent dehydration in the period between sampling and measurement. 

Leaf thickness Thickness of leaf lamina, excluding leaf midrib and significant secondary 

veins. Measured using digital callipers. 

Specific leaf area 

(SLA) 

One-sided area of fresh leaf divided by its dry mass. Area measured in 

ImageJ (Schneider et al., 2012) after scanning each leaf alongside a ruler 

for calibration. Dry mass obtained by drying leaf at 70ºC for 72 hours. 

Leaf phosphorus 

concentration (P 

content) 

Total amount of phosphorus per unit dry mass of leaf. Measured using 

ICP-MS (Esslemont et al., 2000). 

 741 
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Table 2 - Comparison of the species that cumulatively contribute to over 85% of the dissimilarity 744 

between the differences observed in Figure 2: the communities in the drought (D) versus control 745 

(C) and irrigated (I) plots in the late-season. Contributions to dissimilarities were calculated using 746 

SIMPER (similarity percentage) analysis. Mean relative abundances (RA) are species absolute 747 

abundance rescaled such that the abundances of all species in a quadrat sum to 100%. The asterisk 748 

indicates non-overlapping 95% confidence intervals between relative abundances of different 749 

treatments. 1Excludes Brachypodium species which were assessed separately.  750 

Period Comparison Species 
Dissimilarity 

contribution (%) 

Cumul

ative 

sum 

(%) 

Mean RA (%) 

Late-

Season 

Control - 

Drought 

Brachypodium 

pinnatum 
35.4 35.4 

D: 10.1 - C: 

36.9* 

Graminoids1 29.6 65 
D: 11.0 - C: 

31.2* 

Lotus 

corniculates 
12.6 77.6 

D: 29.0 - C: 

10.9 

Trifolium repens 4.4 82 D: 2.1 - C: 4.8 

Galium verum 3.1 85.1 D: 0.8 - C: 2.9 

Irrigated - 

Drought 

Brachypodium 

pinnatum 
43.9 43.9 

D: 10.1 - I: 

44.5 

Graminoids1 24.5 68.4 
D: 11.0 - I: 

25.6 

Trifolium repens 11.6 80 D: 2.1 - I: 11.6 

Lotus 

corniculatus 
6.2 86.2 D: 29.0 - I: 5.1 

 751 

 752 
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Figure captions 754 

Figure 1. Functional traits community-weighted means shifts with treatment and growing 755 

stage. Comparison of community-weighted mean values for each functional trait (A-E) between 756 

the three precipitation treatments: control (green), drought (orange), and irrigated (blue). Each 757 

translucid small point represents the community-weighted mean of an individual plot, whilst bold 758 

points represent the mean for each period (mid- vs. late-season) ± SE. LDMC: leaf dry matter 759 

content; SLA: specific leaf area. Asterisks and different small letters symbolise non-overlapping 760 

95% C.I. between stages (mid vs. late growing season) within each treatment and between 761 

treatments within each stage respectively. Note that in panel E, although data from different stages 762 

overlap, only significant differences between treatments were found at the mid-season stage. 763 

 764 

Figure 2. Community reassembly with precipitation treatments and growing stage. Non-765 

metric Multi-Dimensional Scaling (NMDS) plots showing differences in community composition 766 

between the treatments. Each point represents the community composition of a single quadrat, 767 

while its location in the plot represents its position in two-dimensional ordination space. Points 768 

that are closer together are expected to have similar community composition. Stress, a measure of 769 

goodness of fit that MDS tries to minimize, is estimated as the disagreement between observed 770 

distance and ordination distance that varies between 0 (total agreement) and 1 (total disagreement), 771 

is shown at bottom left of each plot. P-values correspond to ANOSIM results for the different 772 

grouping factors: treatment and growing stage. Plots are drawn separately for (A) all community 773 

data across the summer of 2021, (B) the July 2021 communities, and (C) the September 2021 774 

communities. Ellipses depict 95% confidence levels. 775 

 776 

Figure 3. Intraspecific trait variation between precipitation treatments. Summary of 777 

intraspecific trait variation for the seven most dominant plant species in our experiment. Direction 778 

of arrows indicate change, whilst dashes represent no change in trait values. Cells marked “NA” 779 

indicate instances where no sufficient trait data were available to measure intraspecific variation. 780 

LDMC = leaf dry matter content; SLA = specific leaf area.  781 

 782 
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Figure 4. Functional traits variation plays a role on species relative abundance between 783 

precipitation treatments. Functional traits principal component analysis (PCA). Axis 784 

percentages represent the explained variance proportion from each component. The colours 785 

represent the species relative abundance difference (∆RA) between Drought and Control 786 

treatments at the late-season (i.e., when higher differences in community composition were 787 

observed). For each species ∆RA has been calculated as mean RA in control plots – mean RA in 788 

drought plots. Species with higher ∆RA values are those that have reduced their relative abundance 789 

at drought plots. P leaf content is not included here, as only 34% of observations had all five 790 

measures, whereas considering the other four traits, 68% of the data were complete, from a total 791 

of 18 species. Each dot includes the mean value from the different plots at each treatment and 792 

growing season stage (early vs. late). Species codes are:  AG: Agrimonia eupatoria, BP: 793 

Brachypodium pinnatum, BS: B. sylvaticum, CVi: Clematis vitalba, CV: Clinopodium vulgare, 794 

CM: Crataegus monogyna, CC: Crepis capillaris, GM: Galium mollugo, GV: Galium verum, G: 795 

Graminoids no brachypodium, HP: Hypericum perforatum, LC: Lotus corniculatus, ML: 796 

Medicago lupulina, PR: Potentilla reptans, TP: Trifolium prantense, TR: T. repens, VC: Veronica 797 

chamaedrys, VS: Vicia sativa.   798 
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Figure 1 799 
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Figure 3 805 
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Figure 4 808 
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Supplementary material 811 

Table S1. Cumulative abundance of sampled species. Proportion of the 40 quadrats (20 mid- and 812 

20 late-season) where we achieved the 80% cumulative abundance target when selecting species 813 

for trait measurement. We compared this proportion between two different methods of calculating 814 

community-weighted trait means: 1) using the mean trait data as calculated within each quadrat 815 

and 2) using mean trait data as calculated across all replicates of each treatment. Using the second 816 

method substantially improved the proportion of quadrats that achieved the 80% cumulative 817 

abundance target. We therefore presented the results using this method in this paper. The 818 

proportion of quadrats achieving the target is not equal across all traits because there were some 819 

species for which it was not possible to measure certain traits. This mainly occurred for two 820 

reasons. Firstly, leaf phosphorus concentration could not be measured on species with light leaves 821 

because 50mg of plant material was needed for ICP-MS. Secondly, the mid-season cut meant that 822 

it was not appropriate to use the pre-cut height of a species in the post-cut calculation of a 823 

community-weighted mean, and vice versa. As a result, species that were sampled in only one 824 

growing season stage are missing height data for the other period. 825 

Trait 

Proportion of quadrats where we achieved 80% abundance target 

(across both mid- and late-season growing season stages) 

Using mean trait data per 

quadrat 

Using mean trait data per 

treatment 

Height 0.05 0.58 

Leaf dry matter 

content 

0.00 0.73 

Leaf thickness 0.05 0.73 

Specific leaf area 0.05 0.73 

Leaf phosphorus 

concentration 

0.00 0.25 

 826 

 827 

 828 
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Table S2. Model comparison. For fitting linear mixed-effect models’ differences to our 829 

community-weighted mean data, we explored different combinations of fixed effects. We 830 

compared models on their Bayesian Information Criterion (BIC) to inform which model we would 831 

use. Because of our experimental design, we used the same random effect structure of treatment 832 

within block for all models. Section A summarises the models that we compared. “Period” refers 833 

to the point of the growing season (mid- vs late-season). Section B summarises the best model 834 

(based on BIC) for each trait, together with the difference in BIC points between the best model 835 

and the interaction model. For height and LDMC, the model with the lowest BIC was the 836 

interaction model, whilst the treatment-only model was selected for leaf thickness and phosphorus 837 

concentration. For SLA, the base model had the lowest BIC. However, because the interaction 838 

model had a similar BIC to the best model for all traits (within 10 BIC points), it was used for all 839 

subsequent analyses. 840 

Model name Formula 

Base Trait ~ 1 + (1|Block/Treatment) 

Treatment only Trait ~ Treatment + (1|Block/Treatment) 

Period only Trait ~ Period + (1|Block/Treatment) 

Two-way Trait ~ Treatment + Period + (1|Block/Treatment) 

Interaction Trait ~ Treatment * Period + (1|Block/Treatment) 

A.  841 

 842 

Trait Best model 
Difference from interaction 

model (BIC points) 

Height Interaction 0 

LDMC Interaction 0 

Leaf thickness Treatment 2.44 

SLA Base 8.46 

Leaf phosphorus conc. Treatment 7.68 

B.  843 
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Table S3. Intraspecific variation summary. Output of linear mixed-effect models investigating 844 

intraspecific variation of the seven sampled species that have at least 30 replicates. The table shows 845 

estimates for coefficients in each treatment together with 95% confidence intervals. 846 

Species n Trait Control Drought Irrigated 

Medicago 

lupulina 

  

  

  

  

  

51 log(Height) 

- mid-

season 

5.82 (5.64, 

6.01) 

5.91 (5.63, 6.2) 5.88 (5.6, 6.16) 

43 log(Height) 

- late-season 

3.83 (3.66, 

3.99) 

2.75 (2.29, 3.22) 4.24 (3.94, 4.54) 

51 LDMC 312 (282, 

341) 

381 (310, 449) 260 (214, 306) 

94 Thickness 0.127 (0.118, 

0.136) 

0.121 (0.106, 

0.136) 

0.119 (0.104, 

0.133) 

94 SLA 25.8 (23.2, 

28.5) 

24.9 (20.3, 29.7) 30 (25.7, 34.2) 

0 Phosphorus NA NA NA 

Brachypodiu

m pinnatum 

  

  

  

  

  

42 log(Height) 

- mid-

season 

6.57 (6.5, 

6.63) 

6.75 (6.58, 6.92) 6.63 (6.53, 6.73) 

12 log(Height) 

- late-season 

5.16 (4.93, 

5.38) 

4.89 (4.51, 5.27) 5.17 (4.79, 5.55) 

54 LDMC 433 (409, 

457) 

408 (352, 463) 447 (407, 489) 

54 Thickness 0.111 (0.102, 

0.12) 

0.104 (0.090, 

0.119) 

0.116 (0.107, 

0.126) 

54 SLA 18.9 (17.9, 

19.7) 

21.8 (19.6, 23.8) 18.9 (17.5, 20.2) 

17 Phosphorus 2.55 (2.2, 

2.89) 

3.38 (2.51, 4.24) 2.71 (2.05, 3.37) 

Trifolium 

repens 

  

39 log(Height) 

- mid-

season 

5.14 (4.89, 

5.39) 

5.59 (5.12, 6.06) 5.21 (4.83, 5.58) 
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15 log(Height) 

- late-season 

4.3 (4.08, 

4.51) 

3.74 (3.41, 4.08) 4.85 (4.57, 5.13) 

54 LDMC 234 (220, 

248) 

225 (200, 253) 232 (212, 252) 

54 Thickness 0.133 (0.12, 

0.145) 

0.114 (0.101, 

0.131) 

0.136 (0.125, 

0.147) 

54 SLA 30.1 (28.2, 

32.2) 

32 (28.1, 36.2) 31.3 (28.4, 34.7) 

11 Phosphorus 2.67 (2.18, 

3.15) 

3.18 (2.34, 4.02) 2.88 (2.13, 3.62) 

Trisetum 

flavescens 

  

  

  

  

  

48 log(Height) 

- mid-

season 

6.26 (6.16, 

6.36) 

6.34 (6.19, 6.48) 6.41 (6.27, 6.56) 

0 log(Height) 

- late-season 

NA NA NA 

8 LDMC 325 (141, 

509) 

329 (92, 566) 372 (113, 630) 

45 Thickness 0.144 (0.132, 

0.158) 

0.136 (0.122, 

0.151) 

0.134 (0.121, 

0.147) 

43 SLA 20.2 (16.6, 

23.7) 

19.9 (14.5, 25.3) 18.5 (13.4, 23.5) 

0 Phosphorus NA NA NA 

Trifolium 

pratense 

  

  

  

  

  

42 log(Height) 

- mid-

season 

5.66 (5.46, 

5.86) 

5.88 (5.49, 6.25) 5.72 (5.42, 6.03) 

0 log(Height) 

- late-season 

NA NA NA 

41 LDMC 279 (259, 

300) 

326 (286, 359) 277 (249, 302) 

42 Thickness 0.151 (0.138, 

0.163) 

0.123 (0.0983, 

0.148) 

0.154 (0.134, 

0.174) 

42 SLA 25.3 (23.9, 

26.8) 

25.1 (22.3, 28) 23.8 (21.7, 26) 
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9 Phosphorus 2.72 (2.3, 

3.17) 

2.46 (1.42, 3.41) 2.35 (1.73, 3.03) 

Crepis 

capillaris 

  

  

  

  

  

36 log(Height) 

- mid-

season 

5.9 (5.77, 

6.03) 

6.14 (6.01, 6.27) 5.92 (5.79, 6.08) 

0 log(Height) 

- late-season 

NA NA NA 

36 LDMC 166 (147, 

185) 

177 (150, 205) 173 (144, 203) 

36 Thickness 0.133 (0.103, 

0.163) 

0.137 (0.0941, 

0.179) 

0.131 (0.0851, 

0.177) 

36 SLA 35.3 (28.5, 

42.1) 

32 (22.3, 41.7) 33.2 (22.7, 43.7) 

6 Phosphorus NA NA NA 

Arrhenatheru

m elatius 

  

  

  

  

  

30 log(Height) 

- mid-

season 

6.7 (6.54, 

6.85) 

6.6 (6.35, 6.85) 6.55 (6.34, 6.76) 

0 log(Height) 

- late-season 

NA NA NA 

27 LDMC 366 (321, 

409) 

366 (296, 435) 348 (287, 400) 

30 Thickness 0.127 (0.093, 

0.163) 

0.108 (0.0508, 

0.162) 

0.144 (0.0994, 

0.189) 

30 SLA 20.6 (17, 24) 22.3 (17.3, 27.2) 20.5 (16.7, 24.1) 

6 Phosphorus 2.31 (1.96, 

2.67) 

2.33 (1.6, 3.04) 1.96 (1.42, 2.72) 

 847 
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