TR-1575 Nov. 20, 1985

'EXPERIMENTATION
IN
SOFIWARE ENGINEERING

Victor R. Basili,
Richard W. Selby, Jr.,
David H. Hutchens

Research supported in part by the Air Force Office of Scientific
- Research Contract AFOSR-F49620-80C-001 and the National Aercnautics and
. Space Administration Grant NS8G-5123 to the University of Maryland. -Com~-
jputer support provided by the Computer Science Center at the University of

Maryland.

- Experimentation in Software Engineering

Victor R. Basill !, Richard W. Selby, Jr. 2,
and Davld H. Hutchens 3

I Department of Computer Seclence, Unlversity of Maryland, College Park, MD 20742
(301) 454-2002 :

% Department of Information and Computer Sclence, University of Californla, Irvine, CA
' 92717 (714) 856-7403; was with the Department of Computer Science, University
of Maryland, College Park, MD 20742

® Department of Computer Sclence, Clemson Unlversity, Clemson, SC 29831 (803) 854-
44684 '

KEYWORDS: .
software technology measurement and evaluatlon, data collection and analysls, soft-
ware metrles, controlled experlment, experimental deslgn, empirical study

Research supported in part by the Air Force Office of Scientific Research Contract AFOSR-F49620-80-C-001 and the National
Aeronautics and Space Administration Grant NS8G-5123 to the Unlversity of Maryland. Computer support provided in part by the
Computer Science Center ab the University of Maryland. ' . .)

ABSTRACT

BExperimentatlon In software engineering supports the advancement of the fleld
through an lterative learning process. In thls paper we present a framework for an_alyz—- :
lngr most of the experimenta.i. work performed In software engineering over the past
several years. We describe a varlety of experlments In the framework and dlscuss thelr
contributlon to the software engineering disclpllne. Some usefui recommendations for

the appllcamon of the experlmental process 1n software englneering are Included.

Table of Contents

1 Introductlon vetstarannanensn reraresrarurennnaans eresrerensans vevamearaenns venrevrretsersanas esmmennaraans

2 Objlectlves crrrresrraes vermmaererens eererarrareies S eersrrinanressseraas dererarscranas svanresens
3 Experlmentatlon Framework .ueueeeeeeseeeeass neracenaans ertamesennarans rtestassasaresesnnrrenrenrennns
3.1 Experlment Definltion eernrarrases cesereranas ernvessnrrtsusserannannnasanans verresserisrairenan
3.2 Experiment Planning eeraenas rrrnssasaeias earnrmessasas reesssesisterneanasanannsnnannrann
3.3 Experiment Operation cevrrernanans imeveascannas rnrereaes vamvemenseaensennnne vereresusns
3.4 Experiment Interpretation ..cc.ccveees.s resbieceernsnaranas revenrens eeermetaessititsrnannraerorarian
4 Classificatlon of Analyseseeeee. serersninresiis s e crnansone cerresrmvaranas aesnen
4.1 Blocked Sublect-Project Studles nenarrens ortstreeererrnatnnisesraerenes tesriereneerenne
4.2 Replicated Project Studles rernrseensans P, vevrenarae reeeeens eemsesrasiesaraersases
4.3 Multi-Project Variation Studles .eeeeeeeenerersssssnns veereanenne rererasenee reeeemrannnnanaes
4.4 Single Project Studies crerarenns corarnneens rermrssnans crsrveasassstensnananas veesrarresstaeas
5 Problem Areas In Experimentation reetesnrresiaians ieemernass rrresresnsseattn ermerasnas erareras
5.1 Experimentation Overall rerrreebsisnneearensesaya errtetedetararaaransen ervesnteseteinnnse
5.2 Experiment Deflnltion S evrasrensasseuie edmemsessraretieteresastirenareananannn cnssnes
5.3 Experiment Planningccveceovieeecencanee cerrereenane eerareeanns erreteeesnnrasarrernrenennns
5.4 Experiment Operatlon eersraana cimsnsans essraseranaresan ceesseraeess P ITOTOPP
5.5 Experiment Interpretation vererasmsesesssssasitnrararesan cerresesertsesnannn
‘8 Conclusion rreaverenrace eeranenen reerrarasens certeerarenns vesreranasse JOS eeretrerenenrrerasnnns T

7 References cormresrencan everuresace cererrences arevsensenea cnvesenenes enrreetietettetaneeensanas nivesreraniaia

D DG s NN e

B OB W N N O N b =
[N A R L

1. Introduction

As any area matures, there 13 the need to understand Its componénts and their rela-
tlonships. .A.n experlmental process provides a basls for the needed advancement in_
.knowledge and understanding. Slnce software engineering is In Its adolescenee, it Is cer--
talnly. a candldate for the experimental method of analysis. Experimentatlon 1s per-
formed In order to help us better evaluate, predict, understand, control, and !mprove

the software development process and product.

Experimentation In software englneering, as with any other experlmental procedure,
Involves an lteratlon of a hypothesize and test process. Models of the software proecess
ér product are bullt, hypotheses about these models are tested, and the Information
learned is used to refine the old hypotheses or develop new ones. In an aréa like soft-
ware englneering, thls approach takeé on speéla-l lmportance because we great;ly'need to
| lmprove our knowledge of how software 1s developed, the effect of varlous technologies,
and what areas most need !lmprovement. There Is a great deal to be learned and lntui-

tlon 1s not always the best teacher.

In thls paper we lay out a framework for analyzlng most of the experlmental work
that has been performed In software engineering over the past seVeral years. We then
discuss a varlety of these experlments, thelr results, and the Impact they have had on .

our knowledge of the software englneering discipline.

- 2. Objectives

There are three overall goals for this work. The first objectlx-re is to describe a

. framework for experimentation in sof_twa,re englneering. The framework for experlmen-

1

tatlon 1s Intended to help structure the expertmental process and to provide a
classification scheme for understanding and evaluating experlmental studles. The
second objé'c!;lve Is to classify and discuss a varlety of experiments from the literature
according to the framework. The.descrlptlon of several software englneering studles is
intended to. provide an overvlew.of the knowledge resulting from experimential work, a
summary. of current research directions, and a basls for learning from past experlence
.With experlmentation. The third objective s to ident!fy problem areas and . lessons
learned In experimentation In software englneermg. The presentation of problem areas
and lessons learned 1s Intended to focus attentlon on general trends In the fleld and ﬁo
provide the experimenter with useful recommendations for performing future studles.

The following three sections address these goals.

3. Experimentation Framework

The framework of experlmentatlon, summarlzed In Fligure 1, consists of four
categorles corresponding to phases of the experimentatlon process: I) definition, II) plan-
ning, IT) operation, and IV) interpretation. The following sections discuss each of these

i'ouf phases,

3.1. Ex-perirrient Definition

The_ first phase of the experlmental process Is the study definltion phase. The
st.udy definition phase contalns six parts: A} motivation, B) objlect, C) purpose, D) per-
‘spective, E) domaln, and F) scope. Most study definitions contaln each of the six parts:

an example definitlon appears in Figure 2. °

Tilere can be several motlvatlons, objects, purposes, or perspectlves In an'experl-
mental study. For example, the motlvation of a study may be to unde_rstand, assess, or
Improve the. .eﬁect of a certaln technology. The “‘object of study” Is the primary éntlty

. efcamined In a study. A study may examine the final softWare pro:duct, a developmént
process _(e.g., lnspe.ctlon process, change process), a model (e.g.,: sdft,ware rellablllty
model), etc. The purpose of a study may be to characterize the change In a system over

tlme, to evaluate the effectlveness of testing processes, to predlicet system development

cOst by uslng a cost model, to motlvate! the valldity of a theory by analyzing emplrical
evide_nce',-etc. In experimental studles that examlne "soi’tware'qualflty,“ the Interpreta-
.tlon usually Includes correctness If 1t is from the perspective of a developer or rellability
If 1t 1s from the perspectlve of a customer. Studles that examine metrles for a given pro-
Ject. type from the pempéctlve' of the project manager may interest certaln project
managers, whille corporate managers may only be interested If the metrics é.pply across

several project types.

Two Important domains that are consldered In experlmental studles of software are
- 1) the 1ndividual programmers or programming teams (the “teams”) and 11) the programs
or projects (the “projects").' “Teams™ are (possibly single-person) groups that work
separately, and "-projects_’” are separate programs or problems on which teams work.
Teams may be characterized by experlence, slze, organlzation, etc., and projects may be

characterized by slize, complexity, application, ete. A general classlficatlon of the scopes

! For clarificatlon, the usage of the word “motivate” as a study purpose is dlstinet
from the study “‘motivation.”

-

of experlmental studles can be obtalned by examilning the sizes of these two domains
consldered (see Flgure 3). Blocked subjlect-project studles examlne one or more objects
across a set of teams and a set of proJects. Repllcated proJect studles examine object(s)
acfoss a set of teams and a slngile project, whlle multl-project varlation studles examine
object(s) across a slngle team and a set 61’ projJects. Single project studles examine
object(s) on a single team and a single project. As the representativeness of the samples
examined and the scope of examlnation lnc.rease, the wider-reaching a study’'s conclu-

slons become.

3.2. Experiment Planning

The second phase of the experimental process Is the study plannlng phase. The fol-
lowling sectlons dlscuss aspects of the experiment planning phase: A) design, B) criterla,

and C) measurement.

The design of an expeﬂment couples the study scope wlith analytleal methods and
Indleates the domaln samples to be exaxﬁined. Fractional factorlal or randomized block
designs usually apply In blocked subject-project studles, while completely random!zed or
Incomplete block deslgns usually apply Iln multi-project and replicated projlect studles
{33, 40]. Multlvariate analysié methods,. Including correlatlon, factor analysis, and re-
gression (75, 80, 89], generally may be used across all experimental scopes. Statlstical
models may be formulated .a.nd customlized as. appropriate [89]. Non-parametric
methods should be pianned when only Hmlted data may be avallable or distributionsal
assumptions may not be met [99]. Sampling technlques [41] may be usgd to select

' representatlve programmers and programs/projects to examine.

Different motlvations, objects, purposes, perspectives, domalns, and scopes require
the examlnation of different criteria. Criterla that tend to be direct reflections of
cost/quallty Include cost [111, 108, 86, 4, 28], errors/changes [49, 14, 109, 2, 81, 19], rell-
abllity, {42,-64, 56, 70, 89, 76, 77, 95], and correctness [51 61, 88]. Criterla that tend to
be. 1ﬁdirec1; reflectlons of cost/quallty include dat#.coupllng (82, 48, 102, 78],'1nrormatlon
visibility [85, 83, 55], programmer understanding [98, 100, 107, 110], execution coverage

(103, 21, 24], and slze/complexity [17, 59, 71].

The conecrete manifestatlons of the cost/quallty aspects exa,mlnec_l in the exi)eriment
are captured through measurement. Paradigms assist ln the metric definition process:
the goal-question-metric paradigm [20, 22, 25, 93] and the factor-criteria-metric para-
digm {39, 72]. Once approprlate metrlcs have been defined, they may be validated to
_show that they capture what Is Intended {12, 18, 44,'50, 106, 113]. The data collection
process_ lnciildes developing au-tonia.ted collection schemes {15] and deslgning and testing
data collectlon forms {22, 10]. The required data may Include both objective and sub-
Jectlve data and differents levels of measurement: nominal (or classificatory), ordinal (or

ranking), Interval, or ratio [99].

3.3. Experiment Operation

The third phase of the experimental process Is the study operation phase. The
operation- of the experiment conslsts of A} preparation, B) executlon, and C) analysls.
Before conductlng the actual experiment, preparation may Include a pllot study to
'conﬁrm the experimental scenario, help organize experlmental factors (e.g., sublect ex-

pertise), or lnoculate the subjects [44, 43, 83, 24, 110, 73]. Experimenters collect and

|

valldate the defined data durlng the execution of the study {18, 108]. The analysis of
the data may Include a comblnation of quantitative and qualitative methods [30]. The

prellminary screenlng of the data, probably_ using plots and histograms, usually proceeds

- the formal data analysls. The process of analyzing the data requlres the lnvestlgation of

any underlylng assumptions (e.g., distributional) before the application of the statistical

models and tests.

3.4. Experiment Interpretation

The fourth phase of the experimental proeess s the study Interpretation phase.

. The Interpretatlon of the experiment consists of A) Interpretatlon context, B) extrapola-

tlon, and C) lmpact. The results of the data analysls from a study are interpreted In a

broadening serles of contexts. These contexts of Interpretation are the statistical frame-

-work In Whlch' the resuit s dérived, the purpose of the pa.rtlcﬁlar study, and the

knowledge In the fleld of research (15]. The representatlveness of the sampling analyzed

In a study quallfies the extrapolation of the results to other environments [20]. Several

' follow-up activitles contribute to the impact of a study: presenting/publishlng the

results for feedback, replicating the experlment [33, 40], and actually applylng the
results by modifylng methods for software development, malntenance, management, and

research.

4. Classification of Analyses

Several Investigators have publlshed siudles In the four general scopes of examina-
tlon: blocked subject-project, replicated project, multl-project varlation, or single pro-

ject. The followlng sectlons clte studles from each of these categories. 'Note that sur-

6

veys on experimental methodology 1n emplrical studles Include (35, 96, 74]. Each of the
sectlons first discusses one experiment in moderate depth, using itallclzed keywords from

the framework for experimentation, and then chronologically presents an overview of

.. . several others in the category,

4.1. Blocked Subject-Project Studies

With a motivation to lmprove and better understand unlt testing, [24]_ conducted a
study whose purpose waé to characterlze and evaluate the proéesses (l.e., objects) of code
reading, functlonal testing, and structural testing from the perspective of the developer.
Thé testing processes were examlined In a biocked_subject—project scope, where 74 stu-
dent through professlonal programmers (from the programmer domaz'n) tested four unit-
slze programs (from the program domaz'n)‘ In a replicated fractlonal factorial design. Ob-
Jectlve measurement of the testing processes was in .several-cm'teréa areas: fault detection

“effectlveness, fault detectlon cost, and classes of fauits detected. Experlrﬁent prepara-
tion Included a"pllor. study [63], execution Incorporated both manual and automated
monltoring of testlng actlvity, and dnalysz’s used analysis of varlance methodé (33, 90].
_ The major results (In the interpretation context of the stﬁdy purpoée) included 1) with
the professlonals, code reading detected more software faults and had a higher fault
detection rate than dld the dther.methods; 2) with the professlonals, functional testing
detected more faults than did structural testlng, but they were not different \n fault
detectlon rate; 3) with the students, the three techniques were not different In perfor-
mance, except that 'structural testing detected fewer faﬁlts than did the others ln one

study phase; and 4) overall, code readlng detected more Interface faults and functional

testing detected more control fa,ults_ than did the other methods. A major result {In the
-tnterpretation conlext of the field of research) Is that the study suggests that non-
executlon based fault detectlon, as In code reading, .1s at least as effectlve as on-llne
methods. The particular programmers and programs sampled qualify the ezirapolation
of tﬁe results. The impact of the study is an advancement in the understanding of

effective software testing methods.

in order té understand program debugging, [57] evaluated several related factors,
Inc.ludln-g effect. of. debugging alds, efféct _of fault type, 'a,nd effect of particular program
debugged from the perspectlve of the developer and malntalner. Thirty experienced
programmers Independently debugged ome of four one-page programs that contalned a
single fault from one of three classes. The major results of these studles were 1) debug-
ging 1s much faster If the programmer has had previous experlence with the program, 2)
asslgnment bugs were harder to find than other kinds, and 3) debugging alds did not
 seem ﬁo help programmers debug faster. Consistent results were dbtalned when the
study was conducted on ten additlonal experienced programmers [58]. These results and
the ldentification of possible *‘principles” of debugging contribute to the understanding

of debugging methodology.

_ In order to Improve experimental methodology and lts application, [110] evaluated
programmers’ ablilty to understand and modify a program froxﬁ the perspective of the
developer and modifler, Varlous measures of programmer understanding were caleulat-
ed, In a serles of factorial design experiments, on groups of 16 — 48 unlversity students
_pérformlng tasks on two small programs. The study emphasized the need for well-

structured and well-documented programs, and provided: valuable testlmony on and

8

worked toward a sultable experlmentation methodology.

In order to assess the Impact of language features on the programming process, [53]
characterized the relaﬁon_shlp of language features to software rellabillty from the per-
. spective éf the developer. Ba.se.d on an analysls of the deflclencles In a programming

language, nlne different features were mbdlﬁed to produce a new verslon. Flfty—one ad-
vanced students were divided Into two groups and asked to complete implementations of
two small but sophlstlcated programs (75-200 llne) In the original language and lts
_modified version. The redesigned features ln the two languages were con%;rasted In pro-
gram fault frequency, type, and perslstence. .'I‘he experlment Ildentifled several
| language-design déclslons that slgnificantly affected rellabillty, which qontrlbutes to the

understanding of language design for rellable software.

In order to understand the unit testing process better, [60] evaluated a reading
technlque and functional and ‘‘selective” testing (a composite approach) from the per-
.spectlve of the developér. Thirty-nlne unlversity students applled the technlques to
three unit-size programs In a Latin square deslgn. Functlonal and “selective’” testing
were equ'ally effectlve and both superior to the reading technlque, which contributed to

our understanding of testing methodology.

Iﬁ order to Improve and better Understaﬁd the maintenance process, {43] conducted
two experlments tb evaluate factors that 1nfluence two aspects of software malntenance,
brogram understanding and modlflicatlon, from the perspective of the developer and
mamtaln_er. Thilrty-six _Junlor through advanced professlonal progra_mmers In each ex-.
periment examl.ned, three clasées of small (36 — 57 source line) programs In a factorial

design. The factors examined Include control flow complexity, variable name mnemoni-

9

elty, type of modificatlon, degree of commenting, and the relatlonship of programimer
performance t§ varlous complexity metrics. In [44] they .conr,inued the Investigation of
how software characterlistles relate to psychologleal complexity, and presented a third
experiment to evaluate the abllty of 54 pr-o:r.esélonal programmers to detect program
bugs In thI:ee programs In a factorlal deslgn. The series of experiments showed thé,t
software sclence [59] and cyclomatic complexity [71] measures are related to the

difficuity experlenced by programmers In locating errors 1n code.

In order to lmprove énd better understand program debugging, [108] evaluated the
theory that “programmers use 'slicing’ (stripplng away a program’s statements that dé
not Influence a glven variable at a glven sta.tgment) when debugging” from the persp'ec-
t.lve of the developer, malntalner, and researcher, Twenty-one unliversity graduate stu-
dents and programmlﬁg staff debugged a fault In three unit-size (75 — 150 source .line)
programs ln a non-parametric deslgn. The study results supported the slicing theory,
that 1s, programmers during debugglng routinely partitioned programs lnto a coherent,
discontiguous plece (or slice). The resuits advance the understanding of softwar-e debug-

ging methodology.

.In order to lmprove deslgn technlques, [87] evaluated fowcharts and program
design languages (PDL) from the pers.pective of the develoi)er. Twenty-two graduate
students deslgned two small {approxlmately 1000 source line) projects, one uslng
ﬁowcharts and the other uslng PDI1.. Overall, the results suggested that design perfor-

mance and deslgner-programmer communlication were better for projects uslng PDL.

10

.In order to valldate a theory of programming knowledge, {101] conducted two stu-
_ dles, usilng 139 novices and 41 i)roresslonal programmers, 10 evaluate programmer
behavior from the perspectlve of the researcher. The theory was .t.hat programmlngr
- knowledge conta.lne_d programmling plans {generic program fragments -representlng com-

" mon actlons sequences) and rules of programming discourse (conventions used 1n com-
posing plans Into programs). The results support the existence and use of such plans

and rules by both novice and advanced programmers.

Other blocked subject-project studles lnclude [82, 112].

4.2. Replicated Project Studies

With a motivation to assess and better understand team software development
methodologles, [15] conducted a study whose purpose was to characterlze and evaluate
.the developﬁent proéesses (l.e., objects) of a a) disclpllned—metﬁodology team approach,
b) ad hoc team approach, and ¢) ad hoc Indlvidual approach from the perspective of the
developer and pro,]ec_t manager. The development proéesses .were examined in a repl-
cated project scope, In which advanced unlversity students comprising seven three-
person teams, slx three-person teams, and slx individuals (from the programmer domain)
used the approaéhes, respectively. They separately developed-é, small (800 - 2200__11ne)
compiler (from the program domain) ln a non-parametric design. Objectlve measure-
ment of the development approaches was 1n several criteria é.reas: number of changes,
number of program runs, program'data usage, program data coupling/binding, statle
program slze/complexity metrics, language lisage, and modular;ty. Experiment prepar'a-.

tion Included presentation of relevant materlal [68, 7, 34], ezecution Included automated

11

monitoring of on-llne development actlvity and qnalysz's used non—parametrlc comparison
methods. The major resuits (In the inierpretation c;ntext of the study purpose) lnctud-
ed 1) the m:ethodolo-glcal disclpline was a key influence on the general efficlency of the
software development process; 2) the dlsclplined team met‘h_odolégj'signlﬁcantly reduced
the costs of software development as reflected In program runs and changes: and 3) the
examination of the efrect. of the development approaches was accomplished by the use of
gquantltatlve, objlectlve, unobtrusive, and automatable process and product metrics. A
ﬁlajor reéult .(in the nterpretaiion contezt of the fleld of research) Is that thé study- sup-
ports the bellef t._ha,t incorporating cﬁsclpllne in software development reflects posltively
on bhoth the development process and final product. The particular programmers and
program sampled qualify the eztrapolation of the resuits. The tmpact of the study Is an
advancement in the understanding of'softwa.re development methodologles and thelr

evaluatlion.

In order to Improve the design and implementation processes, [84] evaluated system
modularity from the perspective of the developer. Twenty unlversity undergraduates
each developed one of four different types of lmplementations for one of flve _different
.small modules. Then each of the modules were combined with others to férm several
versions of the whole system. The majlor results suggested that minor effort was re-
quired In assembling the system_s and that malor system changes can be confined to
small, well-defined subsystems. The results support tfle Ideas on formal specificatlons

and modularlty discussed in [83, 85] and advance the understanding of design methodol-

ogy.

12

In order to assess the Impaet of static typilng of programming languages in the de-
velopment process, [54] evaluated the use of a statically typed language (having Integers
and strings) and a “typeless” language (e.g., arbitrary subscripting of memory)} from the
perspectlve of the developer. Thirty-eight students programmed a small (48 — 297
source: line) problem In both languages, with half doing It in each .order. The .ﬁwo
languages were compared in the resulting program faults, the .number of runs contalning
faults, and the relatlon of subject experlénce to fault proneness. The major result was
that the use of a statically typed. language can Increase programming reitablility, which

assists in the deslgn and use of programming languages.

In order to Improve program compositlon, comprehension, debugging, and
modlfication, [98] evaluated the use .of .deta‘l‘led flowcharts In these tasks from the per-
spective of the developer, majintalner, modiﬁer, and researcher. Groups of 53 - 70 no-
vl_ce through Intermediate subjects, In a serles of flve experiments, performed various
tasks using small 'programs. No significant differences were found between groups that
used and those that dld not use floweharts, questlonlng the merls of using detalled

flowcharts.

~ In order to Improve and better understand the unlt testing process, {79} evaluated
the technlques of three-person walk-throughs, funectional testing, and a control g.roﬁp-
from the perspectlve of the developer. Fifty-nine Junlor through advanced professional
programmers applied the techniques'to test a smail (100 source line) but nontrivial pro-
gram. The technlques were not different In the number of faults they detected, all pair-
Ings of technlques were superior to single techniques, and code reviews were less cost—

effectlve than the others. These results. assist In the selectioz_l of appropriate software

13

testlng technlques.

In order to valldate a partlcular metric family, [17] evaluated the abillty of a pro-
posed metric famlly to explalﬁ d!ﬂ‘erencgs In system development methodologles and sys-
tem changes from tile perspectlve .of tﬁe developer, pro.]eét manager, and researcher.
The metrics were applled to 19 verslons of a small (800 — 2200) compiler,. which were
developed by teams of advanced unlverslty studenﬁs using three different development
approaches (see the ﬂrst. study {15] described In this sectlon). The.m.ajor results includ-
ed 1) the metrics were able to differentiate among prolects developed with different de-

.velopment metho'dologles; and 2) the dlﬁ‘erences among Indlviduals had a large effect on
the relatlonships between the metrics and aspects of system development. These results

suggest Inslghts Into the formulatlon and appropriate use of software metries.

- In order to lmprove the understanding of why software errors occur, [65] character-
lzed programmer misconceptions, cognltive strategles, and thelr manifestations as bugs
In programs from the perspective of the developer and researcher. Two-hundred-four
novlce programmers separately attempted lmp'lémentatlons of an elementary program.
The results supported the programmers’ intended use of *‘programming plans” [100] and
revealed that most people preferred. a read-process strategy over a process-read strategy.
The results advance the understanding of how indlvlduals wrlte programs, why they

sometimes make errors, and what programming language constructs should be avallable.

In order to understand the effect of coding conventlons on program comprehensibiil-
ty, [73] conducted a study to evaluate the relatlonship between Indentatlon levels and
program comprehension from the perspectlve of the developer. Eilghty-six novice

through professional subjects answered questions about one of seven program variations

14

with different level and type of Indentation. The major result was that an Indentatlon

devel of two or four spaces was preferred over zZero or six.

. In order to lmprove. software development approaches, [29] characterlzed and
- evaluated the prototyping and speelfying develppment approaches from the: perspectlve
of tﬁe developer, project mapager, and user. Seven two- and three-person teams, con-
slstlng of unlversity graduate students, developed verslons of the same applicatlon soft-
ware system {2000 — 4000 llne); four teams used a requlrement/deslgn_ speclfying ap-
proach a.nd three teams used a prototyping approach. The systems developed by proto-
typlng were smaller, requlred less development eﬁ‘ort, and were easler to use. The sys-
tems develope_d by speclfylng had more coherent designs, more complete funectionallty,
and software that was easler to Integrate. These results contribute to the understanding

of the merlts and appropriateness of software development approaches.

In order to valldate the theoretical model for N-version programming {86], [67, 3]
conducted a stu.dy to evaluate the effectiveness of N-version programming fqr rellabllity
from the perspective'of the customer and user. N-version programmling uses a high-level
driver to connect several separately deslgned verslons of the same system,' the systems
"vote” on the correct solutlon, and the solutlon provided by the. majorlty of the systems
Is output. Twenty-seven graduate students were asked to Independently deslgn an 8.00
source llne system. Tile f_actors. efcam’lned Included Individual .system rellabllity, total
N-verslon system rellabllity, and classes of faults that occurred In systems slmultaneous-
ly. The maljor result was that the assumption of Independence of the faults In programs
1s mot justified, and therefore, the rellablllty of the combined "voting” syst.em may not

be as hlgh as glven by the model.

15

in §rder to improve and better understénd software development approaches, {94]
characterized and evaluated the Cleanroom development approach [47, 48], in which
software 1s developed without executlon (l.e., completely off-line), from the perspective
.of the developer, pro)ect manager, and éust.omer. Fifteen three-person teams of ad-
vaﬁced unlverslty students separately developed a small system (800 — 2300 source line);
| tén teams used Cleanrcom and flve teams used a traditlonal development approach In a
non-parametrie design. The major results Included 1) most developers using the Clean-
| room”approa,(.:h were able tq balld systems wzlthouﬁ pfo_gram execution; and 2) the Clean-
room teams’ products met system requlrements more comple't,ely ‘and succeeded on more
operatlonal test cases than dld those developed with a traditional approach. The results
'suggest the feasiblllty of complete off-llne development, as In Cleanrcom, and advance

the understandling of software development methodology.

Other replicated project studles include {37, 5, 63].

4.3. Multi-Project Variation Studies

WI1th a motwvation to lmprove the understanding of resource usage durlng software
development, [4] conducted a study whose purpose was to predict development cost by
using a partlcular model (L.e., object) and to evaluate 1t from the perspective of the pro-
Ject manager, corporate manager, and researcher. The particular model generation
method was examined In a multl-prolect scope, with basellne data from 18 large (2500 -
100,000 source line) software projects In the NASA S.E.L. production environment {from
the program domaz'n), lﬁ whlch teams contalned from two to ten programmers (from the

_programmer domain) [10, 11, 38, 91]. The study design Incorporated multivariate

16

‘methods to parameterize the model. Objectlve and sublectlve measurement of the pro-

Jects was 'based_on 21 criterta® In three areas: methodology, complexlty, and personnel
| experlence. Study preparation lncluded preliminary work [52], ezecution Included an es-
tablished set of data collection forms [10], and analysis used forward multlvariate regres-
.s_ion methods. The major resuits (In the z'ntefpf;etatz'on context of the study purpose) ln-
clu.ded-l.) the estimatlon of software development resource usage Improved by consider-
Ing a set of.both base-llne-a.nd customlzation factors; 2) the applleation in the NASA
environment of the proposed model generatlon method, which conslders both .types of
factors, p-rodﬁced a resourée usage estlmate for a future project within one standard de-
viatlon of the actual; and 3) the confirmation of the NASA S.E.L. fo.rmula that the cost
per line of reusing code Is 20% of that of developlng new code. A major result (in the
. interprcta.tz'on con?emt of the fleid of research) is that._ the study highlights the difference
.of éach software deve!opmeht environment, which Inﬂuences_ the use of resource estima-
tlon models. The particular programming environment and projects sampled quallfy the
extrapolation of the results. The impact of the study s an advancement In the under-

standing of estlmatlng software development resource expendlture.

In order to assess, manage, and !mprove multi-project environments, [28, 28, 108,
13, 36, 18, 62, 109, 97, 105] characterlzed, evaluated, and/or predicted the effect of
several factors from the perspective of the developer, modifier, proJect manager, and

corporate manager. All the studles examined moderate to large projects from produc-

2 Twenty-one factors were selected after examlning a total of 82 factors that possi-
bly contrlbuted to project resource expenditure, Including 36 from [106] and 16 from
[28]. o o . . o _ .

17

tlon environments. The relatlonshlps lnvestlgated were among varlous factors, Including
struectured f)rogra.mmlng, personnel background, development process and product con-
stralnts, prolect complexlty, human and computer resource consumptlon, error-prone
software identlﬂ-ca.tiqn, error/change distributlons, data coupllng/blndlng., project dura-
tlon, staff size, dégree of management control, and productivity. These studies have
proﬂded increased project visibllity, greater understanding of classes of factors sensitlve
to. p_roject performaﬁce, awareness of the n.eed for prolect measurement, and efforts for
- standardization of definitions. AnalySis has begun 'on incorporating broject varlation in-

formatlon Into a management tool [16, 23].

In order to Improve and better understand the éoftware malntenance process, [104]
conducted an experlment to evaluate the relatlonship between the rate of malntenance
rei)air and various product and process metrics from the perspé.ctlve of .the developer,
Iiser, and the broject manager. A total of 44‘f small {up to 600 statements) commercial
and clerleal Cobol programs from one Australlan organizatlon and twe U.S. organlza- |
tions were analyzed. The product and process metries included proéram complexity,
' _progré,mmlng style, programmer quallty, and number of system releases. The major
results were 1) In the Australian organizatlon, program 'complexlty and programming
style significantly affected the malntenance repalr rate; and 2).1n the U.S. organizations,
the number of timeé a system was released slgnificantly affected 'the malntenance repalr

rate.

In order to lmprove the software malntenance process, [1] evaluated operational
faults from the perspective of the user,. customer, project manager, and corporate

manager. The fault history for nliie large productlon products (e.g., operating system

18

releases or thelr major components) was empirleally modeled. He developed an ap-
proach for estimating whether and un.der what clrcumstances preventively fixing faults
lﬁ operatlonal software In the field was appropriate. Preventlvely fixing faults consists
of lostalling fixes to faults that have yet ;to be dlsco#ered by particular users, but have
_'béen discovered bﬁ' the veﬁdor or other users. The major result Is that for the typleal
user, correctlve service Is a reasonable wayr of deallng with most faults after the code has
been In use for a falrly long perlod of tlme, while preventively fixing hlgh—rat.e fa,ults is

advantageous during the time lmmedlately followlng release.

In order to assess the. effectlveness of the testlng process, [31] e%raluated estimations
of the number of residual faults In a system from the perspectlve of the customer,
developer, and proJect manager. The study was based on fault data collected from
three large (2000 - 6000 module).system's developed In the Hughes-Fullerton environ-
ment. The study partitioned the faults based on severity and analyzed the differences hi
estimates of remalning faults according to_ stage of testlpg. Insights were galned Into re-

latlonshlps between fault detection rates and residual faults.

4.4. Single Project Studies

With a motivetion to tmprove softwgre development methodology, [8] conducted a
_study whose purpose was to characterlze the process (l.e., object) of lteratlve enhance-
ment 1In conjunction with a top-down, stepwlse refinement development approach from
the perspéctc've of the developer. The development process was exaxﬁmed In a single
proJect scope, where the authors, two experlenced Individuals (from the programmer

domam), built a 17,000 IIne compller (from the program domam) The study deszgn In-

19

corpeorated descriptive methods to c#pture system evolution. ObJlectlve measurement 6f
the system was in several crileria areas: slze, modularity, local/global data usage, and
data binding/coupling (62, 102]. Study preparation included language design [9], ezecu-
tion incorporatgd static analysis of system snapshots, and enalysis used descriptive

statistics. The results (in the tnterpretation confext of the statistical framework) includ-

ed 1) the percentage of global variables deereased over time whl}e the percentage of ac-
tual vs. posslblé data couplings across modules. Increased, suggesting the usage. of globai
' _'d.a_ta became m6re approprlate éver time; and 2) the number of procedures and func-
tloﬁs rose over. time whlle the number of statements per procedure or function de-
creased, suggesting incréased modularity. The major result of the study (in the in-
terpretation context of the study purpose) wés that the lteratlve enhancement technlque
encouraged the development of a software product that had several generally desirable
aspects of systein structure. A major result (ln the ¢nierpretation context of the fleld of
research) Is thé,t the study demonstrates the feasibility of lteratlve enhancement. The
particular progx;ammlng Eean;l and project examined quallfy the extrapolation of the
results. The impact of the study I1s an advancement In the understanding of software

development approaches.

In order to lmprove, better understand, and .managé the software development pro-
cess, [6] evaluated the effect of applylng chlef programming teams and structured pro-
gramming In system development from the perspectlve of the user, developer, project
manager, and corporate manager. T.he Iarge (83,000 line) system, known as ‘“The New
York Times Prolect,” and was developed by a team of professlonals organized as a chief

~ programmer team, using structlired code, top down deslgn, walk-throughs, and program

20

I}braries. Several beneflts were ldentified, Including reduced development tlme and cost,
reduced time In system Integration, and reduced fault detection In acceptancg testing
and fleld use. The results of the study demonstrated the feasiblilty of the chlef pro-
.gra,mmer team concept and the accompanyling methodologles in a production environ-

" ment.

In order to lmprove thelr development environments through lncrea,sed understand-
Ing, [4.9, 14, 2, 81, 19] each conducted single proJect studles to characterize the errors
aﬁd changes ﬁade during a development project. They examined the development of a
modérafe to large software project; doﬁe by a :mult1~person team, In a broduction en—.
vironment. They analyzed the frequency and distributlon of érrors during development
and thelr relatlonship with several factors, Including module size, software complexity,
developer experlence, method of detectlon and lIsolation, effort for Isolation and correc-
tion,. phase of entrance into the system a,nd_ observance, reuse of existing design and
cod.e, and role of the requirements document. ‘Sﬁch analyses have produced fault
categorization schemes and have been useful In understanding and \mproving a develop- |

ment environment.
In order to Improve design methodology, [55, 27] examined a ground-support Sys-

tem written In Ada® to characterize the use of Ada packages from the perspective of the
developer.” Four professional programmers developed a project of 10,000 source Nnes of

code. Factors such as how package use affected the ease of system modification and

3 Ada Is a trademark of the Department of Defense.

21

how to measure modﬁle change resistance were ldentifled, as well as. how these observa-
‘tlons related to aspects of the development and tralning. The malor results were 1)
se.veral measures of Ada programs were developed, and 2) there was a ndlcation that a
Iqt of tralning will be hecessary If we are to expect the facilities of Ada tb be properly

used.

In order to assess and Ilmprove software testing methodology, [21, 88] characterlzed
and evaluated the relatlonshlp between systém acceptance t.estS and operational usage
from the perspective of the developer, project mané,ger, customer, and researcher. The
execution coverage -of functlonally generated acceptance test cases Qnd a sample of
| operational usage cases was monltox;ed for a medlurﬁ-slze {10,000 llne) software system
developed In a productlon environment. The resulis calculated that 6495 of the pro-
'gram statements were executed durlng system opei'atlon -and that the acceptance test
cases corresponded reasonably well to the operational usage. The results glve Inslghts
Into the relﬁtlonshlps among structural coverage, fault deﬁectlon; system testing, and

.8ystem usage.

5. Problem Areas in Experimentation

The followlng sectlons ldensify several problem areas of experimentation in software
engineering. These areas may serve as guidellnes in the performance of future studies.
After mentionlng some overall observations, cautlons in each of the areas of experiment

definition, planning, operation, and Interpretation are dlscussed.

22

5.1. Experimentation Overall

There appears to be no “unlversal model” or “siiver bullet” in software englﬁeerlng.
There are an enormous number of factors .that differ across environments, In terms of
deslred cost/quallty. goals, methodoidgy, experience, problem domaln, constralnis, etc.
[108, 26, 4, 13, 28]. This results In every software development/malnten#nce/ ... environ-
ment belng different. Another area of wlde varlation s the many-to-one differential in
human performance [17, 45, 24]. The particular Individuals examined in an empirical
. study can make an .enormous difference. Among other conslderatlons, ﬁhese varlations
suggest, ﬁhat .metrlcs néed 0 be valldated for a ﬁartlcula,r environment -and a particular
* person to show that they capture what 1s Intended (17, 18]. Thus, experimental studles

should conslder the potentlally vast differences among environments and people. ‘

5.2. Experiment Definition

In the deﬂnitlon of the purpose for the experiment, the rormulatlon. of Intultive
problems Into precisely stated goals I1s a nontrivial task (20, 22]. Defining the purpose of
a study often- requires the artlculatlon of what 1s meant by “software quallty.” The
many Interpretations and perceptions of quallty [32, 38, 72] highlight the need for con-
sidering whose perspectlve of quality Is belng examined. Thus, a precise specification of

the problem to be investigated Is a major step toward 1ts solutlon.

5.3. Experiment Planning

. Experimental planning shouid have a horizon beyond a first experiment. Con-
. trolled studles may be used"to focus on the effect of certaln factors, while their results

may be conflrmed In repllcatlons {92, 08, 101, 110, 57, 58, 44, 43, 24| and/of'larger case

23

studles {4, 15]. When deslgning studles, conslder that a combination of factors may be
effective as a “‘eritical mass,” even though the particular factors may be lneffective when
treated In Isolatlon [15, 105]. Note that formal designs and the resultlng statlstical
robustness are desirable, but we should not be driven exclusively by the achievement of
~ statistical signlficance. Common sense must be malntained, which allows us, for exam-
ple, to experiment Just to help develop hypotheses [19, 109]. Thus, the experimental
planning process should Include a serles of experlments for exploration, verification, and

application.

5.4. Experiinent Operation

The ﬁoilect.lon of the required data constltutes the primary result of the study
operation phase. The data must be carefully defined, valldated, and communlecated to
“ensure 1ts conslstent interpretation by all persons. assoclated with the experiment: sub-
.jects under observétlon, experlmenters, and llterature audience [18]. There have been
papers In the literature that do not deflne thelr data well enough to enable a compariéon
of results across many prolects and environments. We have often contacted the experi-
menter to disco{rer thaﬁ we are measuring different thilngs. _Thus, the experlmenter
shoulci be cautious aboﬁt the deflnitlon, valldation, and communication of data, since

they play a fundamental role In the experimental process.

5.5. Experiment Interpretation

The appropriate presentation of results from experiments contributes to their
correct Interpretation. Experimental results need to be qualified by the particular sam-

ples (e.g., programmers, programs) analyzed [20]. The extrapolation of. results from a

24

. partlcular sample must consider the representatlveness of fhe sample to other envirom-
ments [41, 111, 106, 86, 4, 28]. The Visiblilty of the experlﬁenﬁal results In professtonal
forums and the open llterature provides valuable feedback and constructive eriticlsm.
Thus, the presentatlon of experimental results should include approprlate.quallﬁcatlon

and adequate exposure to support thelr proper Interpretation.

8.. Conclusion

Experlmentation 1n sbftwa,re englneering supports the advancement of the fleld
through .a,n Iteratlve learning process. The experlmental process has begun to be applied
In a multlpiicity of environments to study a varlety of software technology areas. From -
the studles presented, 1t is clear that experlmgntatlon has proven effectlve In providing
lnslghts and furtherlng our domaln of knowledge about the software process and pro-
duct. In fact, there Is a Ieamlng process In the experimentation approach ltself, as has

. been shown 1n thls paper.

We have descrlbed a framework for experimentation to provide a structure for
pi'esentlng previous studles.. We also recommend ﬁhe framework as a mechanism to fa-
cllitate the definition, planning, operation, and Interpretation of past and future studles.
The problem areas discussed are meant to provide some useful recommendations for the

| application of the expérlmental process In software engineering, .T.he experimerntal
framework cannot be used In a vacuum; the framework and the lessons 1earned comple-
ment one another and should be used In a synerglstic fashlon. ‘This work contributes to

the undérstandlng and advancement of experimentstion in software englneerlng.

25

References

1] . B. N. Adams, Optimizing Preventive Service of Software Products, IBM Journal of Research and
Development 28, 1, pp. 2-14, Jan. 1984,

[2] - . J-L. Albin and R. Ferreol, Coliecte et analyse de mesures de logiciel (Collection and Analysis of
Software Data), Technigue et Science Informatigues 1, 4, pp. 297-313, 1982. (Rairo ISSN
0752-4072)

2] A. Avizienis, P. Gunningberg, J. P. J. Kelly, L. Strigini, P. J. Traverse, K. S. Tso, and U. Voges,

The UCLA Dedix System: A Distributed Testbed for Multiple-Version Software, Digest Fi-
feenth Int. Sym. Fault-Tolerant Computing, Ann Arbor, MI, June 19-21, 1985.

- 4] J. W. Bailey and V. R. Basili, A Meta-Model for Software Development Resource Expendltures,
Proe. Fifth Int. Conf. Software Engr., San Diego, CA, pp. 107-116, 1981,

[5] J. W. Bailey, Teaching Ada: A Comparison of Two Approaches Dept. Com. Sci., Univ. Maryland,
" College Park, MD, working paper, 1984.

(8] F. T. Baker, System Quality Through Structured Programming, AFIPS Proc. 1972 Fall Joint
Computer Conf. 41, pp. 339-343, 1972.

[7] V. R. Basili and F. T. Baker, Tutorial of Structured Programming, Fleventh IEEE COMPCON,
IEEE Cat. No. 75CH1049-8, 1975.

(8] V. R. Basili and A. J. Turner, Iterative enhancement: a practical technique for software develop-
: ment, [EEE Transactions on Software Engineering SE-1, 4, Dec. 1975,

[9i V. R. Basili and A. J. Turner, SIMPL-T: A Structured Programming Laenguage, Paladin House
Publishers, Geneva, IL, 1976.

10 V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, Jr., W. P, Truszkowski, and D. L.
Weiss, The Software Engineering Laboratory, Software Eng. Lab. NASA/Goddard Space
Flight Center, Greenbelt, MD, Rep. SEL-77-001, May 1977.

[11] V. R. Basili and M. V. Zelkowitz, Analyzing Medium-Scale Software Developments, Proc. Third
Int. Conf. Software Engr., Atlanta, GA, pp. 116-123, May 1978.

i12] V. R. Basili, Tutoiial on Models and Metrics for Software Management and Enginecring, IEEE
Computer Society, New York, 1980.

[13] V. R. Basili and K. Freburger, Programming Measurement and Estimation in the Software En-
gineering Laboratory, Journal of Systems and Software 2, pp. 47-57, 1981,

[14 V. R. Basili and D. M. Weiss, Evaluation of a Software Requirements Document By Analysis of
' Change Data, Proc. Fifth Int. Conf. Software Er_agr., San Diego, CA, pp- 314-323, March 9-12,
1981,

[15] = V. R. Basili and R. W. Reiter, A Controlled Experiment Quantitatively Comparing Software De-
velopment Approaches, [EEE Trans. Software Engr. SE-7, May 1981.

26

(18]
(17]
28]
[L9]

{20]

e

(22]

(23]

[24]

(25]

[26]

27]

(28]

(29]

(30]

(31]

-V,

V.

R. Basili and C. Doerflinger, Monitoring Software Development Through Dynamic Variables,
Proe. COMPSAC, Chicago, IL, 1983, .

R. Basili and D. H. Hutchens, An Empirical Study of a Syntactic Metrie Family, Trans. Soft-
ware Engr. SE-9, 6, pp. 664-672, Nov. 1983. :

. R. Basili, R. W. Selby, Jr., and T. Y. Phillips, Metric Analysis and Dasa Validation Across

FORTRAN Projects, [EEE Trans. Software Engr. SE-9, 6, pp. 652-663, Nov. 1983.

- R. Basili and B. T. Perricone, Software Errors and Complexity: An Empirical Investigation,

Communications of the ACM 27, 1, pp. 42-52, Jan. 1984,

. R. Basii and R. W. Selby, Jr.,, Data Collection and Analysis in Software Research and

Management, Proceedings of the American Statistical Association and Biometric Svciety Joint
Statistical Meetings, Philadelphia, PA, August 13-16, 1984.

. R. Basili and J. R. Ramsey, Structural Coverage of Functional Testing, Dept. Com. Seci., Univ,

Maryland, College Park, Tech. Rep. TR-1442, Sept. 1984,

. R. Basili and D. M. Weiss, A Methodology for Collecting Valid Software Engineering Datax,

Trans. Software Engr. SE-10, 6, pp. 728-738, Nov. 1984,

. R. Basili and C. L. Ramsey, Arrowsmith-P — A Prototype Expert System for Software En-

gineering Management, Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep., 1985.
(submitted to the Symposium on Ezpert Systems in Government, Mclean, VA, Oct, 1985)

- R. Basili and R. W, Selby, Jr., Comparing the Effectiveness of Software Testing Strategies,

Dept. Com. Sei., Univ. Maryland, College Park, Tech. Rep., 1985. (submitted to the JEEE .
Trans. Software Engr.) ' .

. R. Basili and R. W. Selby, Jr., Four Applications of a Software Data Collection and Analysis

Methodology, Proc. NATO Advanced Study Institute: The Challenge of Advanced Computing
Technology to System Design Methods, Durham, U. K., July 29 - August 10, 1985.

. R. Basili and R. W, Selby, Jr., Calculation and Use of an Envircnment’s Characteristic Soft-

ware Metric Set, Proc. Eighth Int. Conf, Software Engr., London, August 28-30, 1985.

. R. Basili, E. E. Katz, N. M. Panlilio-Yap, C. L. Ramsey, and S. Chang, A Quantitative Char-

acterization and Evaluation of a Software Development in Ada, [EEE Computer, September
1985,

- W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.

. W. Boehm, T. E. Gray, and T. Seewaldt, Prototyping Versus Specifying: A Multiproject Ex-

periment, /[EEE Trans. Software Engr. SE-10, 3, pp. 290-303, May 1984.

.- C. Bogdan and S. K. Biklen, Qualitative Research for Education: An Introduction to Theory

and Methods, Allyn and Bacon, Boston, MA, 1982.

Bowen, Estimation of Residual Faults and Testing Effectiveness, Seventh Minnowbrook
Workshop on Software Performance Evaluation, Blue Mountain Lake, NY, July 24-27, 1984,

27

{32]

(33}

(34]

35]

(39]

[40}
[41]

(42]

(431

[44]

(45]

(46!

[47]

[48] .

T. P. Bowen, G. B. Wigle, and J. T. Tsai, Specification of Software Quality Attributes, Rome Air
Development Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-85-37 (three
volumes}), Feb. 1985.

G. E. P. Box, W. G. Hunter, and J. 3. Hunter, Stalistics for Ezperimenters; John Wiley & Sons,
New York, 1978,

. F. P. Brooks, Jr., The Mythical Man-Montk, Addison-Wesley Publishing Co., Reading, MA, 1975.

R. E. Brooks, Studying Programimner Behavior: The Problem of Proper Methodology, - Communica-
tions of the ACM 23, 4, pp. 207-213, 1980.

W. D. Brooks, Software Technology Payoff: Some Statistical Evidence, J. Systems and Software 2,
© pp. 3-9, 1981,

F. O. Buck, Indicators of Quality Inspections, IBM Systems Products Division, Kingston, NY,
Tech. Rep. 21.802, Sept. 1981.

. N. Card, F. E. McGarry, J. Page, 3. Eslinger, and V. R. Basili, The Software Engineering La-
boratory, Scftware Eng. Lab., NASA/Goddard Space Flight Center, Greenbelt, MD Rep.
SEL-81-104, Feb. 1982.

J. P. Cavano and J. A. McCall, A Framework for the Measurement of Software Quality, Proec.
Software Quality and Assurance Workshop, San Diego, CA, pp. 133-139, Nov. 1978,

W. G. Cochran and G. M. Cox, Ezperimental Designs, John Wiley & Sons, New York, 1950,

W. G. Cochran, Sempling Technigues, John Wiley & Sons, Inc., 1953:

P. A, Cu_rrit., M. Dyer, and H. D. Mills, Certifying the Reliability of Software, IBM Corp., Federal
Systems Division, 6600 Rockiedge Dr., Bethesda, MD, 20817, Tech. Rep., March 1985. (sub-
mitted to the JEEE T'rans. Software Engineering) :

B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love, Measuring the Psychological

- Complexity of Software Maintenance Tasks with the Halstead and McCabe Metrics, JEEE
Trans. Softiware Engr., pp. 96-104, March 1979.

B. Curtis, S. B. Sheppard, and P. M. Milliman, Third Time Charm: Stronger Replication of the
Ability of Software Complexity Metrics to Predict Programmer Performance, Proc. Fourth Int.
Conf. Software Engr., pp. 356-360, Sept. 1979.

B. Curtis, Cognitive Science of Progré,mming, Sizth Minnowbrook Workshop on Software Perfor-
mance Evaluation, Blue Mountain Lake, NY, July 19-22, 1983,

M. Dyer and H. D. Mills, Developing Electronic Systems with Certifiable Reliability, Proc. NATO
. Conf., Summer, 1982.

M. Dyer, Cleanroom Software Development Method, IBM Federal Systems Division, Bethesda,
MDD, October 14, 16982,

T. Emerson, A Discriminant Metric for Module Cohesion, Proc. Seventh Intl. Conf. Software
Engr., Orlando, FL, pp. 264-303, 1084,

28

- [49]

(50]

- [51]

(62}

(58]

[54]

55]

[56]

(57]

(58],

I5g]

[60}
{61]
(62}

(63]
[64]

[65]

[66]

A. Endres, An Analysis of Errors and their Causes in Systems Programs, IEEE Trans. Software
Engr., pp. 140-149, June 1975.

A R. Feuer and E. B. Fowlkes, Some Results from an Empirical Study of Computer Software,
Proe. Fourth Int. Conf. Software Engr., pp. 351-355, 1679.

R. W. Floyd Assigning Meaning: to Programs, Am. Math. Soe. 19, ed. J T, Schwartz, Provi-
dence, RI, 1967.

K. Freburger and V. R. Basili, The Software Engineering Laboratory: Relationship Equations,
Dept. Com. Sci., Univ. Maryland, College Park, Tech. Rep. TR~764, May 1979.

J. D. Gannon and J. J. Horning, The Impact of Language Design on the Production of Reliable -
Software, Trans. Software Engr. SE-1, pp. 179-191, 1975. .

J. D. Gannon, An Experimental Evaluation of Data Type Conventions, Communications of the
ACM 20, 8, pp. 584-595, 1977.

J. D. Gannon, E. E. Katz, and V. R. Basili, Characterizing Ada Programs:' Packages, The Meas-
urement of Computer Software Performance, Los Alamos National Laboratory, Aug. 1983.

A, L. Goel, Software Reliability and Estimation Techniques, Rome Air Development Center,

Grifliss Air Force Base, NY, Rep. RADC-TR-82-263, October 1982.

J. D. Gould and P. Drongowski, An Exploratory Study of Computer Program Debugging, Human
Factors 18, 3, pp. 258-277, 1974.

J. D. Gould, Some Psychological Evidence on How People Debug Computer Programs, [nterna-
tional Journal of Man-Machine Studies 7, pp. 151-182, 1975.

M. H. Halstead, Elements of Software Seience, North Holland, New York, 1977.

W. C. Hetzel, An Expermental Analysis of Program Verification Methods, Ph.D. Thesis, Univ. of
North Carolina, Chapel Hill, 1978.

C. A. R. Hoare, An Axlomatic Basis for Computer Programming, Communications of the ACM
12 10, pp. 576-583, Oct. 1969.

D. H. Hutchens and V. R. Basili, System Structure Analysis: CIusr.ermg ‘With Data Bindings,
IEEE Trans. Soft. Engr. SE-11, 8, Aug. 1985,

S-8. V. Hwang, An Empirical Study iz Functional Testing, Structural Testing, and Code
Reading/Inspectionx, Dept. Com. Sei., Univ. of Maryland, College Park, Scholarly Paper 362,
Dec. 1981.

Z. Jelinski and P. B. Moranda, Applicar,lons of a Probability-Based Model to a Code Reading Ex-
periment, Proc. IEEE Symposium on Computer Software Reliability, New York, pp. 78-81,
IEEE, 1973.

W. L. Johnson, S. Draper, and E. Soloway, An Effective Bug Classification Scheme Must Take the
_ Programmer into Account, Proe. Workshop High-Level Debugging, Palo A}to, CA, 1983,

J. P. 1. Kelly, Specification of Fault-Tolerant Multi-Version Software: Expenmental Studies of a
Demgn Diversity Approach, UCLA Ph.D. Thesis, 1982,

29

87] .

(68]

| 69]

(7o)
[71]
ir2]
73]
(74]

(78]

[76]
[77]

(78]

{79]
(80]

(81]

(82]

83]

54

J. Kpight and N. Leveson, A Large Scale Experiment in N-Version Programming, Proc. of the
Ninth Annuval Software Engineering Workshop, NASA/GSFC, Greenbelt, MD, Nov. 1984,

R. 'C. Linger, H. D. Mills, and B. I. Witi, Structured Programming: Theory and Praclice,
- Addison-Wesley, Reading, MA, 1979.

B. Littlewood and J. L. Verrall, A Bayesian Reliability Growth Model for Computer Software,
Applied Statistics 22, 3, 1973,

B. Littlewood, Stochastic Rella.blhty Growth: A Model for Fault Renovation Computer Programs

and Hardware Designs, I[EEE Trans. Reliability R-30, 4, Oct. 1981.

T. J. McCabe, A Complexity Measure, [EEE Trans .S’oftware Engr. SE-2, 4, pp. 308-320, Dec,
1976.

J. A, McCall, P. Richards, and G. Walters, Factors in Software Quality, Rome Air Development -
Center, Griffiss Air Force Base, NY, Tech. Rep. RADC-TR-77-369, Nov. 1977.

R. L Mi_ara‘, J. AL Mlisselman, J. A. Navarro, and B. Shneiderman, Program Indentation and
Comprehensibility, Communications of the ACM 28, 11, pp. 861-867, Nov. 1983,

~F. Moher and G. M. Schneider, Methodology and Experimental Research in Software Engineering,

International Journel of Man-Machine Studies 18, 1, pp. 65-87, 1982.
S. A. Muiaik, The Foundations of Factor Analysis, McGraw-Hill, New York, 1972.

I. D. Musa, A Theory of Software Reliability and Its Application, IEEE Trans. Software Engr.
SE-1, 3, pp. 312-327, 1975.

J. D. Musa, Software reliability measurement, Journal of Systems and Software 1, 3, pp. 223-241,
1980.

G. J. Myers, Compoasite/Structured Design, Van Nostrand Reinhold, 1978.

G. J. Myers, A Controlled Experiment in Program Testing and Code Walkthroughs/Inspections,
Commaunications of the ACM, pp. 760~768, Sept. 1978,

J. Neter and W. Wasserman, Applied Linear Statistical Models, Richard D. Irwin, Inc., Home-
wood, I, 1574,

T. J. Ostrand and E. J. Weyuker, Collecting and Categorizing Software Error Data in an Indus-
trial Environment, Dept. Com. Sci.,, Courant Inst. Math. Sci., New York Univ., NY, Tech.
Rep. 47, August 1982 (Revised May 1983).

D. J. Panzl, Experience with Automatic Program Testing, Proc. NBS Trends and Applications,
Nat. Bureau Stds., Gaithersburg, MD, pp. 25-28, May, 28 1931,

D. L. Parnas, On the Criteria to be Used in Decomposing Systems into Modules, Communications
of the ACM 15, 12, pp. 1053-1058, 1972.

. D. L. Parnas, Some Conclusions from an Experiment in Software Engineering Techniques, AFIPS

Proe. 1972 Fall Joint Computer Conf. 41, pp. 325-329, 1972.

30

[85]
(86]
(87]
(s8]
[89]

(60}

[01]

(92]

(93]

o4

[o8)
(9]
[97]
(o8]

{99]

[100]

[101]

D. L. Parnas, A Technique for Module Specification With Examples, Communications of the ACM
15, May 1972.

L. Putnam, A General Empirical Solution to the Macro Software Sizing and Estimating Problem,
IEEE Trans. Software Engr. 4, 4, 1978.

H.R. Ramsey, M.E. Atwood, and J.R. Van Doren, Flowcharts Versus Program Design Languages:
An Experimental Comparison, Communications ACM 28, 6, pp. 445-449, June 1983. -

J. Ramsey, Structural Coverage of Functional Testing, Seventh Minnowbrook Workshop on Soft-
ware Performance Evaluation, Blue Mountain Lake, NY, July 24-27, 1984. '

Statistical Analysis System (SAS) User's Guide‘, SAS Institute Inc., Box 8000, Cary, NC, 27511,
1982, .

H. Scheffe, The Analysis of Varience, John Wiley & Sons, New York, 1959.

" Annotated Bibliography of Software Engineering Laboratory (SEL) Literature, Software Eng.

Lab., NASA/Goddard Space Flight Center, Greenbelt, MD Rep. SEL-82-006, Nov. 1982.

R. W. Selby, Jr., An Empirical Study Comparing Software Testing Techniques, Sizth Min-
nowbrook Workshop on Software Performance Evaluation, Blue Mountain Lake, NY, July 19-
22, 1983.

R. W. Selby, Jr., Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
Dept. Com. Sci., Univ. Maryland, College Park, Ph. D. Dissertation, 1985.

R. W, Selby, Jr., V. R. Basili, and F: T. Baker, CLEANROOM Software Development: An Empir-

ical Evaluation, Dept. Com. Sei., Univ. Maryland, College Park, Tech. Rep. TR-1415, Febru-
ary 1985. (submitted to the JEEE Trans. Software Engr.)

J. G. Shanthikumar, A Statistical Time Dependent Error Qccurrence Rate Software Reliability
Model with Imperfect Debugging, Prec. 1981 National Computer Conference, June 198%.

B. A. Sheil, The Psychological Study of Programming, Computing Surveys 13, pp. 101-120, March
1981.

V.Y. Shen, T.J. Yu, SM Thebaut, and L.R. Pauisen, Identifying Error-Prone Software - An Em-
pirical Study, I[EEE Trans. Soft. Engr. SE-11, 4, pp. 317-324, April 1985,

B. Shneiderman, R. E. Mayer, D. McKay, and P. Heller, Experimental Investigations of the Utili-
ty of Detailed Flowcharts in Programming, Communications of the ACM 20, 6, pp. 373-381,
1977. :

S. Siegel, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1955.

E. Soloway, K. Ehrlich, J. Bonar, and J. Greenspan, What Do Novices Know About Program-
ming?, in Directions in Human-Computer Interactions, ed. A. Badre and B. Shneiderman,

Ablex, Inc., 1982,

E. Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge, Trans. Seftware Engr.
. SE-10, 5, pp. 595-609, Sept. 1984. '

31

[102]

[103]

(104]

[L0OB]

-[106}

[107]

[108] _

[209] |

(110]

[111]

12

(113}

W. P. Stevens, G. J. Myers, and 1. L. Constantine, Structural Design, IBM Systems Journal 13,
2, Pp. 115-139, 1974,

L. G. Stucki, New Directions in Automated Tools for Improving Software Quality, in Current
- Trends in Programming Meithodology, ed. R. T. Yeh, Prentice Hall, Englewood Cliffs, NJ,
1977.

I.. Vessey and R. Weber, Some Factors Affecting Program Repair Maintenance: An Empirical
Study, Communications of the ACM 28, 2, pp. 1238-134, Feb. 1983,

J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, $. Hoben, and Y. Liu, Productivity

Factors and Programming Environments, Proc. Sevenih Int. Conf. Software Engr., Orlando,
FL, pp. 143-152, 1984.

C. E. Walston and C. P. Felix, A Method of Programming Measurement and Estimation, [BM
Systems J. 18, 1, pp. 54-73, 1977,

G. Weinberg, The Psychology of Computer Programming, Van Nostrand Rheinhold Co., 1971.

M. Weiser, Programmers Use Slices When Debugging, Communications ACM 25, pp. 446-452;
July 1982, .

D. M. Weiss and V. R. Bagsili, Evaluating Software Development by Analysis of Changes: Some
Data from the Software Engineering Laboratory, IEEE Trans. Software Engr. SE-11, 2, pp.
157-168, February 1985.

L. Weissman, Psychological Complexity of Computer Programs: An Experimental Methodology,
SIGPLAN Notices 9, 6, pp. 25 - 36, June 1974,

R. Wolverton, The Cost of Developing Large Scale Software, IEEE Trans. Oomputer;s 23, 6, 1974.
S. N. Woodfleld, H. E. Dunsmore, and V. Y. Shen, The Effect of Modularization and Comments
on Program Comprehension, Dept. Com. Sci., Arizona St. Univ., Tempe, AZ, working paper,

1981,

J. C. Zolnowski and D. B. Simmons, Taking the Measure of Program Complexity, Proc. National
Computer Conference, pp. 329-336, 1681.

32

Figure 1. Summary of the framework of experimentation.
pgUle 1. oummary of the framework of experimentation

_I. Definition

Motivation Object Purpose Perspective Domain " Scope
Understand | Product Characterize | Developer Programmer Single project
Assess Process Evaluate Modifier Program/project | Multi-project
Manage Model Predict Maintainer) Replicated project
Engineer -Metric Motivate - Project manager- Blocked subject-project
TLearn Theory : - Corporate manager

Improve) Customer

Validate User

Assure Researcher
o II. Planning

Design _Criteria : Measurement

Experimental designs
Incomplete block
Completely randomized
Randomized block
Fractional factorial

Multivariate analysis

Direct reflections of cost/quality
Cost
Errors
Changes
Reliability
Correctness

Metric definition
- Goal-question-metric
Factor-criteria-metric

Metric validation

Data collection
Automatability

Correlation Indirect reflections of cost/quality Form design and test

Factor analysis Data coupling ' Objective vs. subjective

Regression Information visibility Level of measurement
Statistical models Programmer comprehension Nominal/classificatory
Non-parametric Execution coverage Ordinal/ranking
Sampling Size Interval

. Complexity Ratio
III. Operation ‘ .
Preparation Execution - Analysis

Pilot study

Data eollection
Data validation

Quantitative vs. qualitative

Preliminary data analysis
Plots and histograms
Model assumptions

Primary data analysis

Model application

1V. Inter;)-r_etat.ion

Interpretation context

Extrapolation

Impact

Statistical framework Sample representativeness Visibility
Study purpose Replication
Field of research Application

Figure 2. Studj' definition example.

Definition element I example

Domain: programmer

Motivation To imprové the unit testing -prbcess,

.| Purpose characterize and evaluate
QObiject the processes of functional and structural testing
Perspective from the perspective of the developer .

as they are apblied by experienced programmet"'s'

Domain: program

_to unit-size software

Scop_e

in a blocked subject-project study.

more than
one

' Figure 3. Experimental scopes.

#Teams per #Projects
project
one more than one
one Single project | Multi-project

variation

Replicated Blocked
project subject-project

Inclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS

1a. REPORTY SECURITY CLASSIFICATION

2a. SECUAITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Zb. DECLASSIFICATION/OOWNGRADING SCHEDULE

4, PERFORMING ORGANIZATION REPORT MNUMBER(S) 5. MONITORING OAGANIZATION REPOAT NUMBERI(S}

Department of Computer Science

University of Maryland TR-1575
6a. DAME OF PEHFORI%lNéZ ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGAMIZATION
epartment o cmputer Scl.- {1t applicable)
University of Maryland Uof MD

6c. ADDRESS (City, State and ZIP Code) 7b, ADDRESS (City, Stale and ZIP Code)

University of Maryland
College Park, Maryland 20742

8a. NAME QF FUNDING/SPONSQORING . 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OHGANIZA_TION (If applicable)
AFOSR/NASA
8c. ADDRESS fC'J';W. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. . NOL NO,

; 11. TITLE (fnclude Security Classification}
! Experimentation in Softwar= Engineering

12, PERSONAL AUTHOR(S) ’ :
Victor R. Basili, Richard W. Selby, Jr., and David H. Hutchens.

13a, TYPE QF AEPORT 13b. TIME COVERED 14. DATE OF REPORT (¥r, Ma., Day) 16. PAGE COUNT
Technical/Scientific FROM . To November 20, 1985

re. SUPPLEMENTARY NOTATION)

I‘f?. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number}

FIELD GROUP sus. GR.

i

: : 19. ABSTRACT (Continue on reverse if necessary ﬂl;ld identify by block number}
' Experimentation in software engineering supports the advancement of the field
B through an iﬁerative learning process. In this paper we present a framework for
. ar;alyzing most of the experimental work performed in software engineering over the 7
past several years. We describe a variety of experiments in the framework and
: discuss their contribution to the software epgineering discipline. Some useful

recommendations for the application of the experimental process in software

engineering are included.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED K] same as reT. I oTic useas (O Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEFHONE NUMBER 22¢. OFFICE $YMBOL
. a4 . ne, A de)
Viector R. Basili 301’—4’?3—?652
[-
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. " Unclassified

" SECURITY CLASSIFICATION OF THIS P,

