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Experimentally testing quantum critical dynamics
beyond the Kibble–Zurek mechanism
Jin-Ming Cui1,2, Fernando Javier Gómez-Ruiz 3,4,5, Yun-Feng Huang1,2✉, Chuan-Feng Li1,2✉,

Guang-Can Guo1,2 & Adolfo del Campo3,5,6,7✉

The Kibble–Zurek mechanism (KZM) describes the dynamics across a phase transition

leading to the formation of topological defects, such as vortices in superfluids and domain

walls in spin systems. Here, we experimentally probe the distribution of kink pairs in a one-

dimensional quantum Ising chain driven across the paramagnet-ferromagnet quantum phase

transition, using a single trapped ion as a quantum simulator in momentum space. The

number of kink pairs after the transition follows a Poisson binomial distribution, in which all

cumulants scale with a universal power law as a function of the quench time in which the

transition is crossed. We experimentally verified this scaling for the first cumulants and

report deviations due to noise-induced dephasing of the trapped ion. Our results establish

that the universal character of the critical dynamics can be extended beyond KZM, which

accounts for the mean kink number, to characterize the full probability distribution of

topological defects.
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T
he understanding of nonequilibrium quantum matter
stands out as a fascinating open problem at the frontiers of
physics. Few theoretical tools account for the behavior

away from equilibrium in terms of equilibrium properties. One
such paradigm is the so-called Kibble–Zurek mechanism (KZM)
that accounts for the universal critical dynamics of a system
driven across a phase transition. Pioneering insights on the KZM
were conceived in a cosmological setting1 and applied to describe
thermal continuous phase transitions2–4. The resulting KZM was
later extended to quantum phase transitions5–8, see ref. 9 for a
review. Its central prediction is that the average total number of
topological defects 〈nT〉, formed when a system is driven through
a critical point in a time scale τQ, is given by a universal power
law hnTi � τ

�β
Q . The power-law exponent β=Dν∕(1+ zν) is fixed

by the dimensionality of the system D and a combination of the
equilibrium correlation length and dynamic critical exponents,
denoted by ν and z, respectively. Essentially, the KZM is a
statement about the breakdown of the adiabatic dynamics across
a critical point. As such, it provides useful heuristics for the
preparation of ground-state phases of matter in the laboratory,
e.g., in quantum simulation and adiabatic quantum computa-
tion10. It has spurred a wide variety of experimental efforts in
superfluid helium11–13, liquid crystals14,15, convective fluids16,17,
superconducting rings18–20, trapped ions21–23, colloids24, and
ultracold atoms25–29, to name some relevant examples. This
activity has advanced our understanding of critical dynamics, e.g.,
by extending the KZM to inhomogeneous systems30,31. In the
quantum domain, experimental progress has been more limited
and led by the use of quantum simulators in a variety of plat-
forms32–34.

Beyond the focus of the KZM, the full counting statistics enco-
ded in the probability distribution can be expected to shed further
light. The number distribution of topological defects has become
available in recent experiments35. In addition, the distribution of
kinks has recently been explored theoretically in the one-
dimensional transverse-field quantum Ising model (TFQIM)36, a
paradigmatic testbed of quantum phase transitions37. Indeed, it has
been argued that the distribution of topological defects is generally
determined by the scaling theory of phase transitions and thus
exhibits signatures of universality beyond the KZM36.

We aim at validating this prediction experimentally using a
single-trapped ion as a quantum simulator and probe the quan-
tum critical dynamics of the TFQIM in momentum space. Spe-
cifically, we show that the measured distribution of kink pairs is
Poisson binomial and that low-order cumulants scale as a uni-
versal power law with the quench time.

Results
Quantum critical dynamics. The TFQIM is described by the
Hamiltonian

Ĥ ¼ �J
XN

m¼1

σ̂zmσ̂
z
mþ1 þ gσ̂xm

� �
; ð1Þ

that we shall consider with periodic boundary conditions σ̂z1 ¼
σ̂zNþ1 and N even. Additionally, σ̂zm and σ̂xm are Pauli matrices at
the site m and g plays the role of a (dimensionless) magnetic field
that favors the alignment of the spins along the x-axis. This
system exhibits a quantum phase transition between a para-
magnetic phase (∣g∣ ≫ 1) and a doubly degenerated phase with
ferromagnetic order (∣g∣ ≪ 1). There are two critical points at gc
= ±1. We shall consider the nonadiabatic crossing of the critical
point gc=−1 after initializing the system in the paramagnetic
phase and ending in a ferromagnetic phase. Our quantum
simulation approach relies on the equivalence of in the TFQIM in
one spatial dimension and an ensemble of independent two-level

systems. This result forms the basis of much of the progress on
the study of quantum phase transitions and can be established via
the Jordan–Wigner transformation38, Fourier transform, and
Bogoliubov transformation39. We detail these steps in the Sup-
plementary Note 1, where it is shown that the TFQIM Hamil-
tonian can be alternatively written in terms of independent
modes as37,40

Ĥ ¼
X

k>0

Ĥk ¼
X

k>0

ϵk gð Þ γ̂
y
kγ̂k þ γ̂

y
�kγ̂�k � 1

� �
; ð2Þ

where γ̂k are quasiparticle operators, with k labeling each mode
and taking values k ¼ π

N
2m� 1ð Þ with m ¼ � N

2 þ 1; ¼ ; N2 . The

energy ϵk of the k-th mode is ϵk gð Þ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � cos kð Þ2 þ sin2k

q
.

Other physical observables can as well be expressed in both the
spin and momentum representations. We are interested in
characterizing the number of kinks. As conservation of
momentum dictates that kinks are formed in pairs, we focus on

the kink-pair number operator ^N � PN
m¼1 1̂� σ̂zmσ̂

z
mþ1

� �
=4.

The later can be equivalently written as ^N ¼Pk>0 γ̂
y
kγ̂k, where

γ̂
y
kγ̂k is a Fermion number operator, with eigenvalues {0, 1}. As
different k-modes are decoupled, this representation paves the
way to simulate the dynamics of the phase transition in the
TFQIM in "momentum space”: the dynamics of each mode can
be simulated with an ion-trap qubit, in which the expectation

value of γ̂
y
kγ̂k can be measured. To this end, we consider the

quantum critical dynamics induced by a ramp of the magnetic
field

gðtÞ ¼ t

τQ
þ gð0Þ; ð3Þ

in a time scale τQ that we shall refer to as the quench time. We
further choose g(0) <−1 in the paramagnetic phase. In momen-
tum space, driving the phase transition is equivalently described
by an ensemble of Landau–Zener crossings. This observation
proved key in establishing the validity of the KZM in the quan-

tum domain7,32,33: the average number of kink pairs h ^Ni ¼ hni
after the quench scales as

hniKZM ¼ N

4π

ffiffiffiffiffiffiffiffiffiffi
_

2JτQ

s
; ð4Þ

in agreement with the universal power law hniKZM / τ
� ν

1þzν

Q , with
critical exponents ν= z= 1 and one spatial dimension (D= 1).

The full counting statistics of topological defects is encoded in
the probability P(n) that a given number of kink pairs n is

obtained as a measurement outcome of the observable ^N . To
explore the implications of the scaling theory of phase transitions,
we focus on the characterization of the probability distribution P
(n) of the kink-pair number in the final nonequilibrium state
upon completion of the crossing of the critical point induced by
Eq. (3). Exploiting the equivalence between the spin and
momentum representation, the dynamics in each mode leads to
two possible outcomes, corresponding to the mode being found
in the excited state (e) or the ground state (g), with probabilities
pe= pk and pg= 1− pk, respectively. Thus, one can associate with
each mode k > 0 a discrete random variable, with excitation

probability pk ¼ hγ̂ykγ̂ki. The excitation probability of each mode
is that of Bernoulli type. As the kink-pair number n is associated
with the number of modes excited, P(n) is a Poisson binomial
distribution, with the characteristic function36

ePðθÞ ¼ �ππ

Z
dθPðnÞeinθ ¼

Y

k>0

1þ eiθ � 1
� �

pk
� �

; ð5Þ
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associated with the sum of N/2 independent Bernoulli variables. The
mean and variance of P(n) are thus set by the respective sums of the
mean and variance of the N/2 Bernoulli distributions characterizing
each mode, 〈n〉= ∑k>0pk and Var(n)= ∑k>0pk(1− pk). The full
distribution P(n) can be obtained via an inverse Fourier transform.
The theoretical prediction of the kink distribution P(n) relies on
knowledge of the excitation probabilities {pk}, which can be
estimated using the Landau–Zener formula pk ¼ exp � π

_
JτQk

2
� �

7

(details are given in Supplementary Note 2).

Experimental design. Experimentally, the excitation probabilities
{pk} can be measured by probing the dynamics in each mode, that
is simulated with the ion-trap qubit. The dynamics of a single
mode k is described by a Landau–Zener crossing, that is imple-
mented with a 171Yb+ ion confined in a Paul trap consisting of
six needles placed on two perpendicular planes, as shown in
Fig. 1a. The hyperfine clock transition in the ground state S1∕2
manifold is chosen to realize the qubit, with energy levels denoted
by 0j i � F ¼ 0; mF ¼ 0j i and 1j i � F ¼ 1; mF ¼ 0j i, as shown
in Fig. 1b.

State preparation and manipulation. At zero static magnetic
field, the splitting between 0j i and 1j i is 12.642812 GHz. We
applied a static magnetic field of 4.66 G to define the quantization
axis, which changes the 0j i to 1j i resonance frequency to
12.642819 GHz, and creates a 6.5 MHz Zeeman splittings for
2S1/2, F= 1. In order to manipulate the hyperfine qubit with high
control, coherent driving is implemented by a wave mixing
method, see the scheme in Fig. 1c. First, an arbitrary wave gen-
erator (AWG) is programmed to generate signals ~200MHz.
Then, the waveform is mixed with a 12.442819 GHz microwave
(generated by Agilent, E8257D) by a frequency mixer. After the
mixing process, there will be two waves ~12.242 GHz and 12.642
GHz, so a high-pass filter is used to remove the 12.224 GHz wave.
Finally, the wave ~12.642 GHz is amplified to 2W and used to
irradiate the trapped ion with a horn antenna.

Measurement. For a typical experimental measurement in a
single mode, Doppler cooling is first applied to cool down the
ion41. The ion qubit is then initialized in the 0j i state, by applying
a resonant light at 369 nm to excite S1/2, F= 1 to P1/2, F= 1.

Subsequently, the programmed microwave is started to drive the
ion qubit. Finally, the population of the bright state 1j i is detected
by fluorescence detection with another resonant light at 369 nm,
exciting S1/2, F= 1 to P1/2, F= 0. Fluorescence of the ion is col-
lected by an objective with a 0.4 numerical aperture. A 935 nm
laser is used to prevent the state of the ion to jump to metastable
states41. The initialization process can prepare the 0j i state with
fidelity >99.9%. The total error associated with the state pre-
paration and measurement is measured as 0.5% (ref. 42).

In the Supplementary Note 1, we rewrite the explicit
Hamiltonian of the k-th mode as a linear combination of a
single two-levels system7. In this way, experimentally, the
Hamiltonian of a single k-mode can be explicitly mapped to a
qubit Hamiltonian describing a two-level system driven by a
chirped microwave pulse,

Ĥ
TLS
k ¼ 1

2
_ ΔkðtÞσ̂z þΩRσ̂xð Þ; ð6Þ

where ΩR= 4J/ℏ and ΔkðtÞ ¼ 4J½gðtÞ þ cos k�=ð_ sin kÞ are the
Rabi frequency and the detuning of the chirped pulse,
respectively. To measure the excitations probability after a finite
ramp with normalized quench parameter A= JτQ/ℏ, we can vary
g(t) from −5 to 0. For this purpose, a chirped pulse with length of
Tp ¼ 5ATR sin k and g(t)= 5t/Tp− 5 is used in the experiment,
with TR= 1/ΩR denoting the Rabi time. A typical operation
process driven by the programmed microwave is illustrated on
the Bloch sphere, see Methods section for details. First, the qubit

is prepared in the ground state of Ĥ
TLS
k at g(0)=−5. Then, g(t) is

ramped from −5 to 0 with quenching rate 1/τQ. Finally, the

ground state of the final Ĥ
TLS
k is rotated to qubit 0j i, so that the

excited state is mapped to 1j i, which can be detected as a bright
state. The measured excitation probability for different quench
times is shown in Fig. 2.

Full probability distribution of topological defects. From the
experimental data, the distribution P(n) of the number of kink
pairs is obtained using the characteristic function Eq. (5) of a
Poisson binomial distribution, in which the probability pk of each
Bernoulli trial is set by the experimental value of the excitation
probability upon completion of the corresponding Landau–Zener
sweep. This result is compared with the theoretical prediction

Fig. 1 Experiment setup. a A single 171Yb+ is trapped in a needle trap, which consists of six needles on two perpendicular planes. b The qubit energy levels

are denoted by 0j i and 1j i, which is the hyperfine clock transition of the trapped ion. c The qubit is driven by a microwave field, generated by a mixing wave

scheme in the high-pass filter (HPF). Operations on the qubit are implemented by programming the arbitrary wave generator (AWG). The quantum critical

dynamics of the one-dimensional transverse-field quantum Ising model is detected by measuring corresponding Landau–Zener crossings governing the

dynamics in each mode.
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valid in the scaling limit—the regime of validity of the KZM—in
which P(n) approaches the normal distribution, away from the
adiabatic limit36

PðnÞ ’ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6hniKZM=π

p exp � π2ðn� hniKZMÞ2
6hniKZM

	 

: ð7Þ

A comparison between P(n) and Eq. (7) is shown in Fig. 3. The
matching between theory and experiment is optimal in the scaling
limit far away from the onset of the adiabatic dynamics or fast
quenches, for which nonuniversal corrections are expected.
We further note that the onset of adiabatic dynamics enhances
non-normal features of the experimental P(n) that cannot be
simply accounted for by a truncated Gaussian distribution, that
takes into account the fact that the number of kinks n=
0, 1, 2, 3, …

To explore universal features in P(n), we shall be concerned
with the scaling of its cumulants κq (q= 1, 2, 3… ) as a function
of the quench time. We focus on the first three, theoretically
derived in the scaling limit in the Supplementary Note 2.
The first one is set by the KZM estimate for the mean number
of kink pairs κ1(τQ)= 〈n〉KZM. The second one equals the
variance and as shown in the Supplementary Note 2 is set by
κ2ðτQÞ ¼ VarðnÞ ¼ ð1� 1=

ffiffiffi
2

p
ÞhniKZM. Finally, the third cumu-

lant is given by the third centered moment
κ3ðτQÞ ¼ hðn� hniÞ3i ¼ ð1� 3=

ffiffiffi
2

p
þ 2=

ffiffiffi
3

p
ÞhniKZM. Indeed, all

cumulants are predicted to be nonzero and proportional to

〈n〉KZM (ref. 36), with the scaling of the first cumulant hniKZM /
τ
�1

2
Q being dictated by the KZM. We compared this theoretical
prediction with the cumulants of the experimental P(n) in Fig. 4,
represented by dashed lines and symbols, respectively. As
discussed in the Supplementary Note 2, deviations from the
power law occur at very fast quench times, satisfying τQ < ℏ/(π3J).
However, this regime is not probed in the experiment, as all data
points are taken for larger values of τQ. Within the parameters
explored, deviations at fast quenches with JτQ/ℏ ~ 1 are due to the
fact that the excitation probability pk in each mode is not
accurately described by the Landau–Zener formula, as shown in
Fig. 2. For moderate ramps, the power-law scaling of the
cumulants is verified for q= 1, 2. The power-law scaling for

Fig. 2 Excitation probability in the ensemble of Landau–Zener crossings.

The quantum critical dynamics of the one-dimensional transverse-field

quantum Ising model is accessible in an ion-trap quantum simulator, which

implements the corresponding Landau–Zener crossings governing the

dynamics in each mode, labeled by wavevector k. The Rabi frequency ΩR=

4J/_ was set to 2π × 20 kHz in the experiment. For each value of the

wavevector k, the excitation probability is estimated from 10,000

measurements. The shaded region describes the excitation probability

predicted by the Landau–Zener formula. Deviations from the later become

apparent for fast quench times, especially for large values of k. Error bars

indicate the standard deviation over 10,000 measurements.

Fig. 3 Probability distribution of the number of kink pairs P(n) generated

as a function of the quench time. The experimental kink-pair number

distribution for a transverse-field quantum Ising model with N= 100 spins

is compared with the Gaussian approximation derived in the scaling limit,

Eq. (7), ignoring high-order cumulants. The mean and width of the

distribution are reduced as the quench time is increased. The experimental

P(n) is always broader and shifted to higher kink-pair numbers than the

theoretical prediction. Non-normal features of P(n) are enhanced near the

sudden quench limit and at the onset of adiabatic dynamics. Error bars

indicate the standard deviation over 10,000 measurements.

Fig. 4 Universal scaling of the cumulants κq(τQ) of the kink-pair number

distribution P(n) as a function of the quench time. The experimental data

(symbols) are compared with the scaling prediction (dashed lines) and the

numerical data (solid lines) for the first three cumulants with q= 1, 2, 3.

The universal scaling of the first cumulant κ1(τQ)= 〈n〉 is predicted by the

KZM according to Eq. (4). Higher-order cumulants are also predicted to

exhibit a universal scaling with the quench time. All cumulants of the

experimental P(n) exhibit deviations from the universal scaling at long

quench times consistent with a dephasing-induced anti-KZM behavior.

Further deviations from the scaling behavior are observed at fast quench

times. The range of quench times characterized by universal behavior is

reduced for high-order cumulants as q increases. The error bars are much

smaller than the size of the symbols used to depict the measured points.
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κq(τQ) with q > 1 establishes the universal character of critical
dynamics beyond the KZM. The later is explicitly verified for
κ2(τQ), as shown in Fig. 4. Beyond the fast-quench deviations
shared by the first cumulant, the power-law scaling of the
variance of the number of kink pairs κ2(τQ) extends to all the
larger values of the quench time explored, with barely noticeable
deviations. By contrast, for the third cumulant κ3(τQ), the
experimental data are already dominated by nonuniversal
contributions both at short quench times, away from the scaling
limit. For slow ramps, the third cumulant exhibits an onset of
adiabatic dynamics due to finite-size effects around JτQ/ℏ= 102.
Finite-size effects are predicted to lead to a sharp suppression of
the third cumulant. However, the experimental data shows that κ3
starts to increase with τQ. This is reminiscent of the anti-KZ
behavior that has been reported in the literature for the first
cumulant in the presence of heating sources43,44, and we attribute
it to noise-induced dephasing of the trapped-ion qubit. The
nature of these deviations is significantly more pronounced in
high-order cumulants, reducing the regime of applicability of the
universal scaling.

Discussion
In summary, using a trapped-ion quantum simulator we have
measured the full distribution of topological defects in the
quantum Ising chain, the paradigmatic model of quantum phase
transitions, and characterized in detail its first three cumulants as
a function of the quench rate. The statistics of the number of kink
pairs have been shown to be described by the Poisson binomial
distribution, with cumulants obeying a universal power law with
the quench time, in which the phase transition is crossed. Our
findings demonstrated that the scaling theory associated with a
critical point rules the formation of topological defects beyond the
scope of the KZM, which is restricted to the average number. Our
work could be extended to probe systems with topological order,
in which defect formation has been predicted to be anomalous45.
We anticipate that the universal features of the full counting
statistics of topological defects may be used in the error analysis
of adiabatic quantum annealers, where the KZM already provides
useful heuristics10.

Methods
A detailed description of analytical methods employed to obtain the results can be
found in the Supplementary Information accompanying this work. In the following
subsections, we present the experimental techniques employed.

Experimental mapping at two-level system. Hamiltonian of a single qubit driven
by a microwave field is given by Eq. (6). In the experiment, the Rabi frequency of
the qubit simulator is set ~20 kHz, which depends on the driven power of our
microwave amplifier. The higher microwave power can shorten the Rabi time TR=

1/ΩR, and reduce the total operation time. To simulate the quenching process, one
would like to vary g from −∞ to 0, an idealized evolution that needs infinite time,
which cannot be realized in the experiment. However, to explore the universality
associated with the crossing of the critical point one can initialize the system
sufficiently deep in the paramagnetic phase. According to the KZM, it is sufficient
to choose an initial value of the magnetic field such that the corresponding equi-
librium relaxation time is much smaller than the time left until crossing the critical
point. The system is then prepared out of the “frozen region” in the language of the
adiabatic-impulse approximation7. For the quench time τQ ≥ 1, the initial value of
g=−5 is far out of the frozen time. We can simulate the TFQIM with an initial
g=−5 and no excitations, by preparing the initial state of the qubit in the ground

state of Ĥ
s

k;i ¼ Ĥ
s

kðg ¼ �5Þ before the quenching process. The initial state can be
derived by solving the eigenvectors of Eq. (6), which is

ψ�
�� �

k;i
¼ cos

θk;i
2

0j i � sin
θk;i
2

1j i; ð8Þ

where θk;i ¼ �arctan sin kað Þ
5þ cos kað Þ.

The scheme to detected the quantum critical dynamics of the one-dimensional
TFQIM in each mode by using a single qubit is shown in Fig. 5. The whole process
can be divided to three steps. Before the process, the qubit has been pumped to 0j i
state by using a 369 nm laser to excite transition S1∕2, F= 1→ P1/2, F= 1. In the first
stage, the ion-trap qubit is prepared into the state ψ�

�� �
k;i

by a resonant microwave

pulse. The second stage is the quench process; the Hamiltonian is time dependent

and varies from Ĥ
s

k;i � Ĥ
s

kðg ¼ �5Þ to Ĥ
s

k;f � Ĥ
s

kðg ¼ 0Þ. This is implemented by

applying a chirped microwave pulse to the qubit. The chirped pulse is in the form of

ΔkðtÞ ¼ 4J g tð Þ� cos kað Þ
_ sin kað Þ with g(t)= 5(t/Tp− 1), where Tp ¼ 5JτQ sinðkaÞ= _ΩRð Þ is

the pulse length. The third stage is to measure the excitation probability after the
quench, which is to measure the occupation probability on the excited eigenstate of

Ĥ
s

k;f . The excited eigenstate is ψ�
�� �

k;f
¼ sin

θk;f
2 0j i þ cos

θk;f
2 1j i, where θk,f=−ka. As

the fluorescence detection on 171Yb+ can only discriminate 0j i and 1j i sates, we
need to rotate the state ψ�

�� �
k;f

to 1j i and then detect the bright state probability.

We thus use a qubit rotation and a fluorescence detection in this stage. The
calculated waveform to set the AWG to perform the prerotation, quench and
postrotation in the three stages will be discussed in the next section.

Driving waveform with an AWG. We consider the driving microwave from AWG
is A cosðωct þΦðtÞÞ, where A is the amplitude, ωc is the carrier frequency, and Φ(t)
is an arbitrary phase function. The carrier frequency can be mixed up with some
frequency ω0 from a local oscillator by using a frequency mixer. The waveform at
the output of the mixer is

A cosðωct þΦðtÞÞ cosðωotÞ ¼A=2ðcosððωo þ ωcÞt þΦðtÞÞ
þ cosððωo � ωcÞt �ΦðtÞÞÞ:

When the wave passes through the high-pass filter, the waveform is filtered as
A=2 cosððωo þ ωcÞt þΦðtÞÞ. In the experiment, we choose the frequency ωo+ ωc

resonant with the qubit transition ωQ= ωo+ ωc, so the magnetic field of the final
driving waveform is BðtÞ ¼ B0 cosðωQt þΦðtÞÞ. The interaction between the
magnetic field and spin is HI=−μ ⋅ B, where μ is the magnetic dipole of the spin
qubit. The Hamiltonian can be further simplified after the rotating wave approx-
imation in the interaction frame

ĤIðtÞ ¼
_

2
ΩR 1j i 0h jeiΦðtÞ þΩ

�
R 0j i 1h je�iΦðtÞÞ

h i
; ð9Þ

where the Rabi frequency ΩR ¼ � 0h jμ � B 1j i=_. The phase function Φ(t) corre-
sponds to the azimuthal angle in the Bloch sphere. Equation (6) can be also

Fig. 5 Scheme to measure the excitation probability. The quantum critical dynamics of the one-dimensional transverse-field quantum Ising model is

detected by measuring corresponding Landau–Zener crossings governing the dynamics in each mode. For each mode, a typical process to measure the

excitation probability in three stages is shown in a, b and c.
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expressed in interaction frame

Hs
I;k ¼

_

2
ΩR 1j i 0h j exp i

Z
ΔðtÞdt

 �
þΩ

�
R 0j i 1h j exp �i

Z
ΔðtÞdt

 � �
;

so in the quench stage, the phase function is

ΦðtÞ ¼
Z TP

0
ΔðtÞdt ¼ ΩR

sin ka

ΩR

τQ sin ka
t2 � 5þ cos kað Þt

 !
:

We rotate the state along a vector in the equatorial plane to prepare a state from
0j i, or measure state to 1j i, which means Φ(t) is constant in these two stages. The
pulse length for the preparation and measurement stages is determined by the
polar angle of the ground state at the beginning and end of the quench process, t=
θ∕ΩR, respectively. The whole expression of Φ(t) in the three stages can be derived
as

ΦðtÞ ¼

π
2 ; ð0; t1Þ
ΩR

sin ka
ΩR

τQ sin ka ðt � t1Þ2 � 5þ cos kað Þðt � t1Þ
� �

; ðt1; t2Þ
ϕf � π

2 ; ðt2; t3Þ

8
>><
>>:

where t1= (2π− θk,i)/ΩR, t2= t1+ Tp, t3= t2+ (2π+ θk,f)/ΩR, and
ϕf ¼ �5τQð2:5þ cos kaÞ.

Qubit preparation and detection error. There are some limitations to the pre-
paration and measurement of the qubit. We measured the error through a pre-
paration and detection experiment. First, we prepare the qubit in the 0j i state by
optical pumping method and detect the ion fluorescence. Ideally, no photon can be
detected as the ion is in the dark state. However, there are dark counts of the
photon detector as well as photons scattered from the environment. We repeat the
process 105 times, and estimate the detected photon numbers. We also repeat the
process 105 times by preparing the qubit in the bright state. Histograms for the
photon number in the dark and bright states are shown in Fig. 6. In the experi-
ment, the threshold is selected as 2: the state of the qubit is identified as the bright
state when the detected photon number is ≥2. There is a bright error ϵB for the dark
state above the threshold, and a dark error ϵD for the bright state below the
threshold. The total error can be take as ϵ= (ϵB+ ϵD)/2.

Data availability
The data that support the plots and other findings within this paper are available from
the corresponding author upon reasonable request.
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