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We propose a secure mobile Internet voting architecture based on the Sensus reference architecture and report the experiments
carried out using short-term spectral features for realizing the voice biometric based authentication module of the architecture
being proposed. �e short-term spectral features investigated are Mel-Frequency Cepstral Coe�cients (MFCCs), Mel-Frequency
Discrete Wavelet Coe�cients (MFDWC), Linear Predictive Cepstral Coe�cients (LPCC), and Spectral Histogram of Oriented
Gradients (SHOGs). �e MFCC, MFDWC, and LPCC usually have higher dimensions that o�entimes lead to high computational
complexity of the pattern matching algorithms in automatic speaker recognition systems. In this study, higher dimensions of each
of the short-term features were reduced to an 81-element feature vector per Speaker using Histogram of Oriented Gradients (HOG)
algorithm while neural network ensemble was utilized as the pattern matching algorithm. Out of the four short-term spectral
features investigated, the LPCC-HOGgave the best statistical results withR statistic of 0.9127 andmean square error of 0.0407.�ese
compact LPCC-HOG features are highly promising for implementing the authentication module of the secure mobile Internet
voting architecture we are proposing in this paper.

1. Introduction

Election is the process by which voters in a political entity
elect leaders among competing candidates by casting of
votes either on a ballot paper or electronically in order
to actualize desired changes in their society. �e electoral
processes are very vital because they empower citizens to
have an inuence on the future policies of their governments
and consequently on their own futures. Electoral processes
involve voter registration, voter validation, voting, tallying,
transmission, tabulation, and result publication [1].

�ere have been series of evolution in voting over years.
In 4BC voting in Athens, for instance, the use of vocal votes
known as viva voce was prevalent and some later evidence
of democratic voting practices in this era encompassed the
showing of hands by the electorates to indicate their choice
of candidates [2, 3]. Other election practices by the Athenian
Greek voters involved voting by inscribing their choices on
discarded pieces of pottery called ostraka, which was placed

in an urn and tabulated.During theRenaissance period, some
voting practices included the use ofwhite balls for acceptance
and black balls for rejection of candidates. �e balls, called
ballotta, are the origin of the term ballot, which is now an
essential component of conventional paper-based elections
[4, 5]. Elections in India are traceable to 920AD in which
the voters wrote candidate names on the palm leaf (known as
Panai olai) and dropped the Panai olai in the pot from which
counting was done for each of the participating candidates.
A�er the counting, the candidate with the highest number
of votes was elected [6]. �e ballotta, the ostraka, and the
Panai olai are examples of elections where available resources
were used to record votes in economical ways.�ese electoral
scenarios also represent environmentally friendly election
administration methodologies in the early eras. Although
these methods were seemingly crude, they were able to
achieve vote secrecy and adequate counting and auditing was
made possible through vote recounting. �ese older voting
practices were adjudged transparent until when coercion
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and buying of votes started interfering regrettably with the
sanctity of the process and consequently prevented voters
from voting with their conscience [2–4, 7].

As populations began to increase across di�erent coun-
tries, larger-scale elections became unwieldy to administer
and with the increasing availability of paper, pen, and ink
the use of paper ballot was birthed [8]. �e paper-based
voting process involved the votes being recorded by o�cials
with citizen input or viva voce. However, it later became
evident that paper ballot elections have a lot of logistical and
administrative challenges such as high cost, slow tabulation,
ballot misinterpretation, vote miscounts, possibility of voter
coercion, and vote buying. Shamos and Yasinsac [9] are
unequivocal in asserting that every form of paper ballot
that has been devised can and has been manipulated with
considerable ease. As the number of voters grew, faster
and more accurate tabulation of votes and speed in result
compilation became desirable. �is led to the mechanization
of voting mostly in the United States of America (USA)
with the introduction of lever machines. Punch card system
which employs cards and a small clipboard-sized device for
recording votes were also some early approaches adopted for
election mechanization. In using this system, voters punched
holes in the cards in the opposite position to the choice
of their candidates. Punch card systems were for a while
perceived to reintroduce transparency and auditability into
electoral processes [4]. �e system bene�cially introduced
tallying speed and automatic ballot count, removed voter
monitoring, mediated irregularities such as ballot stu�ng,
ballot interpretation, chain voting and �nally prevented over
voting. New challenges were however introduced, which
include logistic problems, equipment failure, and training
requirements. Furthermore, the events of the year 2000
regarding Bush versus Gore election in Florida, USA, chal-
lenged the persistent use of the punch machines for voting.
Here, many deployed punch systems did not punch holes
clearly on the ballot and this led to hanging portions that are
now famously called hanging, dimpled, or pregnant chads [5].

�e rapid advancement in electronic technologies has
led to the development of electronic voting systems. An
electronic voting system o�en abbreviated as e-voting is
an integrated system that uses electronic components to
perform electoral functions. E-voting introduced technology
to electoral process so as to leverage on possible bene�ts such
as more e�ciency, transparency, auditability, speedy release
of results, and ease of voting and to ultimately enhance the
trust of the electorate in the management of election and
referendum. �e Americans and the Dutch are the fore-
runners in the development and deployment of computer-
based e-voting terminals referred to as Digital Recording
Electronic (DRE) equipment. ADRE is a programmed device
that operates as a vote capturing terminal. DREs were also
adopted and implemented in other political climes but with
di�erent nomenclatures. �ey are called Electronic Voting
Machine (EVM) in India; the Brazilians refer to them as
urnas while the Filipinos call them Precinct Optical Scan
(PCOS) [8]. An immediate problem with the �rst generation
DRE/EVM was that the votes were captured and a black
box result was produced by the lack of a paper trail. �is

led to Mercuri [10] proposing a Voter Veri�able Audit Trail
(VVAT), which is a printed equivalent of the computer choice
for voters. EVMs with VVAT are now being implemented
in some parts of India, many parts of the USA, and across
the world. Besides DRE/EVM, other typologies of e-voting
systems include Optical Mark Recognition (OMR) systems
and Electronic Ballot Printers (EBP), which are similar to
DRE.

�e progression of desktop computing to web-based
applications has led to further innovations for creating
two fundamental streams of e-voting systems. �ese are
controlled voting, sometimes called poll-site e-voting, and
uncontrolled voting, also referred to as remote e-voting.
A controlled voting environment is a secure area that the
Electoral Management Board (EMB) temporarily sets up,
by installing equipment and implementing a clearly de�ned
process ow [5, 11]. On the other hand, uncontrolled voting
refers to a situation in which a voter remotely accesses a
system from his/her own locality (home, o�ce, or mobile)
and cast a vote. Example of uncontrolled e-voting system is
Internet Voting (also called i-voting, online voting, or online
ballots). Oostveen [12] de�ne i-voting as “an election system
that uses encryption to allow a voter to transmit her secure
and secret ballot over the Internet.” �e surge in Internet
subscriptions and increasing availability of access points
such as computers, mobiles, and iDTV have made i-voting
increasingly attractive [13]. I-voting is currently not just a
research topic as Krimmer et al. [14] inform of 104 Internet
elections worldwide with 40% being binding elections.

Norway and Estonia are two countries that have incor-
porated i-voting into their electoral processes [8, 15]. While
e-voting in its various forms provides several opportunities
to solve many old electoral problems such as human errors,
coercion, and inaccessibility, it reopens new problems. Most
e-voting solutions are fully comprehensible to only a fraction
of experts, which makes the integrity of the voting process
rest substantially in the hands of few system operators rather
than in thousands of electoral commission o�cials [8, 16].
Moreover, despite the huge investment in e-voting systems
to enhance electoral processes in some political climes, it
has been reported that voter turnout is dropping for reasons
such as apathy, contentment, anger, boycott, disengagement,
disinterest, or fear. For example, it is increasingly observed
that youths are participating less in elections than other
demographic groups [8]. Allen [17] however asserts that “for
a democracy to command respect, itmust operate in the same
way as people do everything else in their lives.” A survey of
1,200 Canadians by Goodman at Carlton University [18] also
established that young citizens would vote online, if provided
with Internet option. Similarly, the world is said to have
surpassed the mobile moment when the number of mobile
devices equals the number of people on the planet [19].

�e ubiquity of the Internet and the global attainment
of the mobile moment serve as a motivation to propose
a secure mobile Internet voting architecture in this study.
�is voting scheme being proposed will be a paradigm
shi� in e-voting and it can potentially mediate some of
the highlighted challenges facing the traditional electoral
processes and the conventional e-voting systems. One of
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the primary objectives of this research work is to report
the proposed secure mobile Internet voting architecture,
which we evolved from the well-known Sensus e-voting
protocol [20, 21]. �e second paramount objective of this
study is to report experiments carried out to determine
the most appropriate short-term spectral features for imple-
menting the voice biometric authentication aspect of the
voting scheme. �e spectral features we examined are Mel-
Frequency Cepstral Coe�cients (MFCCs), Mel-Frequency
Discrete Wavelet Coe�cients (MFDWC), Linear Predictive
Cepstral Coe�cients (LPCC), and Spectral Histogram of
Oriented Gradients (SHOGs). We utilized the Histogram of
Oriented Gradients (HOG) algorithm which is reputed to be
a good descriptor of spectral shape and appearance in [22]
to both capture the discriminative content and dimensionally
reduce the image spectrograms of the MFCC, MFDWC, and
LPCC spectral features. �e resulting dimensionally reduced
Speaker discriminatory features were labelled, MFCC-HOG,
MFDWC-HOG, and LPCC-HOG. SHOG features, which
were utilized to classify persons into male and female gender,
based on their speech input in [23], were also investigated.
�e neural network ensemble was generally utilized as the
pattern matching algorithm in the four experimental models
that were set up to investigate the short-term spectral features
in this study.

2. Mobile Internet Voting

Mobile Internet voting (MI-voting) refers to the use ofmobile
devices to ubiquitously access wireless voting services on the
Internet anytime and anywhere. Distributing the processing
of votes over multiple web servers installed with a tamper-
resistant provides an environment that can improve the
security requirements of elections. �is security process is
made possible using the Smart Card Web Server (SCWS)
on a mobile phone Subscriber Identity Module (SIM) [24].
In general, mobile Internet technology is the result of the
convergence of networks of traditional Internet technology,
broadband mobile networks, and mobile terminals [25].
Mobile Internet can play an important role by taking advan-
tages of a large user base, surging sales of smartphones, tablets
and 3G data, and exploration of other mobile electronic
devices [26].

Mobile devices have become an important aspect of
the modern society because they allow people to move
from one place to another whilst they remain connected
to others. �e mobile technological revolution in the Infor-
mation Communication Technology (ICT) industry has led
to the creation of sophisticated mobile services such as m-
television, m-payment, m-health, m-government, and m-
banking to mention just a few. �is is because, in most parts
of the world, mobile devices have become highly ubiquitous
because of their portability and a�ordability. �e Interna-
tional Telecommunication Union (ITU) 2014 ICT statistics
indicates that there are 6.9 billion mobile subscriptions in
the world, out of which 4.5 billion are unique [27]. Amazon,
Wikipedia, and Facebook also informed that about 20% of
their tra�c originates from mobile-only users. According to
a Pew Internet report in 2012, 45% of young adults of the

age between 18 and 29 claim that they browse the Internet
mostly with a mobile device [28]. In South Africa also, 81.9%
of households use mobile phones, out of which 30.8% use
only mobile to access the Internet [29]. For the purpose of
this paper, a mobile device is a communication system with
the following desirable features [30, 31]:

(a) A small form factor, which refers to the size, shape,
style, and layout of the device.

(b) At least one wireless network interface for data com-
munications such as Wi-Fi and GSM/GPRS.

(c) Local built-in and nonremovable data storage.

(d) An operating system such as Android, iOS, Black-
berry OS, or Windows.

(e) Applications available as a web browser or mobile
apps acquired and installed from third parties.

(f) One or more wireless personal area network inter-
faces, such as Bluetooth or Near-Field Communica-
tions (NFC).

(g) One or more wireless network interfaces for voice
communications, such as cellular phones.

(h) Global Positioning System (GPS), which enables loca-
tion services.

(i) Battery powered.

Popular examples of mobile devices include cellular or smart
phones, personal digital assistants, tablets, netbooks, and
laptops [32].

Given the foregoing discussion, a secure mobile Internet
voting architecture is creatively evolved in this work to take
advantage of the aforementioned state-of-the-art technolo-
gies on the Internet and the mobile platforms. Subsequently,
in this paper, the secure mobile Internet voting architecture
is referred to as SMIV for convenience. �e SMIV represents
a voting paradigm, which ameliorates both the traditional
electoral process and the conventional e-voting systems in
innovative ways by leveraging on both mobile and Internet
technologies.�e SMIV architecture can potentially o�er the
following bene�ts [8, 33]:

(a) Probable decrease in costs of printing and transport-
ing of paper ballots across the country.

(b) Mobile device ubiquity and frugality that position it
as an alluring channel to realistically involve digital
natives, rural populace, youths, healthcare workers,
elderly, diplomats, soldiers, nomads, and the Diaspo-
ras who are unable to make it to poll-sites for casting
of their votes because of their peculiar circumstances.

(c) Facilitation of voters mobility because mobile devices
o�er a platform for ubiquitous voting at any time and
at one’s convenience.

(d) Design customization of the interface to assist the
totally or partially disabled members of the populace
to cast their votes from their own habitations.

(e) Capability of multilingual instructions on the inter-
faces without an accompanying increase in the cost
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Figure 1: Di�erent types of voting showing the placement of SMIV in the taxonomy [1].

of printing, which consequently reduces language
bigotry.

(f) Expediting the concept of Bring-Your-Own-Device
(BYOD), which serves to reduce operating expenses.

(g) Mitigating hacking attempts such as tempest attacks
which is the electronicmonitoring of radiation of vot-
ing screens to capture image and therefore monitors
the vote, one of the reasons, the Dutch stopped e-
voting.

�e subsequent section of this paper describes the architec-
ture of the proposed e-voting paradigm.

3. Secure Mobile Internet Voting Architecture

�e secure mobile Internet voting (SMIV) system architec-
ture we are proposing in this work is inherently a type of e-
voting scheme as illustrated in Figure 1. Although there are
di�erent varieties of voting protocols that have been reported
in the literature, the basic procedures for elections are gener-
ally standardized. �ese voting procedures o�en implement
four speci�c sets of tasks, which are registration, collection,
validation, and tallying [20]. Registration is comprised of the
compilation of the list of eligible voters. Validation involves
checking the credentials of someone that makes an attempt
to vote and only allowing the eligible voters that have not
yet voted to proceed. Collection job involves collecting the
voted ballots while tallying has to do with the counting of
the votes. In e-voting system design, ensuring that these
tasks are carried out electronically is a primary objective. In
order to realize this objective, no opportunitymust be created
for fraudulent practices that may breach the sanctity of the
electoral process and thereby impair the trust the electorates
have in the process.

Several sets of requirements have been established in
the literature that e-voting schemes must satisfy in order to
realize the aforementioned universal voting tasks [20, 34].
�ese requirements are grouped into two categories, which
include generic and extended requirements. �e generic
requirements are as follows[20, 35–37]:

(a) Accuracy. An e-voting system is said to be accurate if
it is impossible for a valid vote to be excluded, altered
or to include an invalid vote in the �nal counting.

(b) Privacy. �is involves the inability to link a voter
to the vote he or she cast (i.e., anonymity) and the
inability of the voter to prove the manner in which
the vote was cast.

(c) Veri�ability. An e-voting system is adjudged veri�able
if a voter, an observer, or anyone can autonomously
verify that all the cast votes were correctly tallied.

(d) Eligibility. Some authors refer to this requirement as
invulnerability [20, 34] or democracy [36]. �ese all
imply that an e-voting system permits only eligible
voters to vote only once and nobody can vote more
than once or vote for others.

Some other requirements categorized as extended
requirements have also been established in the literature as
necessary for the viability of e-voting systems. �e examples
in this category are as follows [35–37]:

(e) Convenience. An e-voting system should enable voters
to vote easily and quickly and with minimal equip-
ment and with no special expertise.

(f) Mobility. �ere should be no geographical restriction
with respect to where voters decide to cast their vote.
�is requirement also implies that e-voting system
is available and accessible during the voting phase
regardless of where the voter decides to cast his or her
vote.

(g) Flexibility. An e-voting system can be said to be
exible if it allows diversities of ballot question
formats including open-ended questions. �is is a
very vital requirement for utilizing Short Message
Services (SMS) on regular mobile devices and write-
in candidate voting option.

(h) Incoercibility. An e-voting system is expected to be
coercion resistant. Coercion takes place when an
entity makes e�orts to manipulate the manner in
which a vote is cast, inuences a voter to abstain,
and/or represent a valid voter by obtaining the voter’s
credentials.

A voting system can be said to be secured if all the
above stated requirements are satis�ed [38]. Even though
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all these security requirements are desirable for any type
of voting system, apparently they are not all achievable by
the conventional voting systems. Ful�lling the convenience,
mobility, and exibility requirements, for instance, is very
vital for ensuring a high participation of voters in elections,
although with a need to make provisions for sustaining the
security requirements of privacy, eligibility, and incoercibility.
Quite a number of voting schemes have been proposed in the
academic literature over the past 25 years. �ese proposed
schemes were targeted at ful�lling some of the generic
requirements for e-voting and minimizing electoral frauds.
Examples of these voting schemes include absentee balloting,
vote by mail balloting, cryptographic protocols, two-agency
protocol, one-agency protocol, FOO voting scheme, Sensus,
SEAS, and EVOX [20, 21, 34, 38].

�e SMIV architecture being proposed in this research
work is based on the reference architecture of Sensus, a well-
known security conscious Internet polling system [20, 21,
34], whose underlying foundation is the FOO, a practical
secret voting scheme for large scale elections [38]. �e
security requirements ful�lled by Sensus are the �rst seven
requirements stated earlier, although the authors of Sensus
posit that the architecture does not ful�ll the second aspect
of privacy requirements, that is, the inability of the voter to
prove the manner in which the vote was cast. In this current
work, all the highlighted eight security requirements above
are realizable in the SMIV architecture. However, security
requirements such as eligibility, convenience, and mobility
are realized di�erently from the Sensus approach. �is is
motivated by our desire to leverage on the recent advances
in mobile, Internet, Global Positioning System (GPS), Near-
Field Communication (NFC), and voice biometric tech-
nologies. �e voter identi�cation number and secret token
were used to implement eligibility in Sensus [20] while,
in this work, identi�cation numbers, voice biometric, and
GPS locations were utilized. �e basis for the proposition of
voice biometrics for realizing SMIV eligibility requirement is
explained in detail in the latter part of this section. �e secu-
rity requirement of convenience implemented in Sensus with
familiar devices and casting of vote in one or two sessions was
enhanced in this work using NFC tag attached to the voter’s
ID card in addendum to the Sensus approach. Incoercibility
which is a security requirement that must go hand in hand
with the satisfaction of the mobility requirement was realized
in our architecture using GPS service. Using the GPS service
will help in controlling the maximum number of voters that
can vote from a �xed location. �is is an emulation of the
polling booth or kiosk that is used for conventional electoral
processes. GPS service can also help to mitigate hacking by
either agenda-driven or disinterested foreign hackers and
enhance the ful�llment of the accuracy requirements better
than the implementation in Sensus.

�e use of modern technologies to satisfy the require-
ments of eligibility, convenience, and accuracy as proposed in
this study is an important contribution to e-voting research.
Furthermore, the incoercibility security requirement that is
satis�ed with this work was not implemented in the Sensus
architecture [20] and this also provides another important
contribution of this work to the Sensus reference architecture

and to e-voting research in general. Sensus is realized through
three di�erent modules described as follows [21]:

(i) Pollster. �is is a module that serves as an agent for
voters to anonymously, privately, and securely cast
their ballot.

(ii) Validator. �is is a server that �rst checks the eli-
gibility of the pollster and the uniqueness of its
submission. Once the pollster passes the eligibility
criteria and the vote being submitted is unique, it
validates the submitted vote.

(iii) Tallier. �is is a server that collects and counts all the
validated votes. �e tallier con�rms the authenticity
of the validation and veri�es that the encrypted ballot
is unique. �e tallier issues a signed receipt to the
pollster once the ballot is valid and unique.

A preliminary phase of the Sensus architecture requires
the participation of another entity named the registrar. An
identi�er, a secret token, and a public key are sent to the
registrar to initiate the registration process. Accordingly, the
registrar checks the validity of the token and updates a
Registered Voters List (RVL) with the voter identi�er and its
public key. �e RVL contains a validation �eld for each voter
that is set to 0 before each election and changed to 1 by the
validator a�er a voter’s ballot is validated [20]. Cranor and
Cytron [20], the authors of Sensus, posit that some election
administrator may choose not to automate the registration
process, that is, the registrar entity, for an election.

�e functionalities of the registrar, the pollster, and the
validator are extended in our proposed SMIV architecture so
as to realize the earlier stated enhancements to the reference
Sensus architecture. In codicil to the voters parameters
required in Sensus for registration, the SMIV architecture’s
registrar expects the voter to also submit other information
such as the voice biometric short-term features and the GPS
location of the intended place for voting. �is implies that
the registrar in SMIV must be automated for voice biometric
based voter’s identi�cation to be feasible. Since SMIV is
targeted primarily at large scale elections, the SMIV registrar
is to be implemented as a server and should not reside on
the same machine as either validator or tallier to further
enhance the security requirement of privacy. �is increases
the numbers of servers in SMIV to three instead of the
two servers that were implemented in Sensus. Apart from
the RVL that is generated by the registrar in SMIV, it also
generates a machine learning based on the training ID entity
for voter identi�cation. �e communication links between
all the component modules in SMIV are assumed to be
anonymous similar to the stipulation in Sensus.

�e pollster in SMIV is incorporated with the capability
to render the ballot using conventional so�ware standards
such XML/HTML, WML, and plain SMS so as to ensure
compatibility with diverse devices and thoroughly satisfy
the security requirement of convenience. �e pollster also
incorporates the capability of being loadable using the voter’s
ID card tagged with NFC, which is also a contributory factor
in the realization of convenience. �e validator in SMIV
architecture incorporates functions that will make it capable
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Table 1: �e reference Sensus [20] and the proposed SMIV architecture’s ful�llment of the eight e-voting security requirements.

Serial
number

Sensus �e proposed SMIV

1
Accuracy

Only one of several identical encrypted ballots got counted

Accuracy
(i) Only one of several identical encrypted ballots got counted
(ii) GPS location of place of voting to prevent agenda-driven
or disinterested foreign hackers

2

Privacy
(i) Blind signature and data encryption using the RSAREF
encryption library
(ii) Di�erent servers run validator and tallier
(iii) Pollster does not run on a machine that runs either
validator or tallier
(iv) Installation of personal copy of pollster on trusted
machine by voter
(v) Anonymous channel

Privacy
(i) Blind signature and data encryption using the RSAREF
encryption library
(ii) Di�erent servers run registrar, validator, and tallier
(iii) Pollster does not run on a machine that runs either
registrar, validator, or tallier
(iv) Installation of personal copy of pollster on trusted
machine by voter
(v) Anonymous channel

3

Veri�ability
(i) Publishing of a list of encrypted ballot, decryption keys,
and decrypted ballots
(ii) Only voters can verify that their votes were counted
correctly and correct any mistake anonymously

Veri�ability
(i) Publishing of a list of encrypted ballot, decryption keys,
and decrypted ballots
(ii) Only voters can verify that their votes were counted
correctly and correct any mistake anonymously

4

Eligibility
(i) Voters ID number
(ii) Secret token
(iii) Blinded validation certi�cate and signed receipt to
certify uniqueness of vote

Eligibility
(i) Voters ID number
(ii) Voice biometrics (short-term spectral features)
(iii) GPS location
(iv) Blinded validation certi�cate and signed receipt to certify
uniqueness of vote

5
Convenience

(i) Familiar devices and user interfaces
(ii) Casting of vote in one or two sessions

Convenience
(i) Familiar devices and user interfaces
(ii) Casting of vote in one or two sessions
(iii) Voter ID card a�xed with NFC tags for autoloading of
voting application

6
Mobility

Internet enabled computers

Mobility
(i) Internet enabled computers
(ii) Mobile devices

7
Flexibility

Ballot description language (BDL)

Flexibility
(i) XML/HTML
(ii) WML
(iii) Plain SMS

8
Incoercibility

Not implemented
Incoercibility
GPS location

of validating the pollster using the trained ID entity from
the registrar. �e trained ID entity inherently contains the
identi�cation numbers, voice biometric short-term features,
and the GPS locations for all the voters. Table 1 illustrates the
evolution of the proposed SMIV architecture from the Sensus
reference architecture and a summary of the realization of
the eight di�erent security requirements that are satis�ed by
SMIV.�e sequence diagram of the SMIV architecture is also
shown in Figure 2.

Remote or precinct voter authentication has been touted
as a nontrivial challenge even in established democracies that
have adopted e-voting systems and it is also an essential com-
ponent of e-voting system eligibility security requirements
[16]. Several approaches have been proposed for its imple-
mentation in a secure manner and one of the chief proposi-
tions is the use of biometrics. �ese are automatic methods

of identifying or verifying the identity of a person based
on behavioral and physiological physiognomies. Examples of
human features that are used in biometric systems include
�ngerprint, voice, iris, face, signature, DNA, hand, keystroke,
gait, handwriting, and �nger shape. Biometric authentication
involves the comparison of an enrolled biometric template
against a freshly taken biometric sample [39, 40]. �is
authentication mechanism can be used in veri�cation or
identi�cation modes. Veri�cation mode involves the valida-
tion of a person’s identity by comparing the freshly captured
sample with its own template and the system conducts a
one-to-one comparison to determine if the claim is true
or not. Furthermore, veri�cation helps to achieve positive
recognition in which the goal is to inhibit multiple individ-
uals from using the same identity. In identi�cation mode,
the biometric system distinguishes a person by searching
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Registrar Validator Pollster

(i) Updated RVL

Tallier

contains voters identi�cation
numbers, short-term spectral
features, and GPS locations

registered voters that also
contains their public keys

(ID)

(RVL)

and private key pair

(Update RVL)

(i) ID = a trained entity which

(ii) RVL = list of eligible and

validator public(i) pk� , pk�
−1 =

(i) Open the ciphertext with pk�
−1

(ii) Verify the signature with pkp
(iii) Sign blinded digest:

{(h({B}ek))blind}pk�
−1

{{(h({B}ek))blind}pk�
−1}pk�

{{(h({B}ek))blind}pkp
−1, ID}pk�

(i) pkT, pkT
−1 = tallier public and

private key pair
(ii) pk� = validator public key
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Figure 2: Sequence diagram of SMIV architecture; an extension of the Sensus reference architecture adapted from [21].

the templates of all the users for a tie by conducting a one-
to-many search. Identi�cation is o�en employed for negative
recognition in which the system establishes whether an indi-
vidual is who she/he disagrees to be so as to prevent a single
individual from usingmultiple identities [41]. Oldermethods

such as PIN, password, tokens, and keys may be engaged
successfully for positive recognition, but, for establishing
negative recognition, only biometrics will su�ce. Worthy of
note is the fact that both veri�cation and identi�cation are
generically called recognition.
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An ideal biometric feature must therefore ful�ll essential
requirements such as robustness, uniqueness, universality,
permanence, collectability, performance, and acceptability,
which are explicitly de�ned in [42]. Ful�lling these require-
ments is strongly dependent on the application domain, the
population, and the hardware or so�ware systems in use.
�e performance of one application cannot be predicted
from tests carried out on another application. However,
voice biometric has been acclaimed in the academic liter-
ature as a good choice for phone based applications and
other applications that require remote authentication [42–
46]. Voice biometrics is a combination of physiological
and behavioral characteristics. Although the physiological
features (i.e., vocal tract structures, which are also known as
short-term features) of human speech are invariant for each
person, the behavioral features vary over time as a result
of age, medical conditions, and emotional state [40]. Voice
biometric recognition systems can be either text-dependent
or text-independent. Text-independent voice recognition
systems are based on the utterance of a �xed word or phrase
while text-independent system distinguishes an individual
regardless of the uttered word or phrase. A text-independent
voice recognition even though very challenging to design
o�ersmore protection against scams [40]. Voice biometrics is
also referred to as Speaker recognition, which is the process
of automatically recognizing who is speaking on the basis
of the information inherent in the speech waves. Speaker
recognition is a di�erent technology compared to speech
recognition in which computer algorithms extract features of
the spoken utterance to determine the word that is spoken
[47].

Given the foregoing discussion in the last two sections, a
text-independent Speaker identi�cation approach using short-
term spectral features is nominated for ful�lling the authen-
tication requirement of the proposed SMIV architecture.
As earlier established, this choice satis�es the biometric
negative recognition paradigm, which prevents a single indi-
vidual from using multiple identities [41]. Consequently,
this choice will also satisfactorily enhance the realization
of both mobility and eligibility security requirements better
than the method used in Sensus. �e block diagram for the
enrollment and identi�cation of a biometric authentication
system is shown in Figure 3. For convenience, recognition is
subsequently used in place of identi�cation in this paper.

Experimentations were carried out in this work to
determine the best combinations of algorithms for realizing
the text-independent Speaker recognition authentication of
the SMIV architecture. Meanwhile, the subsequent section
details the theoretical foundation of short-term feature-based
Speaker recognition systems.

4. Theoretical Foundation for Speaker
Recognition Authentication

A Speaker recognition authentication system is analogous to
the diagram in Figure 3 and typically is comprised of the
digitization of the analogue speech, preprocessing of the dig-
itized speech, extraction of discriminating speech features,
dimension reduction of the extracted features, training of

pattern matching model, and recognition of Speakers
through pattern matching with the trained model. �e
features for Speaker recognition are divided into short-term
spectral features, voice source features, spectral-temporal
features, prosodic features, and high-level features.�e short-
term features have hitherto been the dominant features in
Speaker recognition systems because of their stability, ease
of extraction, requirement of a small amount of data, text
and language independence, and less computational require-
ments. �e most prominent short-term features in the litera-
ture include Mel-Frequency Cepstral Coe�cients (MFCCs),
Mel-Frequency Discrete Wavelet Coe�cients (MFDWC),
and Linear Predictive Cepstral Coe�cients (LPCC) [48, 49].

Mel-frequency is the measure of the human perception
of the frequency content of speech signals on the “Mel scale.”
Mel-Frequency Cepstrum (MFC) stands for the short-term
power spectrum of the speech, based on a linear cosine trans-
form of a log power spectrum, computed on the nonlinear
Mel-frequency. �e MFCCs are, therefore, the coe�cients
that collectively make up the MFC. �e frequency bands
in the MFC are equally spaced and from research �ndings
in the psychophysical �eld it has been established that the
Mel scale approximates the auditory system of humans better
than linearly spaced frequency bands. �e computational
components of theMFCC algorithm are captured in Figure 4
[50].

Assuming that �[�] is the digitized version of the input
speech signal with sampling frequency �� it is divided into� frames each of length � samples with an overlap of �/2
samples. �� denotes the �th frame of the speech signal �[�]
and to compute the MFCC of the �th frame �� is multiplied
with hamming window. �e hamming window is given as

� (�) = 0.54− 0.46 cos( 2
�� − 1
) ,

� = 0, 1, . . . , � − 1.
(1)

�e windowing function is purposely for the smoothening of
the signal for the computation of the Discrete Fourier Trans-
form (DFT). �e DFT is used for computing the frequency
response of each frame to generate the spectrogram of the
speech signal as

� [] = �−1∑
�=0

� [�] �−�2���/�,  ∈ �. (2)

�e relationship between the Mel-frequency and linear fre-
quency is

mel (�) = {{{
2595 log

10
(1 + �

700
) if � > 1 kHz

� if � < 1 kHz, (3)

where mel(�) is the Mel-frequency scale and � is the linear
frequency.�eMel-�lter bank �lters themagnitude spectrum
that is passed to it to give an array output called Mel-
spectrum. Each of the values in the Mel-spectrum array
corresponds to the result of the �ltered magnitude spectrum



Mathematical Problems in Engineering 9

User 

interface

(Sensor)
Quality 
checker

Features 
extraction

Template 
DB

Enrolment

Features 
extraction

Matcher
(N-matches)

Identi�cation

Identi�cation 
result

User 

interface

(Sensor)

Figure 3: Generic block diagram for enrollment and identi�cation of biometric authentication system.

WindowingInput speech 
signal

Discrete Fourier 
Transform

(DFT)

Mel-frequency 
�lter bankLOG

Discrete cosine 
transform 

(DCT)

MFCC 
output

|X|2

Figure 4: MFCC computational components.

through the individualMel-�lters.�eMel-spectrum is given
as

� (�) = �/2∑
�=0

|� []| ∗Mel-Weight [�] [] ,
0 < � < �,

(4)

where� represents the number of �lters.�eMFCC features
are computed by taking the log of the Mel-spectrum and
computing the DCT as follows:

�� = �∑
�=1

[log� (�)] cos [ (� − 1

2
) 
�]

∀ = 1, . . . ,�.
(5)

�e �0 is omitted from the DCT computation because it rep-
resents the mean value of the input speech that contains little
Speaker unique information but rather contains information
on the microphone used for recording the speech signal.

�e MFCC feature vector is obtained per Speaker by
retaining about 12–15 lowest DCT components [51, 52].
MFDWC features are calculated using similar procedures
to the computation of MFCC features. However, the DCT
computation in the last step is substituted with the Discrete
Wavelet Transform (DWT). DWT is acclaimed to allow
better localization in both time and frequency domains and
based on this the MFDWC has been shown to give better
performance in noisy environments [53]. Linear Predictive
Coding (LPC) is an alternative spectrum estimation method

to DFT. It has a good intuitive interpretation in both fre-
quency and time domains. Given a signal, "[�] in the discrete
time domain, the LPC prediction error is given as

� [�] = " [�] − �∑
�=1

#�" [� − ] , (6)

where #� are the coe�cients of the predictor. Assume that "[�]
is the speech signal and �[�] is the voice source (or glottal
pulses) [53]. Equation (6) is transformed to

$ [%] = & [%](1− �∑
�=1

#��−�) . (7)

�e spectral model is therefore given as

-(%) = 1

1 − ∑��=1 #��−� , (8)

where #� are the predictor coe�cients that are o�en com-
puted by minimizing the residual energy using the Levinson-
Durbin algorithm [54] and -(%) is the spectral model.
However, these predictor coe�cients are infrequently used
as features; rather, they are transformed to the more robust
LPCC features using a recursive algorithm proposed by
Rabiner and Juang [55]. Unlike MFCC features, the LPCC
features are not based on the auditory perceptual frequency
scale.

�e output of the computed short-term features (i.e.,
MFCC, MFDWC, and LPCC) is essentially 2-dimensional
matrices, which can be described analogously as 2-
dimensional digital image signals [57]. More so, short-term
spectral features have been described as the acoustic correlate
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of the “color” of sound in [58]. �ese matrices therefore
can be processed further using digital image processing
algorithms to achieve dimension reduction, because one
of the expected characteristics of an ideal feature in the
Speaker recognition is that the number of features should
be relatively low to prevent the curse of dimensionality in
which the required training samples grow exponentially
with the number of features. Another important bene�t
of compact features is the reduction in the computational
complexity of the pattern matching models in Speaker
recognition systems [58, 59]. Examples of dimension
reduction methods in signal processing, image processing,
and statistics include Principal Component Analysis (PCA),
Factor Analysis (FA), Independent Component Analysis
(ICA), projection pursuit, random projections, vector
quantization, and Histogram of Oriented Gradient (HOG).
�e HOG is a recent descriptor developed by Dalal and
Triggs in 2005 [22] that can e�ectively capture the local
appearance and shape information by encoding the spectral
gradient orientation from the output of the short-term
features as histograms. �e algorithm has been reputed
to be successful in recent applications such as pedestrian
recognition, activity recognition, and speech processing
[22, 60, 61]. �is algorithm is adopted for the dimension
reduction task in this work.

Furthermore, Arti�cialNeuralNetwork (ANN) ensemble
is selected as the pattern matching method. ANNs have been
used for several years in both speech and Speaker recognition
systems because of their high accuracy, noise tolerance,
and nonlinear property [47]. Meanwhile, ensemble learning
improves ANNs performance by giving better accuracy than
a single ANN [56, 62]. In machine learning, the idea of
ensemble learning is to engagemultiple learners and combine
their predictions. Ensemble of learning models is known to
enhance the performance of single models by giving better
accuracy than the individual members of the ensemble.
One of the most e�ective methods used for constructing
ensembles is the manipulation of the training samples to
generate multiple models [63]. In this method, the learning
algorithm is run in several iterations with a di�erent subset of
the training samples at each iteration. �is method is known
to work e�ciently with unstable learning algorithms such
as decision tree and neural network. Examples of di�erent
algorithms used for manipulating the training datasets are
bagging, cross-validated committees, and AdaBoost [64].
Bagging was developed in 1996 and it means bootstrap aggre-
gation. It is reputed as the �rst e�ective method of ensemble
learning and is one of the simplest methods [65].�emethod
creates multiple versions of a training set by sampling with
replacement and each of the resampled datasets is used to
train a di�erent model. �e output of the model is o�en
combined by averaging or voting depending on the nature of
the problem. Bagging is adopted for this work to leverage on
its bene�ts.

5. Experimental Results

5.1. Data Collection. For the experimentation aspect of this
work, speech signals of selected Speakers were recorded

Table 2: Distribution of the dataset used in the experiments.

Number of
Speakers

Numbers of speeches recorded per Speaker Total

20

Training 15 300

Testing 2 40

Total 17 340

at 11025Hz sampling rate as “.wav” �les using a Logitech
microphone. �e recording was done in MATLAB R2012a at
16 bits per sample for 10-second duration. �e phrases that
were uttered sequentially by the Speakers for each instance of
recording are as follows:

(i) “Hello Hello Hello . . .,”
(ii) “1 2 3 . . .,”
(iii) “A, B, C . . .,”
(iv) “Yes Yes Yes . . .,”
(v) “No No No . . .”
�e �ve di�erent utterances were repeated three times

by each Speaker to generate ��een utterances per Speaker
for the training dataset. One of these �ve utterances was
read in languages other than English such as Zulu (South
Africa), Yoruba (Nigeria), Halychyna (Carpathian region of
Europe), and Hindi (India). �is is to introduce diversity
into the dataset and emulate the reality in a typical mul-
tiethnic population that may want to implement the voice
biometric authentication in the proposed SMIV architecture.
Furthermore, any two of the �ve phrases were uttered and
recorded for each Speaker to generate two text-independent
test samples per Speaker. �e distribution of the generated
datasets is shown in Table 2. A Graphical User Interface
(GUI) shown in Figure 5 was designed and implemented in
MATLAB R2012a for recording the speech utterances for our
experiments. �e waveforms of the “Hello Hello Hello . . .”
utterances for eight of the enrolled twenty Speakers are shown
in Figures 6 and 7while the spectrograms of the utterances are
shown in Figures 8 and 9. Both waveforms and spectrograms
(Figures 6, 7, 8, and 9) clearly illustrate the variations in
the patterns of the speech signal from one Speaker to the
other. Only the plots for the �rst eight out of the twenty
Speakers enrolled are reported in this paper because of space
constraint. We created our own in-house speech database for
this study rather than using existing databases such as TIMIT,
NTIMIT, IISC, and YOHO [66, 67] because of the need to
introduce diverse languages into the dataset. �is is to add a
unique avor of investigating the acclaimed text and language
independence of short-term spectral features [58]. We also
made a choice of a compact dataset for our investigation
in this study based on the established fact in the literature
that only a small amount of data is necessary for short-term
spectral features [58].

Four di�erent experimental models were designed for
this study so as to determine the appropriate combination
of algorithms to realize an optimal Speaker recognition
aspect of the SMIV architecture. All the experiments were
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Figure 5: Speaker recognition experimentation toolkit (SRET) user enrollment interface.
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Figure 6: Waveforms corresponding to the utterance “Hello Hello
Hello . . .” by Speakers 1–4.

performed on a computer system with Intel Core i5-3210M
CPU operating at 2.50GHz speed. �e computer system also
has 6.00GB RAM, 500GB Hard disk and it runs 64-bit
Windows 8 operating system.�e experiments and the results
obtained are reported in the subsequent subsections.

5.1.1. Experiment 1. �e architecture of the model for experi-
ment 1 is as shown in Figure 10. As illustrated in the �gure,
the �rst block involves the capturing and digitization of
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Figure 7: Waveforms corresponding to the utterance “Hello Hello
Hello . . .” by Speakers 5–8.

the analogue speech signal using a microphone and the Per-
sonal Computer (PC) in the MATLAB R2012a environment.
Samplewaveforms and spectrograms generated from this �rst
block are as shown in Figures 6 to 9.

�e preprocessing and features extraction block shown
in Figure 10 were implemented with the Mel-Frequency
Cepstral Coe�cients (MFCCs) algorithm. �e MFCC com-
putational components shown in Figure 4 were implemented
in this study using MATLAB R2012a. �e digitized speech
signal for each of the seventeen utterances from the di�erent
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Figure 8: Spectrogram corresponding to the utterance “Hello Hello
Hello . . .” by Speakers 1–4.

Speakers served as inputs into the MFCC code and each
utterance generated a 12 × 1374 MFCC matrix as outputs.
�e image plots of the MFCC matrices for the utterance
“Hello Hello Hello . . .” for the �rst eight Speakers are shown
in Figures 11 and 12. As shown graphically in the �gures, the
patterns of the features extracted for each of the utterances by
di�erent Speakers are uniquely di�erent.

In this study, the HOG block in Figure 10 was imple-
mented in MATLAB R2012a to reduce the 12 × 1374 MFCC
matrix for each utterance to a feature vector of 81 elements.
�is is an important procedure for reducing the complexity
and computational time of the subsequent ensemble learning
network in the model. �e time and frequency domain plots
of the HOG features for the utterance “Hello Hello Hello . . .”
for the �rst eight Speakers are shown in Figures 13 and 14.
Both �gures illustrate that the dimensionally reduced HOG
features for the Speakers have similar patterns because they
represent the utterance of the same set of words; however,
despite the similarity in the patterns, the pattern for each
of the Speakers is unique in both time and the frequency
domains. �is is an illustration of the capability of the HOG
algorithm to both reduce the dimensions of the extracted
MFCC features and still retain the discriminatory features for
each of the Speakers in the dataset.

�enext computational block in themodel for the current
experiment is the design and training of the patternmatching
platform, which automates the Speaker recognition task. �e
selected pattern matching method is the ANN ensemble.
As earlier stated in Section 4, ANN ensemble enhances the
output of single ANNs by giving better accuracy than the
individual base ANNs in the ensemble. In order to create
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Figure 9: Spectrogram corresponding to the utterance “Hello Hello
Hello . . .” by Speakers 5–8.

an ensemble of ANNs, the base ANN has to be properly
con�gured so as to achieve high performance with low
network errors. For this study, the con�guration of the base
ANN is 500 training epochs with the dataset partitioned to
70% training, 15% testing, and 15% validation. It was shown
by Cybenko [68] that a network with one hidden layer is
able to approximate any continuous function. However, the
authors in [69] posit that more hidden layers with a high
number of neurons generally lead to small local minima. On
these bases and from the outcome of our experimentations,
we selected 2 hidden layers and 80 neurons in each hidden
layer for the base ANN in this study.�e activation functions
selected for each layer of a network are also important
in con�guring the base ANN for ensemble learning. For
the input layer, the linear activation function was selected
because this layer is only required to convey the input data
to the succeeding layer without any alteration. �e power
of MLP-ANN, which is the topology adopted for the base
ANN in this study, comes from nonlinear activation in
the hidden layer. �e most commonly used functions are
the logistic and hyperbolic tangent functions because of
their nonlinearity and di�erentiability [69]. �e hyperbolic
tangent was however selected for the hidden layer neuron of
the base ANN. �is is because the function is symmetrical
to the origin and decreases the speed of convergence during
training. Hyperbolic tangent is also selected for the output
layer neuron because the function is adjudged appropriately
for binary output patterns [68, 69].�ere are 81 neurons in the
input layer for the base ANN in this study in conformity with
the number of elements in the HOG features vector. We also
have 5 neurons in the output layer since there are 20 unique
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Figure 11: �e MFCC images for the utterance “Hello Hello Hello. . .” for Speakers 1–4.
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Figure 12: �e MFCC images for the utterance “Hello Hello Hello. . .” for Speakers 5–8.
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Figure 14: Frequency domain plot of the MFCC HOG features for
the utterance “Hello Hello Hello . . .” of the �rst 8 Speakers.

Speakers in the dataset and permutations of 5 binary patterns
are su�cient for the unique identi�cation of the 20 Speakers.
�e architecture of the fully con�gured base ANN used in
this study is shown in Figure 15 while the target output binary
patterns of the output neurons are shown in Table 3.



14 Mathematical Problems in Engineering

W

b

+

W

b

+

Hidden layer 1
with 80 neurons

Hidden layer 2
with 80 neurons

Output

5

Input

81

Figure 15: Architecture of the con�gured base ANN [56].

Table 3: Target outputs of the base ANN for each Speaker.

Speaker Target output

Speaker 1 00001

Speaker 2 00010

Speaker 3 00011

Speaker 4 00100

Speaker 5 00101

Speaker 6 00110

Speaker 7 00111

Speaker 8 01000

Speaker 9 01001

Speaker 10 01010

Speaker 11 01011

Speaker 12 01100

Speaker 13 01101

Speaker 14 01110

Speaker 15 01111

Speaker 16 10000

Speaker 17 10001

Speaker 18 10010

Speaker 19 10011

Speaker 20 10100

�e con�guration of the ANN ensemble is another criti-
cal aspect in the design of ensemble learning systems. A study
in [70] trained an ensemble of 32 neural networks to identify
volcanoes on Venus. In the study at hand, 50, 100, and 200
basemodelswere tested using bagging ensemble and plurality
voting for combining their predictions. Our result gave better
prediction accuracywithmoderate complexity using 100 base
models in the ensemble. It is however already established
in the literature that having a high number of models is
advantageous in problemdomainswith a small dataset, which
is the case in this study [63].�e bagging ensemble algorithm
adopted for this study was implemented in MATLAB R2012a
using appropriate functions in the Statistical and Neural
Network Toolboxes. �e performances of the base ANNs
were evaluated based on statistical measurements such as
linear regression R value and mean square error (MSE) [71].
�e 4 values and MSEs of the 100 base models in the ANN
ensemble for the current experimental model are plotted as
shown in Figure 16.
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Figure 16: MSE and 4 values of the 100 base ANNs for experiment
1.

�e average MSE for the ANN ensemble in this �rst
experiment is 0.0411 and the average 4 value is 0.9123. �is
ANN ensemble was used to predict two test samples from
each of the Speakers. Twenty-nine samples were correctly
predicted out of the forty test samples. We performed more
experiments as reported in subsequent subsections before a
conclusion is made about the suitability of this result.

5.1.2. Experiment 2. In the current experiment, the experi-
mental model was obtained by replacing MFCC in the �rst
experimentalmodel (Figure 10)withMel-FrequencyDiscrete
Wavelet Coe�cients (MFDWC) as the short-term features.
�e MFDWC algorithm was implemented in MATLAB
R2012a and the image plots of the output matrices for the
utterance “Hello, Hello, Hello . . .” by the �rst eight Speakers
are shown in Figures 17 and 18. It is shown in these �gures
that the MFDWC pattern for each of the Speakers is unique.

Similar to the procedure in experiment 1, the HOG
algorithm was further utilized to reduce the dimensions of
the 12 × 1374 MFDWC feature matrices in order to obtain 81-
element feature vector for each of the Speakers in our dataset.
�e time and frequency domain plots of the MFDWC-HOG
features for the utterance “Hello Hello Hello . . .” for the �rst 8
Speakers are shown in Figures 19 and 20.
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Figure 17:�eMFDWC images for the utterance “Hello Hello Hello. . .” for Speakers 1–4.
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Figure 18:�eMFDWC images for the utterance “Hello Hello Hello. . .” for Speakers 5–8.
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Figure 19: Time domain plot of the MFDWCHOG features for the
utterance “Hello Hello Hello . . .” of the �rst 8 Speakers.
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Figure 20: Frequency domain plot of the MFDWC-HOG features
for the utterance “Hello Hello Hello . . .” of the �rst 8 Speakers.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Base ANNs

M
SE

 a
n

d
 R

 v
al

u
es

Mean square error

Linear regression R values

Figure 21: MSE and 4 values of the 100 Base ANNs for experiment
2.

As shown in Figures 19 and 20, although the shapes of
the MFDWC-HOG features for the di�erent Speakers are
similar, the sizes of the shapes are unique and this provides a
strong basis for using machine learning to uniquely identify
each of the Speakers. Consequently, the next block in the
model for experiment 2 is the training of the ANN ensemble
with the MFDWC-HOG features. �e con�guration of the
ANN ensemble in experiment 1 is also used in the current
experiment and the results obtained for the 100 base ANNs
in this experiment 2 are illustrated with the plot in Figure 21.

�e average MSE for the ANN ensemble in the second
experiment is 0.0455 and the average 4 value is 0.9028.
Furthermore, the trained ANN ensemble was tested with two
utterances from the test datasets for each of the Speakers.
Out of the forty test samples, twenty-nine were correctly
predicted. �e ANN ensemble trained with MFDWC-HOG
features in the current experiment gave a slightly lower statis-
tical performance result than was obtained in experiment 1.
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Figure 22:�eLPCC images for the utterance “HelloHelloHello . . .”
for Speakers 1–4.

However, the same number of test samples was correctly
recognized in the two experiments. �e similarity in the test
results obtained fromboth experiments 1 and 2 is noteworthy,
but these results are a little below the expected level of
recognition for the authenticationmodule of the SMIV archi-
tecture. Consequently, we set up another experimentation
model, which is reported in the next subsection.

5.1.3. Experiment 3. �e architecture of the model for exper-
iment 3 was derived by using the Linear Predictive Cepstral
Coe�cients (LPCC) features extraction algorithm [48, 49]
for the preprocessing and features extraction block in the
architecture shown in Figure 10 and this distinguishes it from
previous experiments 1 and 2. �e LPCC features extraction
algorithm was implemented in MATLAB R2012a and was
similar to what was done in experiments 1 and 2; the image
plots of the LPCC feature matrices for the utterance “Hello,
Hello, Hello . . .” by the �rst 8 Speakers are shown in Figures 22
and 23. �e patterns of the outputs of LPCC feature matrices
shown in these �gures are di�erent from the MFCC and
the MFDWC patterns shown in Figures 11, 12, 17, and 18,
respectively. �is is a con�rmation of the methodological
di�erences among the di�erent short-term spectral features.
�e patterns of the LPCC feature matrices for each Speaker
are also unique and this is a reection of the discriminatory
power of the LPCC features.

Similar to experiments 1 and 2, the next procedure
implemented was the dimension reduction of the 12 × 1374
LPCC feature matrices using HOG algorithm. �e time and
the frequency domain plots of the 81-element LPCC-HOG
feature vector obtained for each of the Speakers in this
experiment 3 are shown in Figures 24 and 25. �ese features
which are unique for each Speaker as shown in both the
time and the frequency domain plots are utilized to train
the ANN ensemble of the same con�guration as was used in
experiments 1 and 2.�e values obtained for the MSEs and 4
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Figure 23:�eLPCC images for the utterance “HelloHelloHello . . .”
for Speakers 5–8.
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Figure 24: Time domain plot of the LPCC-HOG features for the
utterance “Hello Hello Hello . . .” of the �rst 8 Speakers.

values for the 100 base ANNs in the current experiment are
illustrated in Figure 26.

An average MSE of 0.0407 and average 4 value of 0.9127
were obtained for the ANN ensemble trained with LPCC-
HOG features in experiment 3. �ese statistical measures of
performance obtained in the current experiment are better
than those obtained in the two previous experiments. �is
is an illustration of a stronger discriminatory capability of
LPCC features over both MFCC and MFDWC features.
In order to further validate the current result, the ANN
ensemble in this experimentwas tested using two test samples
from the test dataset for each of the Speakers. Out of the forty
test samples, thirty samples were correctly predicted.�is is a
further validation of the stronger e�cacy and discriminatory
capability of the LPCC-HOG features over both MFCC-
HOG and MFDWC-HOG features. �e result obtained in
this experiment 3 is apparently promising for developing the
voters’ authentication module of the SMIV architecture.



Mathematical Problems in Engineering 17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

Frequency (Hz)

M
ag

n
it

u
d

e

Speaker 1

Speaker 2

Speaker 3

Speaker 4

Speaker 5

Speaker 6

Speaker 7

Speaker 8

Figure 25: Frequency domain plot of the LPCC-HOG features for
the utterance “Hello Hello Hello . . .” of the �rst 8 Speakers.
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Figure 26: MSE and 4 values of the 100 Base ANNs for experiment
3.

5.1.4. Experiment 4. �e fourth experimentalmodel reported
in this paper is based on the Spectral Histogram of Oriented
Gradient (SHOG) features that were �rst reported in the
speech processing research community by Selvan and Rajesh
in [23] as e�cient features for classi�cation of Tamil lan-
guage’s male/female Speakers. Selvan and Rajesh [23] utilized
the HOG algorithm to generate spectral features rather than
for dimension reduction of the short-term spectral features
(MFCC, MFDWC, and LPCC) as used in the three earlier
experiments in this current study. However, the departure
being pursued from the study by Selvan and Rajesh [23]
in this experiment 4 is to examine the e�cacy of SHOG
features for Speaker recognition purpose rather than for
speech based classi�cation of persons into male or female
gender. �e architecture of the model for experiment 4 is
derived from Figure 10 by using SHOG algorithm in the
feature extraction and dimensionality reduction block. �e
computational components of the SHOG algorithm are also
shown in Figure 27.

�e spectrograms for the “Hello Hello Hello . . .” utterance
by the �rst 8 Speakers have been shown earlier in Figures 6
and 7. �e computational components shown in the SHOG
block diagram in Figure 27 were implemented in this study
using appropriate functions in Image and Signal Processing
Toolboxes of MATLAB R2012a. �e time and the frequency
domain plots of the 81-element SHOG features obtained as
outputs from Figure 27 are shown in Figures 28 and 29. �e
SHOG features are unique for each Speaker as shown in time
and frequency domain plots. �ese features are utilized to
train the ANN ensemble with the same con�guration as was
used in experiments 1, 2, and 3.�e results that were obtained
(MSEs and 4 values) for each of the 100 base ANNs in this
fourth experiment are illustrated with the plot in Figure 30.

Figure 30 shows the plot of the statistical results obtained
from the training of the ANN ensemble with SHOG features
in the current experiment. �e average MSE is 0.0941 and
the average 4 value is 0.7775. �ese results indicate that
using SHOG features gave a far poorer performance than
MFCC-HOG, MFDWC-HOG, and LPCC-HOG features in
experiments 1, 2, and 3, respectively. In order to further test
the performance of the SHOG features and ANN ensemble
for Speaker recognition, the test samples utilized in the
previous experiments are also used to test the model in
the current experiment. Out of the forty test samples (i.e.,
two samples per Speaker), only ten samples were correctly
recognized. Overall, the summary of the results obtained
from all the experimental models in this study is shown in
Table 4.

As shown in Table 4, the LPCC-HOG features with ANN
ensemblemachine learningmodel gave the best performance
out of the four di�erent models that were investigated in
this study. On this basis, the LPCC-HOG features and
ANN ensemble are nominated for the voters’ authentication
module of the SMIV system architecture.�e result obtained
in this study is in concordancewith the position of the authors
in [58] who recommended LPCC as one of the best short-
term spectral features for practical applications. However, an
important contribution of our work to the speech processing
literature is the use of the HOG algorithm for dimension
reduction of short-term spectral features. �is contribution
is signi�cant because it serves as a consolidation of the earlier
e�orts by Selvan and Rajesh [23] in 2012, who developed the
SHOG for classi�cation of Speakers into di�erent genders.

6. Conclusion

�e SMIV architecture reported in this paper provides a
paradigm shi� for the implementation of e-voting systems
by leveraging on the ubiquitous Internet, the pervasive
mobile devices, GPS location services, NFC technology, and
voice biometric authentication. �is new architecture ful�lls
eight of the e-voting security requirements in creative ways
and will potentially enhance conventional approaches to
electoral processes. Another very important achievement of
this current study is the discovery of LPCC-HOG as viable
and compact short-term spectral features for implementing
the authentication module of the SMIV architecture. �ese
features are also very promising for other applications that
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Table 4: Summary of the experimental results.

Experimental model Extracted features Average MSE Average 4 Number of correct
predictions

(total samples = 40)

1 MFCC-HOG 0.0411 0.9123 29

2 MFDWC-HOG 0.0455 0.9028 29

3 LPCC-HOG 0.0407 0.9127 30

4 SHOG 0.0941 0.7775 10

Spectrogram Mel-scale �lter Bilateral 
�lter

Orientation

computation

Gradient 
magnitude 

computation

Spectral 
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bins

Input speech
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Figure 27: Computational components of SHOG [23].
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Figure 28: Time domain plot of the SHOG features for the utterance
“Hello Hello Hello . . .” of the �rst 8 Speakers.
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Figure 29: Time domain plot of the SHOG features for the utterance
“Hello Hello Hello . . .” of the �rst 8 Speakers.
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Figure 30: MSE and 4 values of the 100 Base ANNs for experiment
4.

require voice biometric based users’ authentication module.
However, we hope to further improve on the current result
by adding other speech signals in more languages, record the
speech signals over mobile phone lines, and experiment with
other short-term features like the Line Spectral Frequencies
(LSF) and Perceptual Linear Prediction (PLP). We also hope
to experiment with other pattern matching models like
Hidden Markov Model (HMM), Support Vector Machine
(SVM), Radial Basis Function Neural Network (RBF-NN),
andDeepNeural Network (DNN).�is will hopefully help to
further enhance the robustness of the authentication module
of our proposed SMIV architecture.
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