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Experimentation in the Schubert Calculus

Abraham Mart́ın del Campo and Frank Sottile

Abstract.

Many aspects of Schubert calculus are easily modeled on a com-
puter. This enables large-scale experimentation to investigate subtle
and ill-understood phenomena in the Schubert calculus. A well-known
web of conjectures and results in the real Schubert calculus has been
inspired by this continuing experimentation. A similarly rich story con-
cerning intrinsic structure, or Galois groups, of Schubert problems is
also beginning to emerge from experimentation. This showcases new
possibilities for the use of computers in mathematical research.

§1. Introduction

The Schubert calculus of enumerative geometry is a rich and well-
understood class of enumerative-geometric problems that are readily
modeled on a computer. It provides a laboratory in which to investigate
poorly understood phenomena in enumerative geometry using supercom-
puters. Modern software tools and available computer resources allow us
to test billions of instances of Schubert problems for the phenomena we
wish to study. This is easily parallelized and therefore takes advantage
of the current trend in computer architecture to increase computation
power through increased parallelism. These computations have led to
conjectures and new results and showcase new possibilities for the use
of computers as a tool in mathematical research.
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Of the solutions to a system of real polynomials or a geometric
problem with real constraints, some may be real while the rest occur in
complex conjugate pairs, and it is challenging to say anything meaningful
about the distribution between the two types. Khovanskii showed that
systems of polynomials with few monomials have upper bounds on their
numbers of real solutions often far less than their numbers of complex
solutions [34]. In contrast, geometric problems coming from the Schubert
calculus on Grassmannians may have all their solutions be real [48, 49,
60], and while it is known only in some additional cases [51, 42], this
reality is believed to hold for all flag manifolds.

The real-number phenomena that we discuss is of a different charac-
ter than these results. The best-known involves the Shapiro Conjecture
and its generalizations, where for certain classes of Schubert problems
and natural choices of conditions, every solution is real. Less understood
are Schubert problems whose numbers of real solutions possess further
structure including lower bounds, congruences, and gaps.

Like field extensions, geometric problems have intrinsic structure
encoded by Galois groups [32]. Unlike field extensions, little is known
about such Galois groups. Work of Vakil [60], Billey and Vakil [3], and
Leykin and Sottile [37] gives several avenues for studying Galois groups
of Schubert problems on computers. Preliminary results suggest phe-
nomena to study in future large-scale computational experiments. For
example, most Schubert problems have a highly transitive Galois group
that contains the alternating group, while the rest have only singly tran-
sitive Galois groups, and the intrinsic structure restricting their Galois
groups also restricts their numbers of real solutions.

Example 1. The classical problem of four lines asks: “how many
lines in P3 meet four general lines?” Three mutually skew lines ℓ1, ℓ2,
and ℓ3 lie on a unique hyperboloid (Fig. 1). This hyperboloid has two
rulings, one contains ℓ1, ℓ2, and ℓ3, and the second consists of the lines
meeting these three. If the fourth line, ℓ4, is general, then it will meet
the hyperboloid in two points, and through each of these points there is
a unique line in the second ruling. These two lines, m1 and m2, are the
solutions to this instance of the problem of four lines.

If the four lines are real, then ℓ4 either meets the hyperboloid in two
real points (as in Fig. 1) giving two real solution lines, or in two complex
conjugate points giving two complex conjugate solutions.

The Galois/monodromy group of this problem is the group of per-
mutations of the solutions which arise by following the solutions over
loops in the space of four-tuples (ℓ1, ℓ2, ℓ3, ℓ4) of lines. A simple such
loop is described by rotating ℓ4 180◦ about the point p. Following the



Experimentation in the Schubert Calculus 297

ℓ2

ℓ1

ℓ3

ℓ4

m1

m2

✑
✑
✑
✑

✑
✑
✑
✑✸

p

Fig. 1. Problem of four lines

two solutions along the loop interchanges them and shows that the
Galois/monodromy group of this problem is the full symmetric group
S2.

The Shapiro Conjecture asserts that if the lines ℓ1, . . . , ℓ4 are tangent
to a twisted cubic at real points, then the two solutions are real. Indeed,
any three points on any twisted cubic are conjugate to any three points
on another, so it suffices to consider the cubic curve given by

γ : t �−→ (12t2 − 2 , 7t3 + 3t , 3t− t3) ,

and the first three lines to be ℓ(1), ℓ(0), and ℓ(−1), where ℓ(t) is the line
tangent to γ at the point γ(t). As before, there is a unique hyperboloid

ℓ(−1) ℓ(0)

ℓ(1)

γ

ℓ(−1) γ

Fig. 2. Hyperboloid containing three lines tangent to γ.

ruled by the lines meeting all three, and the solutions correspond to
points where the fourth tangent line meets the hyperboloid.
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Consider the fourth line, ℓ(s), where 0 < s < 1 (which we may
assume as the three intervals between γ(1), γ(0), and γ(−1) are projec-
tively equivalent). In Fig. 3, we look down the throat of the hyperboloid
at the interesting part of this configuration. As ℓ(s) is tangent to the
branch of γ between γ(1) and γ(0), it must meet the hyperboloid in
two real points. Through each point, there is a real line in the second

ℓ(1)

ℓ(−1)

ℓ(−1)

ℓ(0)

γ

ℓ(s)

γ(s)

✻✻

Fig. 3. ℓ(s) meets the hyperboloid in two real points.

ruling which meets all four tangent lines, and this proves the Shapiro
Conjecture for this problem of four lines.

This paper is organized as follows. In Section 2 we give background
on the Shapiro Conjecture and the Schubert calculus, and then explain
how we may study Schubert problems on a computer. In Section 3 we
discuss the Shapiro Conjecture more extensively, describing its gener-
alizations and evidence that has been found for these generalizations.
In Section 4 we discuss additional structure that has been observed
and proven concerning the number of real solutions to the osculating
Schubert calculus on Grassmannians. Finally, we close in Section 5 dis-
cussing several approaches to obtaining information about Galois groups
of Schubert problems, and sketch how they were used to nearly deter-
mine the Galois groups of all Schubert problems in Gr(4, 9).

§2. Background

2.1. The Shapiro Conjecture

The Wronskian of univariate polynomials f1(t), . . . , fk(t) of degree
at most n−1 is the determinant of the matrix of their derivatives,

Wr(f1, . . . , fk) = det
(

f
(i−1)
j (t) | i, j = 1, . . . , k

)

.
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Up to a scalar, this depends only on the linear span of the polynomials
f1, . . . , fk. Putting f1, . . . , fk into echelon form with respect to the basis
of monomials shows that we may assume deg f1 > · · · > deg fk, from
which we see that their Wronskian has degree at most k(n−k). The
Wronskian gives a map

(2.1) Wr : Gr(k,Cn−1[t]) −→ P(Ck(n−k)[t]) ,

where Cd[t] is the space of univariate polynomials in t of degree at most
d, Gr(k,Cn−1[t]) is the Grassmannian of k-dimensional linear subspaces
(k-planes) in Cn−1[t], and P(Ck(n−k)[t]) is the projective space of 1-
planes in Ck(n−k)[t]. The map (2.1) is surjective of degree

(2.2)
[k(n−k)]! 1!2! · · · (k−1)!

(n−1)!(n−2)! · · · (n−k)!
,

and each fiber consists of this number of points, counted with multiplic-
ity [9]. The inverse Wronski problem asks for the k-planes of polynomials
with a given Wronskian. This naturally arises in the theory of linear se-
ries on P1 [9], static output feedback control of linear systems [6], and
mathematical physics [41].

The Shapiro Conjecture posited that if Ψ(t) ∈ P(Rk(n−k)[t]) had

only real roots, then every k-plane of polynomials in Wr−1(Ψ) is real.
This was first studied computationally [50, 62], then it was shown to
be true if the roots of Ψ were sufficiently clustered together [49]. When
min{k, n−k} = 2, it is equivalent to the statement that a rational func-
tion with only real critical points is essentially a quotient of real poly-
nomials [13, 14]. Finally, when a connection to integrable systems was
realized, Mukhin, Tarasov, and Varchenko exploited that to prove the
conjecture in full generality, eventually using that a symmetric matrix
has only real eigenvalues [38, 40]. See [53] for a full account.

2.2. Schubert calculus of enumerative geometry

The Schubert calculus of enumerative geometry consists of all prob-
lems of determining the linear subspaces that have specified positions
with respect to other fixed, but general linear spaces. We broadly inter-
pret it as the class of geometric problems which may be formulated as
intersecting sufficiently general Schubert varieties in flag manifolds. We
will only describe the Schubert calculus on the Grassmannian in full.

The Grassmannian Gr(k, n) is the set of all k-planes of Cn, which is
an algebraic manifold of dimension k(n−k). A flag F• is a sequence of
linear subspaces F• : F1 ⊂ F2 ⊂ · · · ⊂ Fn, where dimFi = i. A partition
λ : (n − k) ≥ λ1 ≥ · · · ≥ λk ≥ 0 is a weakly decreasing sequence of
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integers. A fixed flag F• and a partition λ determine a Schubert variety

XλF• := {H ∈ Gr(k, n) | dimH ∩ Fn−k+i−λi
≥ i, for i = 1, . . . , k} ,

which has codimension |λ| := λ1 + · · · + λk in Gr(k, n). We often de-
note a partition λ by its Young diagram, thus denotes the partition
(1, 0, . . . , 0). As dimH ∩Fn−k+i ≥ i for all i and any k-plane H and flag
F•, the Schubert variety X F• consists of those H with H∩Fn−k � {0}.
As | | = 1, this is a hypersurface Schubert variety.

A Schubert problem is a list of partitions λ = (λ1, . . . , λr) such that
|λ1| + · · · + |λr| = k(n − k). Given general flags F 1

• , . . . , F
r
• , Kleiman’s

Transversality Theorem [35] asserts that the intersection

(2.3) Xλ1F 1
• ∩ Xλ2F 2

• ∩ · · · ∩ XλrF r
•

is transverse and therefore if it is nonempty it is zero-dimensional as
|λ1|+ · · ·+ |λr| = k(n−k). The number, d(λ), of points in (2.3) is inde-
pendent of the choice of general flags. A zero-dimensional intersection
is an instance of the Schubert problem λ. The points in (2.3) are the
solutions to that instance. We may write Schubert problems multiplica-
tively. For example, we write · · · = 4 for the Schubert problem
( , , , ) in Gr(2, 4)—this is the problem of four lines in P3. Then the
number (2.2) is d( k(n−k)).

Any rational normal curve is projectively equivalent to the curve
γ(t) := (1, t, t2/2, t3/3!, . . . , tn−1/(n−1)!). For t ∈ C and any 1 ≤ i ≤ n,
the i-plane osculating the curve γ at γ(t) is

Fi(t) := span{γ(t), γ′(t), . . . , γ(i−1)(t)} .

The flag F•(t) osculating γ at γ(t) is the flag whose subspaces are the
Fi(t). The limit of Fi(t) as t → ∞ is the linear span of the last i standard
basis vectors, and these subspaces form the flag F•(∞). An instance
of a Schubert problem λ given by flags osculating γ is an osculating
instance of λ. Osculating flags are not general in the sense of Kleiman’s
Theorem [35], as shown in [43, § 2.3.6].

The osculating Schubert calculus naturally arises in the study of
linear series on P1, where ramification at a point t corresponds to mem-
bership in a Schubert varietyXλF•(t). An elementary consequence is the
following useful proposition which provides a substitute for Kleiman’s
Theorem for osculating flags.

Proposition 2. Let λ1, . . . , λr be partitions and t1, . . . , tr be distinct
points of P1. Then the intersection

(2.4) Xλ1F•(t1) ∩ Xλ2F•(t2) ∩ · · · ∩ XλrF•(tr),
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when nonempty, has dimension k(n−k) − |λ1| − · · · − |λr|, so that if
λ1, . . . , λr is a Schubert problem, it is zero-dimensional. Furthermore,
if H ∈ Gr(k, n), then there is a unique Schubert problem λ1, . . . , λr and
unique points t1, . . . , tr ∈ P1 such that H lies in the intersection (2.4).

Schubert problems are efficiently represented on a computer through
local coordinates and determinantal equations. The set of all k-planes
H ∈ Gr(k, n) not in X F•(∞) is identified with the space of k × (n−k)
matrices X via X �→ row space[Ik : X], where Ik is the identity matrix.
This forms a dense open subset of the Grassmannian and the entries of
X give local coordinates for Gr(k, n).

We formulate membership in Schubert varieties (and thus Schubert
problems) in terms of determinantal equations. If we represent an i-
plane Fi as the row space of a full rank i × n matrix (also denoted by
Fi) and H by a k × n matrix, then

(2.5) dimH ∩ Fi ≥ j ⇐⇒ rank

[
H
Fi

]

≤ k + i− j ,

which is defined by the vanishing of all (k+i−j+1) × (k+i−j+1) mi-
nors. Therefore, when representing a flag F• by a n × n matrix whose
first i rows span Fi, (2.5) (with i replaced by n−k+j−λj) gives poly-
nomial equations for the Schubert variety XλF• in the affine patch
[Ik : X]. When desired, we may use similar smaller coordinate patches
for XλF•(∞) and XλF•(∞) ∩XμF•(0).

2.3. Experimentation on a supercomputer

Equations for Schubert problems based on (2.5) may be solved in
some sense using software tools, and information extracted that is rel-
evant to the questions we are studying (e.g. real solutions or Galois
groups), again using software tools. This ability to study individual in-
stances of Schubert problems on a computer becomes a powerful method
of investigation when automated, for literally billions of instances of
thousands to millions of Schubert problems may be studied.

The challenge posed by scaling computations from the few score
to the billions is two-fold—it requires careful organization and access
to computational resources. The fundamental observation which allows
this scale of investigation is that it is intrinsically parallel. Comput-
ing/studying one instance of a Schubert problem is independent of any
other instance. This enables us to take advantage of current widely avail-
able computer resources—multiprocessor computational servers, estab-
lished computer clusters, as well as ad hoc resources for our investiga-
tions. For example, most of the experimentation in [18, 24] was done on
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the Calclabs, which consists of over 200 Linux workstations that moon-
light as a Beowulf cluster—their day job being calculus instruction, and
that in [26] used the brazos cluster at Texas A&M University in which
our research group controls 20 eight-core nodes.

The challenge of organizing a computational investigation on this
scale, as well as ensuring that it is repeatable and robust, is met through
modern software tools. These include organizing the computation with a
database, monitoring it with web-based tools, running the computation
using a job scheduler, as well as the core code itself, written in a scripting
language to communicate with the database and organize the parts of
the computation which are carried out by special purpose optimized
software that is either widely available or written by our team.

The structure of these investigations is due to Chris Hillar. A de-
tailed description of the experimental design and its execution is in [30],
which explains our paradigm for large-scale experimentation using su-
percomputers and modern software tools. We give few details here, more
may be found in the individual papers referenced.

§3. History and generalizations of the Shapiro Conjecture

The Shapiro Conjecture of Subsection 2.1 may alternatively be for-
mulated in terms of the osculating Schubert calculus.

Shapiro Conjecture (Theorem of Mukhin, Tarasov, and Varchenko [38,
40]). Let λ = (λ1, . . . , λr) be a Schubert problem in Gr(k, n) and let
t1, . . . , tr be distinct real numbers. The intersection

(3.1) Xλ1F•(t1) ∩ Xλ2F•(t2) ∩ · · · ∩ XλrF•(tr)

is transverse and consists of d(λ) real points.

The connection between this and the Wronskian formulation of Sub-
section 2.1 is given carefully in [53] and [55, Ch. 10]. The main idea is
straightforward. A univariate polynomial f(t) of degree at most n−1 is
a linear form Λ evaluated on the rational normal curve γ(t). A linearly
independent set f1, . . . , fk of univariate polynomials of degree n−1 gives
independent linear forms Λ1, . . . ,Λk. Thus H := ker(Λ1, . . . ,Λk) lies in
Gr(n−k, n). The following is a calculation.

Lemma 3. Let f1, . . . , fk be polynomials in Cn−1[t] coming from
independent linear forms Λ1, . . . ,Λk and set H := ker(Λ1, . . . ,Λk). Then
t is a root of the Wronskian Wr(f1, . . . , fk) if and only if H ∈ X F•(t).
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3.1. The Shapiro Conjecture for other flag manifolds

Let η be a regular nilpotent element of the Lie algebra of a group
G (the closure of its adjoint orbit contains all nilpotents). Then t �→
exp(tη) ∈ G is a subgroup Γ(t) of G. When G = SLnC and η has
all entries zero except for a 1 in each position (i, i+1), the matrix Γ(t)
represents the flag F•(t) with Γ(t).F•(0) = F•(t). Then (3.1) becomes

Γ(t1).Xλ1F•(0) ∩ Γ(t2).Xλ2F•(0) ∩ · · · ∩ Γ(tr).XλrF•(0) .

This gives osculating instances of Schubert problems, and therefore a
version of the Shapiro Conjecture, for any flag manifold.

Purbhoo proved that the Shapiro Conjecture holds for the orthogo-
nal Grassmannian [42], but it is known to fail for other
non-Grassmannian flag manifolds. For the Lagrangian Grassmannian
and type A flag manifolds, the conjecture may be repaired. For the
Lagrangian Grassmannian, see [53, Sec. 7.1]. For flag manifolds of type
A a counterexample was found in [50]. We present the simplest coun-
terexample.

Example 4. Let Fℓ(2, 3; 4) be the manifold of flags m ⊂ M in P3

where m is a line and M is a plane. Consider the problem in Fℓ(2, 3; 4)
where m meets three lines ℓ1, ℓ2, and ℓ3 and M contains two points p, q.
Then M contains the line pq and so m meets pq. Thus m is one of two
solutions to the problem of four lines given by ℓ1, ℓ2, ℓ3, and pq, and M
is the span of m and pq.

Consider osculating instances of this Schubert problem where the
lines are tangent to the rational normal curve γ of Example 1 and the
points lie on γ. Let ℓ(1), ℓ(0), and ℓ(−1) be the tangent lines and
γ(s), γ(t) the points. Consider the auxiliary problem of m meeting these

three tangent lines as well as the secant line ℓ(s, t) := γ(s)γ(t).
When 0 < s < t < 1 as in Fig. 4, the line ℓ(s, t) meets the hyper-

ℓ(1) ℓ(−1)

ℓ(0)

γ

ℓ(s, t)

γ(t)

✻

γ(s)

✻

Fig. 4. A secant line meeting the hyperboloid.
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boloid in two real points. As before, there are two real lines m and two
real solutions m ⊂ M to our Schubert problem.

In contrast, Fig. 5 shows an example when −1 < s < 0 < t < 1
and the secant line ℓ(s, t) does not meet the hyperboloid in two real
points. In this case, the two solutions m to the auxiliary problem are

ℓ(1)

ℓ(−1)

ℓ(0)

γ

ℓ(s, t) γ(t)

✁
✁
✁☛

γ(s)
✁
✁
✁✁✕

Fig. 5. A secant line not meeting the hyperboloid.

complex conjugates, and the same is true for the solutions m ⊂ M to
our Schubert problem. Thus the assertion of the Shapiro Conjecture
does not hold for this Schubert problem.

This failure of the Shapiro Conjecture is particularly interesting. If
we label the points −1, 0, 1 with 1 to indicate they are conditions on the
line m, and the points s, t with 2 to indicate they are conditions on the
plane M , then these labels occur in the following orders along γ

(3.2) 11122 in Fig. 4 and 11212 in Fig. 5.

The first sequence is monotone and both solutions are always real, while
the second sequence is not monotone and the two solutions are not nec-
essarily real. This leads to a version of the Shapiro Conjecture for flag
manifolds, and to two further extensions. We formalize these ideas.

Let α• : 0 < a1 < · · · < ap < n be a sequence of integers. A flag E•

of type α• is a sequence of linear subspaces E• : Ea1
⊂ Ea2

⊂ · · · ⊂ Eap
,

were dimEai
= ai. The set of all such sequences is the flag mani-

fold Fℓ(α•;n), which has dimension dim(α•) :=
∑p

i=1(n−ai)(ai−ai−1),
where a0 = 0. When p = 1, this is the Grassmannian Gr(a1, n).

Consider the projections πai
: Fℓ(α•;n) → Gr(ai, n) given by E• �→

Eai
. A Grassmannian Schubert variety has the form π−1

b XλF•, where

b ∈ α• and λ is a partition for Gr(b, n). Write X(λ,b)F• for π−1
b XλF•.

A list (λ,b) :=
(
(λ1, b1), (λ

2, b2), . . . , (λ
r, br)

)
, with |λ1| + · · · + |λr| =

dimFℓ(α•;n) is a Grassmannian Schubert problem. A list of real num-
bers t1, . . . , tr ∈ R is monotone with respect to the Grassmannian
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Schubert problem (λ,b), if ti < tj whenever bi < bj . More gener-
ally, if ≺ is any cyclic order on RP1, then t1, . . . , tr ∈ RP1 is monotone
with respect to (λ,b), if bi < bj ⇒ ti ≺ tj .

Monotone Conjecture. Let (λ,b) =
(
(λ1, b1), . . . , (λ

r, br)
)
be a

Grassmannian Schubert problem in Fℓ(α•;n). If t1, . . . , tr ∈ RP1 is
monotone with respect to (λ,b), then intersection

X(λ1,b1)F•(t1) ∩ X(λ2,r2)F•(t2) ∩ · · · ∩ X(λr,br)F•(tr)

is transverse with all points of intersection real.

This conjecture was first noted in [51]. A formulation for two- and
three-step flags was given in [52] together with computational evidence
supporting it. The general statement was made in [43], which reported
on an experiment testing 1,140 Schubert problems in 29 flag manifolds,
solving more than 525 million random instances and verifying the Mono-
tone Conjecture in each of more than 158 million monotone instances.
These computations took 15.76 gigaHertz-years.

We explain how the number of real solutions was determined. For
a Grassmannian Schubert problem

(
(λ1, b1), . . . , (λ

r, br)
)
, select r ran-

dom points on the rational normal curve γ and construct osculating
flags. Using these flags, represent the Schubert problem as a system
of polynomial equations given by the determinantal conditions in (2.5)
in some system of local coordinates for Fℓ(α•;n). Then eliminate all
but one variable from the equations, obtaining an eliminant. When the
eliminant is square-free and has degree equal to the expected number
of complex solutions, the Shape Lemma guarantees that the number of
real solutions to the Schubert problem equals the number of real roots
of the eliminant, which may be computed using Sturm sequences.

A given set of r points is permuted in each of a predetermined set
of orders along RP1 (called necklaces) to give different orders along RP1

in which the conditions are evaluated, and for each the number of real
solutions is determined. The result is stored in a frequency table for
that Schubert problem which records how often a given number of real
solutions was observed for a given necklace.

To illustrate the data obtained in this experiment, consider the
Schubert problem ( , 2)7 · ( , 3)2 in Fℓ(2, 3; 6), which looks for the flags
m ⊂ M in C6, where m is a 2-plane meeting seven 4-planes and M is a
3-plane meeting two 2-planes. This problem has 14 solutions. Table 1
records data from 800000 random osculating instances of this problem.
The columns are indexed by even integers from 0 to 14 for the possible
numbers of real solutions. The rows are indexed by the possible neck-
laces, using the notation of (3.2). The first row labeled with 222222233



306 Mart́ın del Campo and F. Sottile

Table 1. Frequency table for ( , 2)7 · ( , 3)2 in Fℓ(2, 3; 6).

Real Solutions
0 2 4 6 8 10 12 14 Total

222222233 200000 200000
222223223 22150 8705 34833 45439 39481 49392 200000

222222323 24773 10591 14377 11029 8033 131197 200000
222232223 5 52 3146 16758 42337 66967 50282 20453 200000

Total 5 52 50069 36054 91547 123435 97796 401042 800000

represents tests of the Monotone Conjecture, verifying it in 200000 in-
stances as the only entries lie in the column for 14 real solutions.

Theoretical evidence in support of the Monotone Conjecture was
provided by Eremenko, Gabrielov, Shapiro, and Vainshtein [15] who
proved the conjecture for all Schubert problems in Fℓ(n−2, n−1;n) and
Fℓ(1, 2;n). Their result can be formulated in Gr(n−2, n), where it be-
comes a statement about real points of intersection of Schubert varieties
given by flags that are secant to a rational normal curve γ in a specific
way. This condition on the secant flags makes sense for any Grassmann-
ian, and leads to a second generalization of the Shapiro Conjecture.

A flag F• is secant along an interval I of a rational normal curve γ if
each subspace Fi is spanned by its points of intersection with I. Secant
flags are disjoint if the intervals of secancy are pairwise disjoint.

Secant Conjecture. Let λ = (λ1, . . . , λr) be a Schubert problem in
Gr(k, n). If F 1

• , . . . , F
r
• are disjoint secant flags, then intersection

Xλ1F 1
• ∩ Xλ2F 2

• ∩ · · · ∩ XλrF r
•

is transverse with all points of intersection real.

The Secant Conjecture holds in two special cases beyond the
Grassmannian Gr(n−2, n) that was shown in [15]. A family of secant
flags becomes osculating in the limit as the intervals of secancy shrink
to a point. In this way, the limit of the Secant Conjecture is the Shapiro
Conjecture (Theorem of Mukhin, Tarasov, and Varchenko [38, 40]) and
so the Secant Conjecture is true when the points of secancy are suf-
ficiently clustered. The special case when the points of secancy form
arithmetic sequences and the Schubert problem is k(n−k) was shown
in [39].

The strongest evidence for the Secant Conjecture is an experiment
that used 1.07 teraHertz-years of computation, testing more than 498
million instances of the Secant Conjecture in 703 Schubert problems in 13
Grassmannians. This is reported in [18]. As with the Monotone Conjec-
ture, these computations relied upon counting the number of real roots
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of an eliminant. Table 2 displays the data obtained for the Schubert

problem
4
in Gr(4, 8) with 9 solutions. Its rows are indexed by the

Table 2. Real solutions to
4

in Gr(4, 8).

Overlap Number

R
ea
l
S
o
lu
ti
o
n
s

0 1 2 3 4 5 6 · · · Total

1 16 · · · 758
3 7 612 783 · · · 18276
5 123 659 4541 4847 · · · 79173

7 158 663 3804 4545 · · · 91536
9 141420 4051 7937 11241 17310 15705 · · · 310257

Total 141420 0 4051 8218 12570 26267 25896 · · · 500000

odd numbers from 1 to 9 for the possible number of real solutions. The
columns are indexed by the overlap number, which measures intersec-
tions between secant flags. The overlap number is 0 if and only if the
flags are disjoint. Thus, the first column in Table 2 represents tests of
the Secant Conjecture, verifying it in the 141420 instances computed.

The column corresponding to overlap number one is empty as this
cannot be attained by the intervals of secancy for this problem. Another
interesting feature in Table 2 is the column corresponding to overlap
number two, which are flags that are very slightly non-disjoint. For this
column, the solutions were also all real, while in the next column, at
least five were real. It is only with overlap number six and beyond that
we found instances with only one real solution.

The Monotone Conjecture and Secant Conjecture have a common
generalization, the Monotone-Secant Conjecture. Disjoint flags have a
naturally occurring order along RP1. A list F 1

• , . . . , F
r
• of disjoint secant

flags is monotone with respect to a Grassmannian Schubert problem
(λ,b), if F i

• proceeds F j
• whenever bi < bj .

Monotone-Secant Conjecture. Let (λ,b) =
(
(λ1, b1), . . . , (λ

r, br)
)

be a Grassmannian Schubert problem in Fℓ(α•;n). If a list F 1
• , . . . , F

r
• of

disjoint secant flags is monotone with respect to (λ,b), then intersection

X(λ1,b1)F
1
• ∩ X(λ2,b2)F

2
• ∩ · · · ∩ X(λr,br)F

r
•

is transverse with all points of intersection real.

This conjecture was studied on a supercomputer. By then end of
2013, we tested over 11 billion instances of 1300 Schubert problems tak-
ing 1.901 teraHertz-years. Of these, 256 million were instances of the
Monotone-Secant Conjecture where the conjecture was verified. We also
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tested 263 million instances of the Monotone Conjecture for compari-
son. Table 3 displays the data obtained for Monotone-Secant instances
of the Schubert problem ( , 2)7 · ( , 3)2 in Fℓ(2, 3; 6). This is the same

Table 3. Frequency table for ( , 2)7 · ( , 3)2 in Fℓ(2, 3; 6).

Real Solutions

0 2 4 6 8 10 12 14 Total

222222233 400000 400000

222223223 131815 51761 92849 73988 27054 22533 400000

222222323 142271 43847 36252 40595 22399 114636 400000

222232223 419 2881 27328 89208 195921 84243 400000

Total 0 0 274505 98489 156429 203791 245374 621412 1600000

problem studied in Table 1 and the notation is the same. These two
tables are similar, except that the data in Table 3 suggest a lower bound
of four for the number of real solutions. This is an illusion. The Mono-
tone Conjecture is a limiting case of the Monotone-Secant Conjecture,
and for any selection of osculating flags, there is are sufficiently nearby
disjoint secant flags occuring in the same order. Thus, from the com-
putations in the last row of Table 1, we know there exist disjoint secant
flags with necklace 222232223 having no real solutions, and disjoint se-
cant flags with two real solutions, even though these were not observed
in the experiment.

This idea shows that there should be fewer restrictions on the num-
bers of real solutions for secant flags than for osculating flags. Typically,
we observe that the tables for osculating and secant flags look basically
the same, with a few exceptions. We do not understand why the tables
are so similar, and why in some cases they differ slightly.

§4. Lower bounds and gaps on the number of real solutions

By the Theorem of Mukhin, Tarasov, and Varchenko, any osculating
instance of a Schubert problem in a Grassmannian with real osculation
points has all solutions real. The set of solutions forms a real variety, but
there are other ways for an osculating instance to define a real variety
(e.g. some pairs of osculation points are complex conjugates). Work of
Eremenko and Gabrielov [11] suggests that there may be lower bounds
on the numbers of real solutions to such real osculating instances of
Schubert problems. We explain the background, describe an experiment
to study this question of additional structure, and give some results that
have been inspired by this experimentation. This work formed part of
the 2013 Ph.D. thesis of Nickolas Hein.
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4.1. Topological lower bounds

Eremenko and Gabrielov [11] considered the Wronski map (2.1) re-
stricted to spaces of real polynomials,

(4.1) WrR : Gr(k,Rn−1[t]) −→ P(Rk(n−k)[t]) .

These are real manifolds of dimension k(n−k). A point Ψ ∈ P(Rk(n−k)[t])
is a regular value if the differential of Wr is nonsingular at all points in
the fiber above Ψ. If the manifolds in (4.1) were oriented, the Wronski
map would have a well-defined topological degree which is computed on
the fiber over any regular value Ψ ∈ P(Rk(n−k)[t]),

degWrR =
∑

H∈Wr−1(Ψ)

sign dWrR(H) ,

where sign dWrR(H) is 1 if the orientations at H and Ψ agree and −1
if they do not. The point is that if the spaces in (4.1) were oriented so
that degWrR is defined, then |degWrR | would be a lower bound on the
number of real points in a fiber above a regular value Ψ.

While the Grassmannian and projective space in (4.1) are often not
orientable, they have orientable double covers (the oriented
Grassmannian and the sphere, respectively), so the degree may be com-
puted on the double cover and its absolute value gives a lower bound on
the number of points of the fiber Wr−1(Ψ). Eremenko and Gabrielov
more generally considered the Wronski map (4.1) restricted to real
Schubert varieties XλF•(∞). Soprunova and Sottile [46, Th. 6.4] ex-
tended this to Richardson varieties XλF•(∞) ∩XμF•(0).

Given a partition λ, let λc be n−k−λk ≥ · · · ≥ n−k−λ1, the com-
plement of its Young diagram in the k× (n−k) rectangle. For λ = (3, 1)
and k = 3, n = 8, we have λc = (5, 4, 2). When μ ⊂ λ, the skew diagram
λ/μ is λ with the boxes of μ removed. For example, if

λ = and μ = then λ/μ = .

When μ = (0), we have λ/μ = λ.
A Young tableau of shape λ/μ is a filling of the boxes of λ/μ with

the integers 1, 2, . . . , |λ|−|μ| that increases across each row and down
each column. The standard filling is when the numbers are in reading
order. For example, here are four (of the 324) Young tableaux of shape
(5, 5, 2)/(3) and the first is the standard filling.

1 2
6 73 4 5

8 9

6 8
7 91 3 5

2 4

2 4
7 91 5 6

3 8

3 6
5 91 2 4

7 8
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Let YT(λ/μ) be the set of all Young tableaux of shape λ/μ.
Given partitions λ, μ, the Wronski map restricts to give a map

(4.2) Wrλ,μ : XλF•(∞) ∩XμF•(0) −→ P
(
t|μ|Ck(n−k)−|λ|−|μ|[t]

)

whose degree is equal to the number of Young tableaux of shape λc/μ.
Thus when k = 3, n = 8, and λ = μ = , the degree of Wrλ,μ is 324.
Restricting to the real points, the map (4.2) becomes a map between
the real Richardson variety and the real projective space. Lifting to
double covers as before, it has a topological degree (the singularities of
the Richardson variety cause no harm, as they are in codimension 2).

Every tableau T ∈ YT(λc/μ) has a sign, sgn(T ), which is the sign of
the permutation mapping the standard filling to T . The sign-imbalance
σ(λc/μ) of YT(λc/μ) is defined to be

σ(λc/μ) :=

∣
∣
∣
∣

∑

T ∈YT(λc/μ)

sgn(T )

∣
∣
∣
∣
.

For λ = μ = , we have σ((552)/(3)) = σ( ) = 4.

Theorem 5 ([11, 46]). The restriction Wrλ,μ (4.2) of the real Wron-
ski map has topological degree whose absolute value is equal to the sign-
imbalance σ(λc/μ).

This sign-imbalance is thus a topological lower bound on the number
of real points in a fiber of the real Wronski map. It is not known in
general whether this lower bound is attained. Eremenko and Gabrielov
showed that when λ = μ = ∅, the topological lower bound is positive
when n is odd and it is zero when n is even [11]. Later, they showed
that when both k and n are even, the map WrR is not surjective [12], so
the topological lower bound of zero is attained when both k and n are
even. All other cases remained open.

4.2. Real osculating instances of Schubert problems

An osculating instance of a Schubert problem

(4.3) X = Xλ1F•(t1) ∩ Xλ2F•(t2) ∩ · · · ∩ XλrF•(tr)

is real if X equals its complex conjugate X. By Proposition 2, this
means that for each i = 1, . . . , r, either ti is real or there is a unique
j �= i with λj = λi and tj = ti.

The type of a real osculating instance (4.3) of a Schubert problem
λ1, . . . , λr is the list (ρλ | λ ∈ {λ1, . . . , λr}) where ρλ is the number of
indices i with ti real and λ = λi. For example, the Schubert problem

X F•(0) ∩ X F•(∞) ∩ X F•(1) ∩ X F•(
√
−1) ∩ X F•(−

√
−1)
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in Gr(3, 6) has type (ρ , ρ ) = (3, 0). The Theorem of Mukhin, Tara-

sov, and Varchenko involves real osculating instances of maximal type,
where ρλ = #{i | λi = λ}.

The experimentation and results we describe shed light on structures
in the possible numbers of real solutions to real osculating instances of
Schubert problems which may depend on type.

4.3. Experiment

Hein, Hillar, and Sottile set up and ran a computational experiment
using the framework of the projects [18, 24, 30] described in Section 3 to
investigate structure in the numbers of real solutions to real osculating
instances of Schubert problems that depend upon the osculation type
of the instance. This followed the broad outline of those projects, with
some differences. These differences included that it was mostly run on
the brazos cluster at Texas A&M and did not use Maple, relying instead
on Singular’s [8] nrroots command from the rootsur [58] library which
computes the numbers of real roots of a real univariate polynomial.

Since Singular (and symbolic software in general) does not perform
efficiently over the field Q[

√
−1], this experiment used a slightly different

formulation of Schubert problems than indicated in Subsection 2.2.

Proposition 6. Suppose that t ∈ C is not real and S is the collection

of minors of matrices
[
Ik:X
Fi(t)

]

that define XλF•(t) in the local coordinates

[Ik : X]. The intersection XλF•(t) ∩ XλF•(t) is defined in [Ik : X] by
the real polynomials

{ℜ(f) + ℑ(f) | f ∈ S} ,

the real and imaginary parts of polynomials in S.

The data from the experiment are available on line [26] and are pre-
sented as before in frequency tables for each Schubert problem showing
the observed numbers of real solutions to osculating intersections of a
given type. For example, Table 4 shows the frequency table for the prob-
lem · 7 with six solutions. Note that ρ −1 is the apparent lower
bound for the minimal number of real solutions as a function of the type
ρ . The observed lower bound of zero for this Schubert problem is the
sign-imbalance of Theorem 5, as c has sign-imbalance zero.

This experiment studied 756 Schubert problems, 273 of which had
a topological lower bound given by Theorem 5. These included the
Wronski maps for Gr(2, 4), Gr(2, 6), and Gr(2, 8) for which Eremenko
and Gabrielov had shown the lower bound of zero was sharp. For 264 of
the remaining 270 cases, the sharpness of the topological lower bound
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Table 4. Frequency table for · 7 = 6 in Gr(2, 8).

Number of Real Solutions

ρ 0 2 4 6 Total

1 8964 67581 22105 1350 100000

3 47138 47044 5818 100000

5 77134 22866 100000

7 100000 100000

Total 8964 114719 146283 130034 400000

was verified. There were six Schubert problems for which the topological
lower bounds were not observed. These were

(
, , 7

)
,
(

, , 7
)

,
(

, , 6
)
,
(

, , 6
)

,
(

, 8
)

,

all in Gr(4, 8), and 9 in Gr(3, 6). These have observed lower bounds of
3, 3, 2, 2, 2, 2 and sign-imbalances of 1, 1, 0, 0, 0, 0, respectively. There is
not yet an explanation for the first four, but the last two are symmetric
Schubert problems, which were observed to have a congruence modulo
four on their numbers of real solutions. This congruence gives a lower

bound of two for both problems · 8 in Gr(4, 8) and 9 in Gr(3, 6).
This will be discussed in Subsection 4.4.

There is another family of Schubert problems containing the problem
· 7 in Gr(2, 8) of Table 4. This family has one problem in each

Grassmannian Gr(k, n)—it involves a large rectangular partition and
the partition repeated n−1 times, such as · 6 in Gr(3, 7). Each
Schubert problem in this family has lower bounds which depend upon
ρ , as well as gaps in the possible numbers of real solutions. This is
discussed in Subsection 4.5.

In addition to these families of Schubert problems, this experi-
ment [26] found many Schubert problems with apparent additional struc-
ture to their numbers of real solutions to real osculating instances. How-
ever, the data did not suggest any other clear conjectures that would ex-
plain most of the observed structure. Table 5 shows another frequency
table from this experiment.

4.4. Symmetric Schubert problems

Partitions for Gr(k, 2k) are subsets of a k× k square. A partition λ
is symmetric if it equals its matrix transpose. All except the last of the
following partitions are symmetric,

, , , , , , , .
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Table 5. Frequency table for · 5

= 10 in Gr(4, 8).

Number of Real Solutions

ρ 0 2 4 6 8 10 Total

1 138225 49674 2077 5404 4620 200000

3 163693 6458 8142 21707 200000

5 200000 200000

Total 138225 213367 8535 1356 226327 600000

For a symmetric partition λ, let ℓ(λ) be the number of boxes on its
main diagonal, which is the maximum number i with i ≤ λi. Thus
ℓ( ) = ℓ( ) = 1 and ℓ( ) = 2. A Schubert problem λ = (λ1, . . . , λr) is
symmetric if each partition λi is symmetric. The numbers of real solu-
tions to real osculating instances of many symmetric Schubert problems
obey a congruence modulo four.

Theorem 7. Let λ = (λ1, . . . , λr) be a symmetric Schubert problem
with

∑

i ℓ(λ
i) ≥ k+4. Then the number of real solutions to any real

osculating instance of λ is congruent to d(λ) modulo four.

A weak version of Theorem 7 was proven in [27], where the full
statement was conjectured, and finally proved in [28]. The fundamental
idea is that the Grassmannian Gr(k, 2k) has an algebraic Lagrangian
involution which restricts to an involution on the solutions to any oscu-
lating instance of the symmetric Schubert problem λ. This involution
commutes with complex conjugation on the set of solutions to a real os-
culating instance. When a codimension condition on the fixed points is
satisfied, the interaction of these two involutions implies the congruence
modulo four. Before sketching the main ideas in the proof of Theorem 7,
we give an interesting Corollary.

Corollary 8. Real osculating instances of the Schubert problem 9

in Gr(3, 6) with 42 solutions always have at least two real solutions,
counted with multiplicity.

Thus, the topological lower bound of zero for this Schubert prob-
lem is not sharp. A similar lack of sharpness holds for the symmetric

Schubert problem ( , 8) = 90 in Gr(4, 8).
Let 〈·, ·〉 be a symplectic (non-degenerate and skew-symmetric) form

on C2k, which we may assume is

〈ei, e2k+1−j〉 = (−1)iδi,j ,



314 Mart́ın del Campo and F. Sottile

where e1, . . . , e2k is the standard basis for C2k. Any subspace V ⊂ C2k

has an annihilator V ⊥ under 〈·, ·〉,

V ⊥ := {w ∈ C2k | 〈w, v〉 = 0 ∀v ∈ V } .

As 〈·, ·〉 is non-degenerate, we have dimV +dimV ⊥ = 2k and (V ⊥)⊥ =
V , so that ⊥ is an involution on the set of linear subspaces of C2k

which restricts to an involution on the Grassmannian Gr(k, 2k). We
have (XλF•)

⊥ = XλTF⊥
• , where λT is the matrix transpose of λ. The

Lagrangian Grassmannian LG(k) is the set of points of Gr(k, 2k) that
are fixed under this involution.

Given a flag E• : Ea1
⊂ · · · ⊂ Eap

its annihilators E⊥
ap

⊂ · · · ⊂ E⊥
a1

form a flag E⊥
• . If Fℓ(2k) := Fℓ({1, 2, . . . , 2k−1}; 2k) is the manifold of

complete flags, then F• �→ F⊥
• is an involution on Fℓ(2k) whose fixed

points are symplectic flags, the flag manifold for the symplectic group
which preserves the form 〈·, ·〉.

The Lagrangian Grassmannian has Schubert varieties YλF• which
are given by a symmetric partition λ and a symplectic flag. The Schubert
variety YλF• is the set of fixed points of the Lagrangian involution acting
on XλF•. The dimension of LG(k) is

(
k+1
2

)
and the codimension of YλF•

is ‖λ‖ := 1
2 (ℓ(λ) + |λ|).

If we take our rational normal curve to be

(4.4) γ(t) := (1 , t , 1
2 t

2 , 1
6 t

3 , . . . , 1
(2k−1)! t

2k−1) ,

then the flags F•(t) osculating γ are symplectic. (This curve and flag
come from a regular nilpotent as in Subsection 3.1.)

Theorem 7 is a consequence of a more general result. An instance

Xλ1F 1
• ∩ Xλ2F 2

• ∩ · · · ∩ XλrF r
•

of a Schubert problem is real if for every i = 1, . . . , r there is a j with
λi = λj and F i

• = F j
• . The following is proven in [28].

Theorem 9. Suppose that λ is a symmetric Schubert problem with
∑

i ℓ(λ
i) ≥ k+4. Then for any real instance of the Schubert problem λ

(4.5) Xλ1F 1
• ∩ Xλ2F 2

• ∩ · · · ∩ XλrF r
•

where the flags F i
• are symplectic, the number of real solutions is con-

gruent to d(λ) modulo four.

Theorem 7 is the special case of Theorem 9 when the symplectic
flags are osculating. The proof rests on a simple lemma from [27].
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Suppose that f : Y → Z is a proper dominant map between complex
algebraic varieties with Z smooth, and that Y , Z, and f are all defined
over R. The degree d of f is the number of complex points of Y above
any regular value z ∈ Z of f . If z ∈ Z(R) is a real regular value, then the
number of real points in f−1(z) is congruent to d modulo two. Suppose
that the variety Y has an involution ι : Y → Y that preserves the fibers
of f , so that f(y) = f(ι(y)). We have the following.

Lemma 10. If the image f(Y ι) of the fixed points of Y under ι
has codimension at least two in Z, then for any real regular values z, z′

of f lying in the same connected component of Z(R), the number of real
points in f−1(z) is congruent to the number of real points in f−1(z′),
modulo four.

Lemma 10 is applied to a universal family Yλ → Zλ of instances of
a symmetric Schubert problems λ. The base Zλ consists of r-tuples of
symplectic flags (F 1

• , . . . , F
r
• ) where if λi = λj , then the order of F i

• and

F j
• does not matter. Specifically, Zλ is the quotient of the r-fold product

of symplectic flag manifolds by the subgroup G of the symmetric group
Sr consisting of permutations σ where if σ(i) = j, then λi = λj . It is a
product of symmetric products of symplectic flag manifolds.

The fiber of Yλ over a point z = (F 1
• , . . . , F

r
• ) of Zλ is the intersec-

tion (4.5). The main result of [54] states that when the point z ∈ Zλ is
general, the intersection (4.5) is zero-dimensional, and thus Yλ has the
same dimension as Zλ. (This does not follow from Kleiman’s Transver-
sality Theorem [35] as general symplectic flags are not general flags.)

The points of Yλ fixed by the Lagrangian involution are intersections
of the corresponding Schubert varieties in the Lagrangian Grassmannian.
Kleiman’s Theorem applies to those Lagrangian Schubert varieties which
implies that the fixed points Y ι

λ
have codimension

r∑

i=1

‖λi‖ −
(
k+1

2

)

=
1

2

( r∑

i=1

ℓ(λi) − k
)

.

The condition
∑

i ℓ(λ
i) ≥ k+4 implies that this codimension is at least

two, so Lemma 10 applies. Lastly, the real points of Zλ are connected
and the Theorem of Mukhin, Tarasov, and Varchenko gives points of
Zλ(R) with all d(λ) solutions real, which implies Theorems 9 and 7.

4.5. Lower bounds and gaps

Table 6 shows the result of computing 800000 osculating instances

of the symmetric Schubert problem · 7 in Gr(4, 8) with 20 solutions,
recording the number of observed real solutions to osculating instances



316 Mart́ın del Campo and F. Sottile

Table 6. Gaps and lower bounds for · 7 = 20 in Gr(4, 8)

Number of Real Solutions

ρ 0 2 4 6 8 · · · 20 Total

1 37074 47271 14517 · · · 1138 100000

3 66825 30232 · · · 2943 100000

5 85080 · · · 14920 100000

7 · · · 100000 100000

Total 37074 114096 129829 · · · 119001 400000

of a given type. The ellipses · · · mark columns (numbers of real so-
lutions) that were not observed. The hypotheses of Theorem 7 hold,
so the number of real solutions is congruent to 20 modulo 4. The lack
of instances with 12 and 16 real solutions, and the triangular shape of
the rest of the table (similar to the triangular shape of Table 4) are
additional structures which we explain.

These Schubert problems · 7 and · 7 are members of a
family of Schubert problems whose osculating instances we may solve
completely and thereby determine all possibilities for their numbers of
real solutions. Details are given in [25].

For k, n, let k,n ( for short) be the partition consisting of k−1
parts, each of size n−k−1. For example,

2,8 = , 3,7 = , and 4,8 = .

The osculating Schubert problems in this family have the form λ =
( , n−1) in Gr(k, n), and they all have the topological lower bounds of
Theorem 5. The multinomial coefficient

(
n
a,b

)
is zero unless n = a+b,

and in that case it equals n!
a!b! .

Lemma 11. For the Schubert problem λ = ( , n−1) in Gr(k, n),

we have d(λ) =
(
n−2
k−1

)
and σ(

c
) =

( ⌊n−2

2
⌋

⌊ k−1

2
⌋,⌊n−k−1

2
⌋

)
, which is zero unless

n is even and k is odd.

We show that these Schubert problems reduce to finding ordered
factorizations f = gh of univariate polynomials where f has distinct
roots. For this, we will regard another factorization f = g1h1 where g1
is a scalar multiple of g (and the same for h1 and h), to be equivalent
to f = gh, but f = hg to be a different factorization.

Theorem 12. For any k, n, the solutions to the osculating instance
of the Schubert problem ( , n−1) in Gr(k, n)

(4.6) X (t1) ∩ X (t2) ∩ · · · ∩ X (tn−1) ∩ X (∞)
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may be identified with all ordered factorizations f ′(t) = g(t)h(t) where

(4.7) f(t) =
n−1∏

i=1

(t− ti)

with deg g = n−k−1 and deg h = k−1.

Thus the number of real solutions to a real osculating instance of the
Schubert problem ( , n−1) with osculation type ρ is the number of
real factorizations f ′(t) = g(t)h(t) where f(t) has exactly ρ real roots,
deg g = n−k−1, and deg h = k−1. This counting problem was studied
in [46, Sect. 7], which we recall. Let ρ be the number of real roots of f ′(t).
By Rolle’s Theorem, ρ −1 ≤ ρ ≤ n−2. Then the number ν(k, n, ρ) of
such factorizations is the coefficient of xn−k−1yk−1 in (x+y)ρ(x2+y2)c,
where c = n−2−ρ

2 , the number of irreducible quadratic factors of f ′(t).

Corollary 13. The number of real solutions to a real osculating
instance of the Schubert problem ( , n−1) (4.6) with osculation type ρ
is ν(k, n, ρ), where r is the number of real roots of f ′(t), where f is the
polynomial (4.7).

Remark 14. When ρ < n−4, we have that ν(k, n, ρ) ≤ ν(k, n, ρ+2),
so ν(k, n, ρ −1) is a lower bound for the number of real solutions to
a real osculating instance of ( , n−1) of osculation type ρ . Since at
most ⌊n

2 ⌋ different values of r may occur for the numbers of real roots
of f ′(t), but the number ν(k, n, ρ) satisfies

( ⌊n−2
2 ⌋

⌊k−1
2 ⌋, ⌊n−k−1

2 ⌋

)

≤ ν(k, n, ρ) ≤
(
n−2

k−1

)

,

there will in general be gaps in the possible numbers of real solutions,
as we saw in Table 6. For example, the possible values of ν(5, 13, ρ) are

10 , 18 , 38 , 78 , 162 , and 330 .

Proof of Theorem 12. The Schubert variety X (∞) consists of the
k-planes H with

dimH ∩ Fi+1(∞) ≥ i for i = 1, . . . , k−1 .

By Proposition 2, the solutions to (4.6) will be points in X (∞) that
do not lie in any other smaller Schubert variety Xλ(∞). This is the
Schubert cell of X (∞) [16], and it consists of the k-planes H which are
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row spaces of matrices of the form

⎛

⎜
⎜
⎜
⎝

1 x1 · · · xn−k−1 xn−k 0 · · · 0
0 0 · · · 0 1 xn−k+1 · · · 0
...

...
...

. . .
. . .

...
0 0 · · · 0 · · · 0 1 xn−1

⎞

⎟
⎟
⎟
⎠

,

where x1, . . . , xn−1 are indeterminates. If xn−k = 0, then H ∈ X (0),
but if one of xn−k+1, . . . , xn−1 vanishes, then H ∈ X (0), which cannot

occur for a solution to (4.6), again by Proposition 2. Thus we may
assume that xn−k−1, . . . , xn−1 are non-zero.

We use a scaled version of these coordinates. Let (f0, g, h) be the
variables (f0, g0, . . . , gn−k−2, h0, . . . , hk−2) with h0, . . . , hk−2 all non-
zero. Define constants ci := (−1)n−k−i+1(n−k−i)!, gn−k−1 := 1, and
hk−1 := 1. Let H(f0, g, h) be the set of matrices of the following form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1gn−k−1 · · · cn−kg0
f0
h0

0 · · · 0 0

0 · · · 0 −1 h0

h1

· · · 0 0

0 · · · 0 0 −2
. . .

...
...

...
...

...
. . . 0

0 · · · 0 0 · · · −(k−2) hk−3

hk−2

0

0 · · · 0 0 · · · 0 −(k−1) hk−2

hk−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which parameterizes the Schubert cell of X (∞). The following calcu-
lation is done in [25].

Lemma 15. We have

(4.8) det

(
H(f0, g, h)
Fn−k(t)

)

= (−1)k(n−k)
( n−k−1∑

i=0

k−1∑

j=0

ti+j+1

i+j+1
gi hj + f0

)

.

Call this polynomial f(t). If H lies in the intersection (4.6), then f
is the polynomial (4.7). If we set

g(t) := g0 + tg1 + · · ·+ tn−k−1gn−k−1 and

h(t) := h0 + th1 + · · ·+ tk−1hk−1 ,

then f(0) = f0 and f ′(t) = g(t)h(t). Theorem 12 is immediate.
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§5. Galois groups of Schubert problems

Not only do field extensions have Galois groups, but so do problems
in enumerative geometry, as Jordan explained in 1870 [32]. These al-
gebraic Galois groups are identified with geometric monodromy groups.
While the earliest reference we know is Hermite in 1851 [29], this point
was eloquently expressed by Harris in 1979 [20]. Jordan’s treatise in-
cluded examples of geometric problems, such as the 27 lines on a cubic
surface, whose (known) intrinsic structure prevents their Galois groups
from being the full symmetric group on their set of solutions. In con-
trast, Harris’s geometric methods enabled him to show that several clas-
sical enumerative problems had the full symmetric group as their Galois
group, and therefore had no intrinsic structure. Despite this, Galois
groups are known for very few enumerative problems.

The first non-trivial computation of a Galois group in the Schubert
calculus is due to Byrnes and Stevens [7]. Interest in determining Galois
groups of Schubert problems was piqued when Derksen (see [60]) dis-

covered that the Schubert problem
4
= 6 in Gr(4, 8) has Galois group

isomorphic to S4 and is not the full symmetric group S6. Ruffo et al. [43]
exhibited a Schubert problem in the flag manifold Fℓ(2, 4; 6) with six so-
lutions whose Galois group was S3 and not the full symmetric group S6.
In both of these problems the intrinsic structure implies restrictions on
the numbers of real solutions. This is similar to the 27 lines on a real
cubic surface, which may have either 3, 7, 15, or 27 real lines.

Vakil used the principle of specialization in enumerative geometry
and group theory to give a combinatorial method to obtain informa-
tion about Galois groups [60]. Together with his geometric Littlewood-
Richardson rule [59] this gives a recursive procedure that can show the
Galois group of a Schubert problem contains the alternating group on
its set of solutions. This inspired Leykin and Sottile to show how nu-
merical algebraic geometry can be used to compute Galois groups [37].
A third method based on elimination theory was proposed by Billey
and Vakil [3]. We discuss these three methods, including preliminary
results and potential experimentation, explain how they were used to
nearly determine the Galois groups of all Schubert problems in Gr(4, 8)
and Gr(4, 9), and close with a description of two Schubert problems in
Gr(4, 8) whose Galois groups are not the full symmetric group.

5.1. Galois groups

Let f : Y → Z be a proper, generically separable and finite mor-
phism of degree d, where Z and Y are schemes (over an algebraically
closed field) of the same dimension, with Z smooth and Y irreducible.
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A point z ∈ Z is a regular value of f when the fiber over z consists of
d distinct points {y1, . . . , yd}. Write Sd for the symmetric group on d
letters. Let Y (d) be the subscheme

(Y ×Z · · · ×Z Y
︸ ︷︷ ︸

d

) \Δ ,

of the fiber product, where Δ is the big diagonal. Fixing a regular value
z ∈ Z of f with f−1(z) = {y1, . . . , yd}, the Galois/monodromy group
GY→Z is the group of permutations σ ∈ Sd for which (y1, . . . , yd) and
(yσ(1), . . . , yσ(d)) lie on the same component of Y (d). The Galois group
is well-defined up to conjugation in Sd. As Y is irreducible, GY→Z is
transitive, and if (Y ×Z Y )�Δ is irreducible, then it is doubly transitive.

Fix a Schubert problem λ = (λ1, . . . , λr) in Gr(k, n). Let Fℓ(n)
be the manifold of complete flags in Cn and set Zλ :=

∏r
i=1 Fℓ(n), the

r-fold product of flag manifolds, which is smooth. Set

Yλ := {(H;F 1
• , . . . , F

r
• ) | H ∈ XλiF i

• , for i = 1, . . . , r} ,
the total space of the Schubert problem λ. The projection Yλ → Gr(k, n)
exhibits it as a fiber bundle with fibers the product of Schubert varieties
of Fℓ(n) of codimensions |λ1|, . . . , |λr|. Thus Yλ is irreducible, and, as
λ is a Schubert problem, dimYλ = dimZλ.

The fiber of Yλ over a point (F 1
• , . . . , F

r
• ) of Zλ is the instance of

the Schubert problem λ,

(5.1) Xλ1F 1
• ∩ Xλ2F 2

• ∩ · · · ∩ XλrF r
• .

When (F 1
• , . . . , F

r
• ) is general, this is either empty or it consists of

finitely many points, by Kleiman’s Theorem [35]. Thus Yλ → Zλ has a
Galois/monodromy group. We call the Galois group GYλ→Zλ

the Galois
group of the Schubert problem λ and write Gλ for it.

5.2. Vakil’s combinatorial criterion

Vakil [60] described how the monodromy group of the restriction to
a subscheme U ⊂ Z affects the Galois group GY→Z . Let U →֒ Z be a
closed embedding of a Cartier divisor, with Z smooth in codimension
one along U . Consider the fiber diagram

(5.2)

W −֒−→ Y

f
� �

f

U −֒−→ Z

where f : W → U is generically finite and separable of degree d. When
W is irreducible or has two components the following holds.
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(a) If W is irreducible, then GW→U includes into GY→Z .
(b) If W has two components, W1 and W2, each of which maps

dominantly to U of respective degrees d1 and d2, then there
is a subgroup H of GW1→U × GW2→U which maps surjectively
onto each factor GWi→U and which includes into GY→Z .

A Galois group GY→Z is at least alternating if it is either Sd or its alter-
nating subgroup. In the above situation, Vakil gave criteria for deducing
that GY→Z is at least alternating, based on purely group-theoretic ar-
guments including Goursat’s Lemma.

Vakil’s Criteria. Suppose we have a fiber diagram as in (5.2). The
Galois group GY→Z is at least alternating if one of the following holds.

(i) In Case (a), if GW→U is at least alternating.
(ii) In Case (b), if GW1→U and GW2→U are at least alternating and

either d1 �= d2 or d1 = d2 = 1.
(iii) In Case (b), if GW1→U and GW2→U are at least alternating, one

of d1 or d2 is not 6, and GY→Z is doubly transitive.

Let F•, E• be flags in general position and λ, μ be partitions. Vakil’s
geometric Littlewood-Richardson rule is a sequence of degenerations that
convert the intersection XλF• ∩XμE• into a union of Schubert varieties
XνF• with |ν| = |λ|+ |μ|. We write this as a formal sum

(5.3) XλF• ∩XμE• ∼
∑

ν

cνλ,μ XνF• ,

where cνλ,μ is the Littlewood-Richardson number. Each step from one
degeneration to another is the specialization to a Cartier divisor U in a
family Y → Z representing the total space of the current degeneration
as in (5.2). These geometric degenerations and Vakil’s criteria lead to a
recursive algorithm to show that the Galois group of a Schubert problem
is at least alternating, but which is not a decision procedure—when the
criteria fails, the Galois group may still be at least alternating. Vakil
wrote a maple script to apply this procedure (with criteria (i) and (ii))
to all Schubert problems in a given Grassmannian.

Vakil’s method has been used to show that the Galois group of any
Schubert problem in Gr(2, n) is at least alternating. We begin with
some general definitions. A special Schubert condition is a partition λ
with only one non-zero part. Write a for the special Schubert condition
(a, 0, . . . , 0). A special Schubert problem in Gr(k, n) is a list a• :=
(a1, . . . , ar) where ai > 0 and |a•| := a1 + · · · + ar = k(n−k). Its
number d(a•) of solutions is a Kostka number, which counts the number
of Young tableaux of shape (n−k, . . . , n−k) = (n−k)k of content a•.
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A special Schubert problem a• in Gr(2, n) has ai ≤ n−2 for all i.
It is reduced if for all i < j we have ai + aj ≤ n−2, which implies that
r ≥ 4. Any Schubert problem in Gr(2, n) is equivalent to a reduced
special Schubert problem, possibly in a smaller Grassmannian.

In 1884 Schubert [44] gave a degeneration for special Schubert va-
rieties in Gr(2, n) that is a particular case of the geometric Littlewood-
Richardson rule and which may be used to decompose intersections in
the same way as (5.3). Schubert’s degeneration yields the recursion,

d(a1, . . . , ar) = d(a1, . . . , ar−2, ar−1 + ar)

+ d(a1, . . . , ar−2, ar−1−1, ar−1) .
(5.4)

Notice that the right hand side involves different Grassmannians. Vakil’s
criterion (ii) implies that if both Schubert problems

(a1, . . . , ar−2, ar−1 + ar) and (a1, . . . , ar−2, ar−1−1, ar−1)

of (5.4) are at least alternating and if the Kostka numbers on the right
hand side are either distinct or are both equal to one, then the Galois
group of the Schubert problem a• is at least alternating. Vakil used his
maple script to check that all Schubert problems in Gr(2, n) for n ≤ 16
were at least alternating, and Brooks, et al. wrote their own script and
extended Vakil’s verification to n ≤ 40. Buoyed by these observations,
Brooks, et al. [5] proved the following theorem.

Theorem 16. Every Schubert problem in Gr(2, n) has Galois group
that is at least alternating.

The proof of Theorem 16 is based on the following lemma.

Lemma 17. Let a• be a reduced Schubert problem in Gr(2, n).
When a• �= (1, 1, 1, 1) there is a rearrangement a• = (a1, . . . , ar) with

(5.5) d(a1, . . . , ar−2, ar−1+ar) �= d(a1, . . . , ar−2, ar−1−1, ar−1) .

When a• = (1, 1, 1, 1), both terms of (5.5) are equal to 1.

When some pair ai, aj are unequal, the inequality (5.5) follows from
a combinatorial injection of Young tableaux. The remaining cases use
that the Kostka numbers d(a•) are coefficients in the decomposition of
tensor products of irreducible representations of SU(2). Then the Weyl
integral formula gives

(5.6) d(a1, . . . , ar) =
2

π

∫ π

0

( r∏

i=1

sin (ai+1)θ

sin θ

)

sin2 θ dθ .
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Thus the inequality (5.5) is equivalent to showing that an integral is
non-zero, which is done by estimation.

Sottile and White [57] studied transitivity of Galois groups of
Schubert problems, with an eye towards Vakil’s Criterion (iii). They
showed that many Schubert problems have doubly transitive Galois
groups.

Theorem 18. Every Schubert problem in Gr(3, n), and every special
Schubert problem in Gr(k, n) has doubly transitive Galois group.

They use the result for special Schubert problems and Vakil’s crite-
rion (iii) to give another proof of Theorem 16.

Our group plans to use Vakil’s Criterion (ii) (and (iii) when dou-
ble transitivity is known) to study all Schubert problems in all small
(k(n−k) � 30) Grassmannians. The goal is to find Schubert prob-
lems whose Galois groups might not contain the alternating group, and
then use other methods to determine the Galois groups. This approach
has already been used for almost all Schubert problems in Gr(4, 8) and
Gr(4, 9), as we explain in Subsection 5.5. This experiment may involve
several billion Schubert problems, posing serious computer-science issues
(such as data storage or memory usage) which must be resolved before
it may begin.

5.3. Homotopy continuation

By definition, the Galois group Gλ of a Schubert problem λ is the
monodromy group of the family f : Yλ → Zλ, which may be understood
concretely as follows. Regular values of the map f are r-tuples of flags
(F 1

• , . . . , F
r
• ) for which the intersection (5.1) is d(λ) points. Given a

path γ : [0, 1] → Zλ consisting of regular values of f , we may lift γ to Yλ

to obtain d(λ) paths connecting points in the fiber f−1(γ(0)) to those
in f−1(γ(1)), inducing a bijection between these fibers. When γ is a
loop based at a regular value z, we obtain a monodromy permutation
of the fiber f−1(z), and the set of all such monodromy permutations is
the Galois group Gλ. The computation of monodromy is feasible and is
an elementary operation in the field of numerical algebraic geometry.

Numerical algebraic geometry [45] uses numerical analysis to study
algebraic varieties on a computer. It is based on Newton’s method for
refining approximate solutions to a system of equations and its funda-
mental algorithm is path-continuation to follow solutions which depend
upon a real parameter t ∈ [0, 1]. Systems of equations are solved using
homotopy methods, which start with known solutions to a system of
equations and follow them along paths to obtain solutions to the desired
system. Parameter homotopy is the most elementary; both the start
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and end systems have the same structure. An example is the fibers of
the map Yλ → Zλ which are modeled by the determinantal equations
of Subsection 2.2. There are more subtle and sophisticated homotopy
methods that begin with solutions to simple systems of equations and
bootstrap them to find all solutions to the desired equations.

This yields the following two-step procedure to compute monodromy
permutations for a given Schubert problem λ.

(1) Compute all solutions (H1, . . . ,Hd(λ)) to a single instance of a

Schubert problem for a regular value z = (F 1
• , . . . , F

r
• ) of the

map Yλ → Zλ.
(2) Use parameter homotopy to follow these d(λ) solutions over

a loop γ : [0, 1] → Zλ based at z to compute a monodromy
permutation.

Typically, (1) is quite challenging, while (2) is much easier.
Leykin and Sottile [37] used this method to compute Galois groups

of some Schubert problems. For step (1), they implemented a simple
version of the Pieri homotopy algorithm [31] to solve a single instance
of a Schubert problem, then used off-the-shelf continuation software to
compute monodromy permutations, and finally called GAP [17] to de-
termine the group generated by these monodromy permutations. In
every simple Schubert problem studied the Galois group was the full
symmetric group. We explain this in more detail.

A Schubert problem λ = (λ1, . . . , λr) is simple if all but at most
two partitions λi are equal to the partition , i.e. λ = (λ1, λ2, , . . . , ).
Leykin and Sottile only looked at simple Schubert problems, and only
tried to determine if the monodromy was the full symmetric group. The
restriction to simple Schubert problems is because there was no effi-
cient algorithm to compute the numerical solutions to general Schubert
problems, but the version of the Pieri homotopy algorithm for simple
Schubert problems is efficient and easy to implement. Also, it is rela-
tively easy to decide if a set of permutations generates the full symmetric
group and this algorithm has a fast implementation in GAP.

Leykin and Sottile wrote a maple script1 to study the Galois group of
simple Schubert problems. It first sets up and runs the Pieri homotopy
algorithm to compute all solutions to a general instance, calling PHC-
Pack [61] for path-continuation. Then it starts computing monodromy
permutations, again using PHCPack for path-continuation. When a new

1http://www.math.tamu.edu/~sottile/research/stories/Galois/HoG.tgz
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monodromy permutation is computed, it calls GAP to test if the per-
mutations computed so far generate the symmetric group. If not, then
it computes another monodromy permutation, and continues.

The largest Schubert problem studied was ( , , 13) = 17589 in
Gr(3, 9). Solving one instance and computing seven monodromy per-
mutations took 78.2 hours (wall time) on a single core. The maximum
number of monodromy permutations needed in any computation to de-
termine the full symmetric group was nine.

This verified that about two dozen simple Schubert problems have
full symmetric Galois group, including the problems ( k(n−k)) in Gr(k, n)
for k = 2 and 4 ≤ n ≤ 10, k = 3 and 5 ≤ n ≤ 8, and (k, n) equal to (4, 6)
and (4, 7), as well as three larger problems in Gr(3, 9) and Gr(4, 8). Ta-
ble 7 records some data from the computations with d(λ) > 1000. This

Table 7. Galois group computation (h := hours)

k, n 2,10 3,8 3,9 3,9 4,8

problem 16 15 (
2

, 12) ( , , 13) ( , 13)

solutions 1430 6006 10329 17589 8580

time 2.6h 18.6h 49h 78.2h 44.5h

permutations 7 6 7 7 9

suggests that the Galois group of any simple Schubert problem is the
full symmetric group on its set of solutions. These results are not math-
ematical proofs, as the computations did not come with certificates of
validity.

Numerical methods directly computing monodromy permutations
give a second approach to studying Galois groups of Schubert problems.
The main bottleneck is the lack of efficient algorithms to compute all
solutions to a single instance of a given Schubert problem.

In the same way that the geometric Pieri rule [47] led to the efficient
Pieri homotopy algorithm [31], Vakil’s geometric Littlewood-Richardson
rule [59] leads to the efficient Littlewood-Richardson homotopy [56]
to solve any Schubert problem in a Grassmannian. While this algo-
rithm is proposed and described in [56], it lacks a practical implemen-
tation. There is one being written in Macaulay 2 [19] based on Leykin’s
NAG4M2 [36] package. When completed and optimized, our group plans
an experiment along the lines proposed in Subsection 5.2 to use numeri-
cal algebraic geometry to compute Galois groups of Schubert problems.
This is expected to be feasible for Schubert problems with up to 20000
solutions with a formulation having up to 25 local coordinates.

This work is affecting research in numerical algebraic geometry be-
yond the development and implementation of the Littlewood-Richardson
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homotopy algorithm. The method of regeneration [22] may yield prac-
tical algorithms to compute Schubert problems in other flag manifolds
(Littlewood-Richardson homotopy is restricted to the Grassmannian).
There are other possible continuation algorithms to develop and imple-
ment. We expect a broad numerical study of Galois groups of Schubert
problems in other flag manifolds to result from these investigations.

The most significant impact of [37] on numerical algebraic geometry
is that it has led to the incorporation of certification in software. As
mentioned, numerical algebraic geometry computes approximations to
solutions to systems of polynomial equations, and there are a priori no
guarantees on the output. Smale studied the convergence of Newton’s
method and developed α-theory, named after a constant α that may be
computed at a point x for a polynomial system F . When α(x, F ) � 0.15,
Newton iterations starting at x are guaranteed to converge quickly to a
solution for F = 0. (This is explained in [4, Ch. 9].)

Certification was recently incorporated into software when Hauen-
stein and Sottile released alphaCertified [23], which certifies the output
of a numerical solver. More fundamentally, Beltrán and Leykin [1, 2]
extended α-theory, giving an algorithm for certified path-tracking which
has certified that the Schubert problem 8 = 14 in Gr(2, 6) has Galois
group equal to the full symmetric group S14. Lastly, the (traditional)
formulation of a Schubert problem in Section 2.2 typically involves far
more equations than variables, and α-theory is only valid when the num-
ber of equations is equal to the number of variables. Hauenstein, Hein,
and Sottile [21] have shown how to reformulate any Schubert problem
in a classical flag manifold as a system of N bilinear equations in N
variables, enabling certification of general Schubert problems.

5.4. Frobenius method and elimination theory

A third method to study Galois groups on a computer exploits sym-
bolic computation and the Chebotarev Density Theorem. Let λ be a
Schubert problem. As Zλ =

∏r
i=1 Fℓ(n) is a smooth rational variety, if

(F 1
• , . . . , F

r
• ) ∈ Zλ(Q) is a regular value of Yλ → Zλ, then the smallest

field of definition of the solutions to the corresponding instance of λ,

(5.7) Xλ1F 1
• ∩ Xλ1F 2

• ∩ · · · ∩ Xλ1F r
• ,

is a finite extension of Q whose Galois group is a subgroup of Gλ. These
Galois groups coincide for a Zariski-dense subset of rational flags, by
Hilbert’s Irreducibility Theorem (see [3, p. 49]). This gives a proba-
bilistic method to determine Gλ. Given a point (F 1

• , . . . , F
r
• ) ∈ Zλ(Q),

formulate the intersection (5.7) as a system of polynomials and compute
an eliminant, g(x). When g is irreducible over Q, the smallest field of
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definition of (5.7) is Q[x]/〈g(x)〉, and so its Galois group is the Galois
group Gg of g(x). Taking the largest group computed for different points
in Zλ(Q) determines Gλ with high probability.

Unfortunately, this method is infeasible for the range of Schubert
problems we are interested in. While eliminants g(x) for a Schubert
problem λ with d(λ) � 50 may be computed, we know of no software
to reliably compute Gg when d(λ) � 12. Also, the polynomials g(x) are
typically enormous with coefficients quotients of 1000-digit integers.

There is a feasible method that can either prove Gg = Sd(λ) or give
very strong information about Gg. Suppose that g(x) has integer coeffi-
cients. Then for any prime p that does not divide the discriminant of g,
the reduction of g modulo p is square-free. The Frobenius automorphism
Fp : a �→ ap acts on the roots of g, with one orbit for each irreducible
factor of g in Z/pZ[x]. Thus the cycle type of Fp is given by the degrees
of the irreducible factors of g in Z/pZ[x].

It turns out that Fp lifts to a Frobenius element in the characteristic
zero Galois group Gg with the same cycle type. Reducing g(x) modulo
different primes and factoring gives cycle types of many elements of
Gg. By the Chebotarev Density Theorem, these Frobenius elements are
distributed uniformly at random in Gg, for p sufficiently large. This
probabilistic method to understand the distribution of cycles types in
Gg is often sufficient to determine Gg, as we explain below.

What makes this method practical is that elimination commutes
with reduction modulo p, computing eliminants modulo a prime p is
feasible for d(λ) � 500, and factoring modulo a prime p is also fast. The
primary reason for this efficiency is that when working modulo primes
p < 264, arithmetic operations on coefficients take only one clock cycle.
A computation of a few hours in characteristic zero takes less than a
second in characteristic p.

The method we use to show that a Galois group Gg is the full sym-
metric group is based on a theorem of Jordan. A subgroup G of Sn is
primitive if it preserves no non-trivial partition of {1, . . . , n}.

Theorem 19 (Jordan [33]). If a primitive permutation group G ⊂
Sn contains an ℓ-cycle for some prime number ℓ < n−2, then G is either
Sn or its alternating subgroup An.

One way that a subgroupG could be primitive would be ifG contains
cycles of lengths n and n−1, for then it is doubly transitive. Since one
of n or n−1 is even, G is not a subgroup of An. This gives the following
algorithm to show that a Galois group is the full symmetric group, which
was suggested to us by Kiran Kedlaya.
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Frobenius Algorithm. Suppose that λ is a Schubert problem with
n = d(λ) solutions.

0. Set ε1 = ε2 = ε3 := 0.
1. Choose a sufficiently general point (F 1

• , . . . , F
r
• ) ∈ Zλ(Q) and

a prime p. Compute an eliminant g(x) ∈ Z/pZ[x] modulo p for
the corresponding instance of the Schubert problem λ.

2. Factor g(x) modulo p,

g(x) = h1(x) · · ·hs(x) in Z/pZ[x] .

If g is not square-free, return to step 1, otherwise do the fol-
lowing.
(i) If s = 1 so that g is irreducible, set ε1 := 1.
(ii) If s = 2 and one of h1, h2 has degree n−1, set ε2 := 1.
(iii) If one of the hi has degree a prime number ℓ with n/2 <

ℓ < n−2, set ε3 := 1.
3. If ε1 = ε2 = ε3 = 1 then proclaim “Gλ = Sn”, otherwise return

to step 1.

Steps 2(i) and 2(ii) establish that Gλ contains cycles of lengths n and
n−1. For Step 2(iii), the Frobenius element has a prime cycle of length
ℓ and all other cycles are shorter as n/2 < ℓ, so raising the Frobenius
element to the power (ℓ−1)! will result in an ℓ-cycle in Gλ.

Assuming this samples elements of Gλ uniformly at random (as ap-
pears to be the case in practice (see Table 8), and is true for p large
enough [10]), that Gλ = Sn, and that n > 6, then 2(i) will occur with
probability 1

n , 2(ii) with probability 1
n−1 , and 2(iii) with the higher

probability
∑

n/2<�<n−2

1
� ,

(the sum is over primes ℓ). In our experience, in 95% of the time the
Frobenius algorithm took fewer than 2n steps to verify that Gλ = Sn.

When Gλ �= Sn, factoring eliminants modulo p gives cycle types in
Gλ (and can give their distribution), which may be used to help identify
Gλ. This method has been used for both these tasks, and it appears to
be feasible for Schubert problems with d(λ) � 500.

5.5. Galois groups for Gr(4, 8) and Gr(4, 9)

We explain how the methods of Subsections 5.2 and 5.4, together
with geometric arguments, were used to nearly determine the Galois
groups of all Schubert problems in Gr(4, 8) and Gr(4, 9). A careful write
up of this is in progress.
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Vakil used a maple script based upon his combinatorial criteria (i)
and (ii) to show that all Schubert problems in Gr(2, n) for n ≤ 16
and Gr(3, n) for n ≤ 9 had at least alternating Galois groups. By
Grassmannian duality, the smallest Grassmannians not yet studied were
Gr(4, 8) and Gr(4, 9). Vakil also used his maple script to study the
Schubert problems in Gr(4, 8), and we altered his program to study
the Schubert problems in Gr(4, 9) which do not reduce to a smaller
Grassmannian. This script determined that 3468 of the 3501 such
Schubert problems in Gr(4, 8) have at least alternating Galois group.
For Gr(4, 9), it determined that 36534 of the 36767 such Schubert prob-
lems have at least alternating Galois group.

Two of the remaining 33 = 3501− 3468 problems in Gr(4, 8), 16 =
24024 and · 12 = 2460, were too large to compute modulo any prime p,
but they are doubly transitive by Theorem 18 (for · 12 = 2460 this uses
an ad hoc argument) and Vakil’s Criterion (iii) implies that their Galois
groups are at least alternating. Computing cycle types of Frobenius
elements showed that 17 of the remaining 31 Schubert problems have full
symmetric Galois groups, and suggested that the remaining fourteen had

Galois group either S4 (for Derksen’s example
4
= 6) or D4, and this

second type fell into two classes according to their underlying geometry,
represented by

(5.8)
2 · · · 2 = 4 and

2 · 2 · 4 = 4 ,

respectively. We verified the predicted Galois groups for these fourteen
using geometric arguments. These three classes generalize to give infi-
nite families of Schubert problems whose Galois groups are not the full
symmetric group.

We then applied the methods from Section 5.4 to study Galois
groups of most (209) of the 233 = 36767 − 36534 problems in Gr(4, 9)
for which Vakil’s criteria were inconclusive. Computing cycles of Frobe-
nius elements showed that 58 have full symmetric Galois groups. The
remaining 151 did not have full symmetric Galois groups and they fell
into classes having related geometry. All except one class are general-
izations of those classes from Gr(4, 8). For example, the problems

2 · 2 · 6 = 10 and
2 · 2 · · 4 = 6

are among the generalizations of the second problem in (5.8), and do
not have full symmetric Galois groups.

Among the Schubert problems shown to have full symmetric Galois

groups were the problems · · 10 = 420 and
2 · 8 = 280 in
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Gr(4, 8), which gives some idea of the size of Schubert problems that
may be studied with this method.

Before giving two examples from Gr(4, 8), we remark that Galois
groups of Schubert problems appear to either be highly transitive (e.g.
full symmetric) or they act imprimitively, failing to be doubly transitive.

5.5.1. The Schubert problem
4
= 6 in Gr(4, 8). Derksen deter-

mined this Galois group. While an instance of this problem is given
by four complete flags in general position in C8, only their 4-planes
L1, . . . , L4 matter. Its solutions will be those H ∈ Gr(4, 8) for which
dimH ∩ Li ≥ 2 for each i = 1, . . . , 4.

To understand this problem, consider the auxiliary problem 4

in Gr(2, 8) given by L1, . . . , L4. This asks for the h ∈ Gr(2, 8) with
dimh ∩ Li ≥ 1 for i = 1, . . . , 4. There are four solutions h1, . . . , h4 to
this problem, and its Galois group is the full symmetric group S4. We
also have that h1, . . . , h4 are in direct sum and they span C8.

The 4-planes Hi,j := hi ⊕ hj satisfy dimHi,j ∩ Lk = 2, and so
they are solutions to the original problem. In fact, they are the only

solutions. It follows that the Galois group of
4
= 6 is S4 acting on the

pairs {hi, hj}. This is an imprimitive permutation group.
The structure of this problem shows that if the Li are real, then

either two or all six of the solutions will be real. Indeed, if all four
solutions hi to the auxiliary problem are real, than all six solutions Hi,j

will also be real. If however, two or four of the hi occur in complex
conjugate pairs, then exactly two of the Hi,j will be real.

5.5.2. The Schubert problem
2 · 2 · 4 = 4 in Gr(4, 8). This

has Galois group D4, the group of symmetries of a square, which acts
imprimitively on the solutions. An instance of this problem is given by
the choice of two 6-planes L1, L2, two 2-dimensional linear subspaces
ℓ1, ℓ2 and four 4-planes K1, . . . ,K4, all in general position. Solutions
are those H ∈ Gr(4, 8) such that

(5.9) dimH ∩ Li ≥ 3 , dimH ∩ ℓi ≥ 1 , and dimH ∩Kj ≥ 1 ,

for i = 1, 2 and j = 1, . . . , 4.
Consider the first four conditions in (5.9). Let Λ := 〈ℓ1, ℓ2〉, the

linear span of ℓ1 and ℓ2, which is isomorphic to C4. Then h := H ∩ Λ
is two-dimensional. If we set ℓ3 := Λ ∩ L1 and ℓ4 := Λ ∩ L2, then
dimh ∩ ℓ3 = dimh ∩ ℓ4 = 1, and so h ∈ Gr(2,Λ) ≃ Gr(2, 4) meets
each of the four 2-planes ℓ1, . . . , ℓ4. In particular, h is a solution to
the instance of the problem of four lines (realized in Gr(2,Λ)) given by
ℓ1, . . . , ℓ4, and therefore there are two solutions, h1 and h2.
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Now set Λ′ := L1 ∩ L2, which is four-dimensional, and fix one of
the solutions ha to the problem of the previous paragraph. For each
j = 1, . . . , 4, set μj := 〈ha,Kj〉 ∩ Λ′, which is two-dimensional. These
four 2-planes are in general position and therefore give a problem of four
lines in P(Λ′). Let ηa,1 and ηa,2 be the two solutions to this problem, so
that dim ηa,b ∩ μj ≥ 1 for each j.

Then the four subspaces Hab := 〈ha, ηa,b〉 are solutions to the orig-
inal Schubert problem. Indeed, since dimHab ∩ ℓj = 1 for j = 1, . . . , 4
and ηa,b ⊂ L1 ∩ L2, we have dimHab ∩ Li = 3, and so Hab satisfies
the first four conditions of (5.9). Since Λ ∩ Λ′ = {0}, ha does not
meet μj for j = 1, . . . , 4, so dimHab ∩ 〈ha,Kj〉 = 3, which implies that
dimHab ∩Kj ≥ 1, and shows that Hab is a solution.

The Galois group Gλ acts imprimitively as it preserves the partition
{H11,H12} � {H21,H22} of the solutions. Since Gλ is transitive, it is
either Z2 × Z2, or the dihedral group D4. Computing cycle types of
Frobenius elements shows that Gλ contains cycles of type (4), (2, 2),
(2, 1, 1), and (1, 1, 1, 1), which shows that it is D4. Computing 100000
eliminants modulo 11311, 99909 were square free and therefore gave
Frobenius elements in Gλ. We record the observed frequencies of each
cycle type in the following table. This agrees with [10] in that the

Table 8. Observed frequencies of Frobenius elements

cycle type (4) (2, 2) (2, 1, 1) (1, 1, 1, 1)

frequency 25014 37384 25145 12366

fraction 0.2504 0.3742 0.2517 0.1238

Frobenius elements appear to be uniformly distributed. We close with
the observation that when we computed real osculating instances of this
Schubert problem (as part of the experiment described in Section 4), we
only found either zero or four real solutions, and never two. In all other
Schubert problems with imprimitive Galois groups that we computed,
we found similar interesting structure in their numbers of real solutions.
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[32] C. Jordan, Traité des substitutions, Gauthier-Villars, Paris, 1870.
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E-mail address : abraham.mc@cimat.mx

Frank Sottile, Department of Mathematics, Texas A&M University, College Sta-
tion, Texas 77843, USA
E-mail address : sottile@math.tamu.edu


