
Experimenting in Mobile Social Contexts Using JellyNets

Peter Gilbert
Duke University

Durham, NC
gilbert@cs.duke.edu

Eduardo Cuervo
Duke University

Durham, NC
ecuervo@cs.duke.edu

Landon P. Cox
Duke University

Durham, NC
lpcox@cs.duke.edu

ABSTRACT
Programmable consumer devices have placed computation within
arm’s reach at all times and in all places. Unfortunately, researchers
interested in investigating this phenomenon often struggle with the
expense, inconvenience, and limited scale of existing experimental
platforms. In this paper, we introduce a new experimental platform
for mobile and pervasive computing based onJellyNets, an abstrac-
tion for exposing experiments to arbitrary mobile social contexts.

1. INTRODUCTION
Programmable consumer devices such as smartphones are tightly
interwoven with people’s daily lives, and are nearly as likely to be
carried by their owners as a set of house keys or wallet. The almost
constant physical proximity of these devices to their owners creates
opportunities for social computing applications that are impossible
with bulkier or less powerful mobile computing hardware such as
laptops and Palm Pilots. Researchers are beginning to explore these
opportunities through a wide range of newmobile social services
including mobile social networking [11], participatory sensing [5],
and micro-blogging [13]. As a result, the mobile research com-
munity is facing the question of how to provide an experimental
platform for exposing prototype systems to a diverse and dynamic
set of mobile social contexts.

Large-scale experimental platforms are an indispensable tool for
distributed systems researchers. The widespread embrace of In-
ternet testbeds [26, 31, 12] attests to the value of shared cyber-
infrastructure for exposing measurement frameworks and system
prototypes to live Internet phenomena. In addition, recentprojects
aimed at providing experimental platforms for mobile computing
and wireless networking [27, 32, 18, 9] have given researchers a
larger and more effective toolbox for evaluating system designs.
The significant investment in GENI [25] is motivated by a cross-
community desire to stitch these existing point solutions into a sin-
gle coherent computing platform. However, despite this large and
distinguished body of work, no system currently allows researchers
to fully explore the enormous potential of consumer device-enabled
mobile social services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile 2009, February 23–24, 2009, Santa Cruz, CA, USA.
Copyright 2009 ACM 978-1-60558-283-2/09/02...$5.00.

In this paper, we take the position that it is feasible and valuable
for the mobile and pervasive computing research community to
develop a general-purpose experimental platform for exposing ex-
periments 1) tohuman mobility by running code on live consumer
devices, and 2) to an arbitrary set of work, residential, andrecre-
ationalsocial contexts by allowing co-located client bystanders to
interact with experiments hosted in their vicinity. The over-arching
goal of such a platform would be to allow researchers to perform
mobile social experimentation in any social setting where programm-
able consumer devices are present.

To meet this goal, we are developing a platform based on theJel-
lyNet abstraction for mobile and pervasive computing experimen-
tation. All sensor, compute, network, and storage resources un-
derlying a JellyNet are contributed by a federation of co-located,
autonomous, volunteer consumer devices. Because JellyNets must
support experimentation in arbitrary social contexts, physical-re-
source pools must be collected opportunistically, and shaped into a
unified computing environment in “spineless” settings where dedi-
cated backbone resources and control mechanisms are unavailable.
Hosting experiments under these conditions introduces a number
of technical and social challenges.

The main technical challenge of establishing a JellyNet is develop-
ing a coherent network environment with familiar address-leasing,
naming, and routing services using physical resources thatcan be
withdrawn without notice, usually within tens of minutes ofbeing
allocated. From the perspective of a developer, programming to the
JellyNet abstraction should be nearly indistinguishable from pro-
gramming a set of dedicated, co-located devices. Co-located client
devices cannot be modified, and must interact with experiments ex-
ecuting in a JellyNet through standard managed-network interfaces
such as DHCP, DNS, IP, and HTTP.

Social challenges arise from a JellyNet’s need for self-interested
human volunteers to provide untrusted guest code with battery-
draining physical resources and access to their potentially sensi-
tive mobility patterns. Volunteer resource contributers must be sure
that hosted experiments will not compromise their locationprivacy,
drain their battery, or monopolize their sensor, compute, network,
and storage resources.

This paper describes a basic architecture for implementingJellyNets,
focusing on several core challenges and leaving many more for fu-
ture work. The foundation of our architecture is two self-organizing
layers. The bottom layer is an ad-hoc Virtual WiFi [6] network
called asite network that provides a unified wireless interconnect
for all actors within a geographic site. On top of this interconnect,

resource-contributers maintain a fault-tolerant, site-scoped tree struc-
ture called a site directory (s-dir). S-dir state repositories form
the basis of a JellyNet’s higher-level features, includingaddress-
leasing, naming, and tasking services andin-situ k-anonymity loca-
tion-privacy guarantees. Initial experience with our prototype Jel-
lyNet implementation is encouraging. Despite Virtual-WiFi multi-
plexing and virtualization overhead, co-located client devices expe-
rience adequate performance accessing experimental services hosted
within a JellyNet.

The rest of the paper is organized as follows: Section 2 provides
background information for understanding JellyNets, Section 3 de-
scribes the ad-hoc self-organizing lower layers of a JellyNet and the
higher-level features they enable, Section 4 describes related work,
and Section 5 provides our conclusions.

2. BACKGROUND
In this section we describe three enabling technologies on which
our JellyNet architecture relies: programmable consumer devices,
pocket hypervisors [10], and Virtual WiFi [6].

A key unknown for building an experimental platform based on
JellyNets is whether volunteer consumer devices will have enough
excess energy to participate. Preliminary human-battery-interface
studies are encouraging. A recent study found that it is common
for users to charge their devices with significant residual capacity
still available [2]; of the users in the study, more than halfcharged
their phone with half of its battery capacity left, while more than
80% charged their phone with more than 20% capacity left.

Furthermore, nearly half of the device owners in this study used
contextual cues such as their location, the time of day, and the
need to synchronize with a PC to charge their device, rather than
“low” battery capacity. This gives us hope that as battery capacities
continue to increase, hardware becomes more power-efficient, and
software power-management policies become more sophisticated,
consumer devices will have sufficient energy to contribute to a Jel-
lyNet. We are also developing distributed power-saving strategies
that utilize devices’ multiple radios, but a full description of these
schemes is beyond the scope of this paper.

Related to the energy constraints of mobile devices is the question
of what incentives device carriers should be offered to contribute
resources. We imagine a university providing powerful consumer
devices to a large population of students and staff for personal and
experimental use. Duke University embraced such a model in 2004
when it distributed iPods to all members of its incoming freshman
class. Since then, several universities have either adopted or are
exploring similar strategies for deploying location-aware services
on campus [14].

The JellyNet abstraction must balance developers’ need foran ex-
pressive, intuitive programming environment and device carriers’
need for strong isolation, particularly performance and power iso-
lation. To this end, JellyNets rely on autonomouspocket hyper-
visors [10] to export a virtualized hardware interface to develop-
ers and manage devices’ physical resources. Pocket hypervisors
are identical to desktop hypervisors like Xen and VMware in most
ways, but they provide an extended interface to support virtualized
wireless communication (e.g., WiFi and Bluetooth), and they con-
tain additional mechanisms and policies to ensure power isolation.
Past work on performance isolation has shown that encapsulating
application state within the virtual-machine abstractioncan reduce

Site network

Experiment guests

Device authority

Virtual WiFiInternet

Access point

Client device Client device

JellyNet

authority

Experiment

manager

Figure 1: High-level JellyNet

the complexity of accounting and enforcement [3, 15].

Both commercial [1, 30] and research [4, 16, 19] hypervisorsfor
mobile devices exist, though for various non-technical reasons they
are not suitable for our current prototype implementation.Trango
and VirtualLogix are proprietary and closed-source, MobiVMM
and L4 are incomplete research projects, and Samsung’s robust port
of Xen for ARM-based mobile phones is only partially public.Our
lab is also porting Xen to the Nokia N810 Internet tablet.

The final enabling technology for JellyNets is Virtual WiFi.Vir-
tual WiFi is a set of techniques that allows an operating system to
multiplex 802.11 association state from multiple networksacross a
single physical radio. FatVAP [22] and Juggler [24] recently intro-
duced optimizations for reducing the overhead of switchingamong
networks by taking advantage of the software-MAC implementa-
tions in many WiFi drivers. As a result, an OS can switch cards
between associations on different channels fast enough (inunder 7
ms) to support concurrent TCP streams over different associations.
The time to switch between networks on the same channel is even
less (around 500µs).

Virtual WiFi allows JellyNet hypervisors to provide experiments
with the illusion of a dedicated WiFi interface without inconve-
niencing device carriers. Hosted experiment code can scan for and
associate with networks concurrently with other experiments on
the device and the device carrier. This provides a general mobile-
device abstraction for guest code and reduces the opportunity costs
of participating for resource contributers.

3. PLATFORM ARCHITECTURE
Our mobile experimental platform consists of five element types:
the JellyNet authority, experiment guests, experiment managers,
device authorities, and client devices. Figure 1 shows a high-level
diagram of these elements.

The JellyNet authority (JA) is the only centralized element and is
removed from all physical resource allocation decisions topreserve
device autonomy. Its primary responsibilities are to segment the
private IP address space used within a JellyNet and to register de-
vices and experiments.

The experiments that run within a JellyNet consist of two elements:
a set ofexperiment guests and anexperiment manager. Experiment
managers are logical entities that may actually consist of many ma-
chines. Experiment guests are the coarsest unit of resourceallo-

cation; they consume resources on a volunteer device, implement
the experiment’s logic, and interact with other co-locatedelements.
Each guest runs in its own unprivileged virtual machine, andno
two guests of the same experiment may execute on the same de-
vice. The experiment manager is responsible for maintaining an
experiment’s persistent state by providing off-device services such
as database and logging facilities.

Each volunteer device has an associateddevice authority (DA). DAs
have complete control over their device’s physical resources and
make autonomous allocation and deallocation decisions. DAs are
similar in function to the autonomous site authorities in SHARP [7]
and Shirako [20]. DA functionality is encapsulated by a hypervi-
sor or privileged virtual machine. The DA interface includes a set
of paravirtualized system calls for its hosted guests and a simple
RPC interface to communicate with remote elements. A DA’s par-
avirtualized 802.11 and Bluetooth interfaces allow gueststo scan
for nearby devices, support concurrent associations with in-range
networks, and can be used for WiFi localization [23].

In addition to managing physical resources, DAs also maintain 802.11
ad-hoc routing tables and implement site-scoped address-leasing,
naming, and tasking services. This distributed state allows co-
located elements to discover and access nearby resources and ser-
vices without relying on fixed infrastructure such as inter-domain
routing, DNS, or centralized coordination through the JA. As a re-
sult, guests on one device can always communicate with guests
on other co-located devices, even in WiFi cold spots or when 3G-
cellular networking is too costly.

Client devices can access services exported by JellyNet experi-
ments through a site’s ad-hoc network, but do not contributere-
sources. Client devices include iPods, iPhones, and WiFi-enabled
displays. These devices expose experiments to the mobile social
context in which they are executing through interactions enabled
by a JellyNet. For example, a client device could access the tempo-
rary storage offered by a mobile-storage experiment, couldregister
and browse profiles of nearby users through a mobile social net-
working experiment, or could inject queries directly into asensing
experiment.

Interactions between a device’s DA and its experiment guests can
be mediated through any number of hardware-virtualizationinter-
faces, although our current implementation uses Xen. Interactions
among distributed elements are mediated by a JellyNet’s address-
leasing, naming, and tasking services. A detailed discussion of how
these services are implemented by a JellyNet are beyond the scope
of this paper.

The rest of this paper focuses on the foundational layers on which
a JellyNet’s decentralized network services are built. Thebot-
tom layer is an ad-hoc Virtual-WiFi scheme called asite network
that allows all actors within a geographic site to communicate.
Through the site network, DAs maintain a replicated tree structure
called asite directory (s-dir). Information embedded in the s-dir al-
lows DAs to implement each of the JellyNet’s higher-level features,
including address-leasing, naming, device tasking, and location-
privacy protection.

3.1 Site networks
Address-leasing, naming, and routing services in a JellyNet are
managed at the granularity of a geographic site by a federation of
co-located DAs. Sites are defined as a connected 802.11 ad-hoc

network with SSID “JNet-〈coordinate〉”, where the coordinate is
set to the network’s physical location by the DA who initially seeds
the network. This ad-hoc network is called thesite network. Due to
the 30 to 90-meter range of WiFi and humans’ tendency to cluster
together, site networks are expected to be dense, with each station
in direct range of every other. Choosing different SSIDs foreach
network further reduces the likelihood that sites will extend beyond
one or two hops in diameter or merge.

Only DAs and client devices attach directly to a site network; clients
can reach experiment guests and the Internet through bridges es-
tablished by the DAs. Each DA within a site uses its Virtual WiFi
driver to join the network while also allowing device ownersand
experiment guests to concurrently connect to access points. Client
devices without Virtual WiFi must dedicate their WiFi radioto the
site network, but can still access the Internet whenever a DAadver-
tises an outbound route through the ad-hoc network.

Our current implementation relies on the Optimized Link-State Rout-
ing protocol (OLSR) [8] to manage IP routing within a site net-
work, but other algorithms could easily be plugged in. Commu-
nication within a site must be reliable enough to support reason-
able TCP performance among guests and clients. To ensure the
stability of the site network, DAs’ Virtual WiFi schedulersprivi-
lege the site network relative to all others. Each DA dividestime
into fixed-length epochs and assigns a fixed percent of every epoch
to the site network. Other networks are multiplexed over there-
mainder, though if there are no other networks to be scheduled, a
card could be put into a low-power state until the beginning of the
next epoch. In our current implementation, epochs are 200 ms, and
the site network is scheduled for the first 100 ms of each epoch.
DAs can rely on the scheduling techniques introduced by FatVAP
to efficiently schedule networks when a DA is associated withother
access points in addition to the site network.

Epochs must be synchronized across DAs since out-of-phase sched-
ules will quickly render the site network unusable. To this end, the
JellyNet relies on the 802.11 timer synchronization function (TSF)
of the site network to synchronize all stations. 802.11 TSF is ac-
curate to withinµs and timer interrupts in Xen can be delivered at
the granularity of a single ms1. This is more than sufficient for syn-
chronizing Virtual WiFi schedulers managing epochs of hundreds
of ms.

Prior work has shown that TSF synchronization in ad-hoc networks
begins to break down for networks that are larger than 30 stations [17],
but we do not anticipate sites growing to this size. However,if a
network begins to grow to a dangerous size, DAs can determine
the network’s current size from information embedded in thesite
directory (as described in Section 3.2) and, if needed, start a new
site network with its own TSF.

With synchronized Virtual WiFi schedulers, there is no needto in-
duce buffering of site network traffic at other DAs via power-saving
mode (PSM). Each DA’s Virtual WiFi driver only needs to buffer
outbound messages destined for the site network. Unfortunately,
client devices are oblivious to the epoch schedule since they are
only associated with the site network.

1The default granularity for timer interrupts in Xen is 10ms.We
changed this to 1ms for our prototype.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f c
on

ne
ct

io
ns

 e
st

ab
lis

he
d

Seconds to establish connection

Figure 2: CDF of clients’ time to establish a TCP connection
with an experiment guest through a site network

Ideally, DAs would be able to broadcast a PSM frame to trick
clients into buffering messages destined for the site network. Un-
fortunately, we have not found any WiFi drivers with a stableimple-
mentation of PSM for ad-hoc mode. Thus, when all DAs activate
the site network half the time, half of the messages sent by clients
are expected to be lost, regardless of whether DAs set the PSM
bit between transitions. On the other hand, messages destined for
client devices will continue to be buffered properly by bothDAs
and access points.

This results in a network where half of all messages sent by clients
are lost, but very few messages destined for clients are lost. Be-
cause TCP employs exponential back-off in retransmitting SYN
messages to start a connection, these message losses can lead to
long waits for establishing a connection. Figure 2 shows thela-
tency of a client device establishing a TCP connection with an ex-
periment guest in our prototype JellyNet implementation for x86
laptops. DAs in this network were associated with the site network
and an access point on a different channel. The distributionreflects
the default behavior of TCP in Linux, which is to retransmit SYNs
after three, nine, and 21 seconds if necessary. Because a DA typ-
ically spends about 75ms of every 200ms epoch active in the site
network2, approximately 40% of connections started immediately.
However, more than 25% of connections took longer than 3 seconds
to start, and more than 10% were still not established after 30 sec-
onds, which we chose as the timeout value. Once established,TCP
connections were capable of remaining connected and transferring
megabytes of HTTP data. However, throughput varied widely over
the course of lengthy connections due to loss of data packetsand
ACKs.

JellyNets can eliminate this variability by taking advantage of the
fact that clients only contact DAs directly on two occasions: 1) for
DNS resolutions, and 2) to route traffic to experiment guestsor the
Internet. As long as a single DA serves both roles, all of a client’s
802.11 frames will be destined for a single gateway station.As a
result, JellyNets can improve client TCP performance by keeping
gateway DAs’ Virtual WiFi interface associated with the site net-
work for the entire epoch. No restriction needs to be placed on
traffic during the first half of each epoch, but any client messages

2Switching between infrastructure and ad-hoc networks on differ-
ent channels takes approximately 25ms using the HAL underlying
the MadWiFi driver used in our implementation. An older HAL
allowed us to switch within 8ms.

d1 c0

exp dev

36:0:72-

78:54:19

jstore jwho

… … … …

anonysense d0

g2

…

g1

•Exp. man. URL

•Description

•HW requirements

•Name mapping

•IP address

•DHCP-lease info

•Host device

•IP address

•Device type

•DHCP-lease info

•HW capabilities

jstore jwhoanonysense

•IP address

•Guest name … …

Figure 3: Site directory

received by the gateway during the remainder of the epoch must
be buffered. Under such a scheme, outbound client messages are
rarely lost, but at the price of preventing experiment guests and the
device carrier from associating with other networks. With antici-
pated site populations close to one or two dozen nodes, we do not
believe that it will be difficult to identify a subset of DAs able to
serve in this role.

Finally, using the site-network’s TSF to synchronize Virtual WiFi
schedulers requires DAs to ignore TSF updates from all othernet-
works. This limits a JellyNet’s ability to support associations with
multiple ad-hoc networks. Though we have not implemented such
a scheme, there is no fundamental reason why a set of experi-
ment guests within a site should not be able to form an ad-hoc net-
work using the site-network TSF as long as DAs synchronize the
scheduling of these networks in addition to the site network. How-
ever, any ad-hoc networks that are not under the complete control
of a site’s DAs would almost certainly be unable to synchronize
their stations.

3.2 Site directories
Services such as address leasing, naming, and tasking are built on
the foundation of a stable site network. DAs provide these higher-
level services by maintaining additional distributed state in a repli-
cated data structure called asite directory (s-dir). An s-dir is a tree
structure that stores information about the resources, services, and
experiments available within a geographic site. Managing the con-
sistency of this replicated state in the face of high churn rates is a
crucial challenge for implementing JellyNets, and we leavea more
detailed discussion of this subject for future work.

Figure 3 shows an example tree. The root of each s-dir is the geo-
graphic coordinate of the site. The first DA in a site generates this
coordinate and seeds the ad-hoc network. S-dirs have two branches
below the root; one branch stores information about the experi-
ments running within a site and the other stores informationabout
the devices present. Each experiment and device node has an asso-
ciated list of meta-data properties that describes its features.

Leaf nodes representing guest virtual machines sit below the device
and experiment nodes. Guest state is stored redundantly under both
sub-trees to improve lookup efficiency. In Figure 3, AnonySense
guest g1, running on device d0, is represented by the two entries
connected by a light arrow.

3.3 Higher-level Features
A JellyNet uses information stored in its s-dir to implementhigher-
level features such as address-leasing, naming, and tasking services
and strong location-privacy guarantees.

3.3.1 Address-leasing
JellyNet address-leasing services dynamically bind IP addresses to
client devices, DAs, and experiment guests. The JA reservesthree
disjoint ranges of the private IP space for addressing the three ele-
ment types. Within these ranges, individual addresses are bound to
elements by the DAs within a site; the JA is not involved.

One DA runs a DHCP server for the site network that leases ad-
dresses to other DAs, client devices, and experiment guests. Each
lease includes an address, a length, a subnet mask, DNS server, and
a gateway when appropriate. All leasing state is embedded inthe s-
dir and fully replicated at all DAs for fault tolerance. If the DA that
was providing DHCP service exits the network, any other remain-
ing DA can use its copy of the s-dir to seamlessly pick up wherethe
old server left off. Fault-detection and service fail-overis beyond
the scope of this paper. Importantly, client devices only need to
run a standard DHCP client in order to obtain an IP address; they
do not participate in OLSR. This allows all WiFi-enabled devices
such as iPods, iPhones, and public displays to acquire addresses
and communicate with experiments hosted by the JellyNet.

3.3.2 Naming
A JellyNet provides a site-scoped hierarchical naming scheme for
mapping human-readable names to IP addresses. The namespace
uses a dotted notation that complements the conventional DNS space,
but introduces a new top-level domain calledjnet. Below this
level are two more,exp anddev, that correspond to the experi-
ments and devices available within a site. The mappings for this
service fall directly out of a JellyNet’s s-dir. For example, using
the s-dir in Figure 3, a lookup of the name “g1.anonysense.
exp.jnet” would return the IP address of the guest virtual ma-
chine executing on device d0. Since the s-dir is fully replicated, all
DAs can resolve.jnet names locally.

3.3.3 Tasking
The s-dir is also used by a JellyNet to assign experiment guests to
DAs. To protect device carriers’ anonymity, DAs must only down-
load guest images from the JA using an anonymizing communica-
tion channel such as a MIX-net or public access point. Once an
image has been injected into a site, the JellyNet usesepidemic in-
stantiation to assign guests to devices.

Under epidemic instantiation, DAs are responsible for instantiating
application guests on other co-located devices within a site; in this
role, DAs are similar to brokers in Shirako [20]. DAs use their site’s
s-dir to discover other potential hosts and invoke a well-known RPC
interface running under each DA to request that the device run an
instance of the guest. Epidemic instantiation also allows the Jel-
lyNet to geo-cache experiments. Even if a device running an appli-
cation guest leaves the site, a new guest can be quickly instantiated
on any devices that subsequently arrive. A JellyNet can experience
100% turn-over without interrupting an experiment.

3.3.4 Location privacy
Finally, s-dirs help DAs enforcein-situ k-anonymization. K-anony-
mization ensures that an adversary cannot narrow a device carrier’s

identity to fewer than k possibilities [29]. AnonySense [9]is an ex-
perimental platform for participatory sensing, and provides a useful
point of comparison. As with a JellyNet-enabled platform, Anony-
Sense runs experiments on volunteer consumer devices. Neither
platform tracks device locations to preserve volunteers’ location
privacy. However, because AnonySense does not support inter-
actions among co-located elements, it is only able to imposek-
anonymity restrictions outside of a physical location by filtering
the set of devices thatevaluate an experiment. It cannot guarantee
device carriers that at least k devices within a geographic area will
execute the experiment.

Consider the following scenario. Using the AnonyTL taskinglan-
guage an adversary can submit a task to AnonySense that periodi-
cally reports its location, but only executes on the devicesof Duke
professors located in the city of San Diego. AnonySense can en-
sure that only devices belonging to Duke professors will evaluate
the task and that the total number of Duke professors is at least
k. However, even if at least k Duke professors’ devices evaluate
the task, only the Duke professors’ devices that are in San Diego
will actually execute it, and this number may be much smaller than
k. For example, if the attacker knows that one Duke professoris
likely to be in San Diego for a conference, then once she arrives
in San Diego the professor will be the only participant periodically
reporting her location to the adversary.

This attack can be defeated if devices are able to ensure thatat least
k other participants are co-located with them when they execute a
task. In the case of the professor, she would only execute thetask
when k or more of her colleagues were co-located with her at the
conference. A JellyNet can accommodate this policy throughthe
s-dir: each DA can consult the s-dir before hosting AnonySense
guests to ensure that at least k other devices are nearby. It should
be noted that because JellyNets’ k-anonymity decisions canonly
be evaluated in-situ via an s-dir, our platform cannot support less
strict policies.

4. RELATED WORK
As with cyberinfrastructure such as PlanetLab [26], EmuLab[31],
and DETER [12], our platform aims to help researchers expose
experimental systems to realistic conditions, and is complemen-
tary to existing mobile platforms such as ORBIT [27, 28], Mobile
Emulab [21], CarTel [18], DieselNet [32], and AnonySense [9].
Each of these platforms places important limitations on theexper-
imental setting in one or more of the following ways: restricting
guest code to declarative, SQL-like languages [18, 9], utilizing
only vehicular [32, 18] or pre-programmed robotic mobility[27,
21], or not supporting interactions between co-located resource-
contributors [9]. To the best of our knowledge, no existing system
provides a general framework for exposing experiments to arbitrary
mobile social contexts.

5. CONCLUSION
This paper has argued that an experimental platform for mobile so-
cial contexts based on the JellyNet abstraction is feasibleand valu-
able. JellyNets provide experiments with the illusion of a set of
co-located, fully-programmable, dedicated consumer devices and
exposes them to arbitrary mobile social contexts by enabling in-
teractions with unmodified client bystanders. We have described
solutions to some of social and technical challenges of implement-
ing JellyNets and called attention to other opportunities for future
work.

6. REFERENCES
[1] F. Armand, M. Gien, G. Maigné, and G. Mardinian. Shared Device

Driver Model For Virtualized Mobile Handsets. InMobiVirt, June
2008.

[2] N. Banerjee, A. Rahmait, M. D. Corner, S. Rollins, and L. Zhong.
Users and batteries: Interactions and adaptive energy management in
mobile systems. InUbiComp, September 2007.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InSOSP, October 2003.

[4] S. bum Suh. Secure architecture and implementation of xen on arm
for mobile devices. Xen Summit, Spring 2007, IBM T.J. Watson.

[5] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Rmanathan, S. Reddy,
and M. B. Srivastava. Participatory sensing. InWorld-Sensor-Web,
2006.

[6] R. Chandra, P. Bahl, and P. Bahl. MultiNet: Connecting tomultiple
IEEE 802.11 networks using a single wireless card. InINFOCOM,
March 2004.

[7] J. Chase, B. Chun, Y. Fu, S. Schwab, and A. Vahdat. SHARP: An
architecture for secure resource peering. InSOSP, October 2003.

[8] T. Clausen. Optimized link state protocol OLSR. Internet RFC 3626,
October 2003.

[9] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos. AnonySense: Privacy-aware people-centric
sensing. InMobiSys, June 2008.

[10] L. P. Cox and P. Chen. Pocket hypervisors: Opportunities and
challenges. InHotMobile, February 2007.

[11] L. P. Cox, V. Marupadi, and A. Dalton. Smokescreen: Flexible
privacy controls for presence-sharing. InMobiSys, May 2007.

[12] DETER network security testbed. http://www.deterlab.net.
[13] S. Gaonkar, J. Li, R. R. Choudhury, L. P. Cox, and A. Schmidt.

Micro-Blog: Privacy-aware people-centric sensing. InMobiSys, June
2008.

[14] J. D. Glater. Welcome, freshmen. have an ipod. New York Times,
August 20, 2008.

[15] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing
performance isolation across virtual machines in xen. InMiddleware,
November 2006.

[16] S. Hessel, F. Bruns, A. Bilgic, A. Lackorzynski, H. Haertig, and
J. Hausner. Acceleration of the L4/Fiasco Microkernel Using
Scratchpad Memory. InMobiVirt, June 2008.

[17] L. Huang and T.-H. Lai. On the scalability of IEEE 802.11ad hoc
networks. InMobiHoc, June 2002.

[18] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden. CarTel: A distributed
mobile sensor computing system. InSenSys, November 2006.

[19] S. hwan Yoo, Y. Liu, C.-H. Hong, C. Yoo, and Y. Zhang. MobiVMM:
A Virtual Machine Monitor for Mobile Phones. InMobiVirt, June
2008.

[20] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, and D. Becker. Sharing
networked resources with brokered leases. InUSENIX, June 2006.

[21] D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and
J. Lepreau. Mobile emulab: A robotic wireless and sensor network
testbed. InINFOCOM, 2006.

[22] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and D. Katabi.FatVAP:
Aggregating AP Backhaul Bandwidth. InNSDI, April 2008.

[23] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith,
J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert,
P. Powledge, G. Borriello, and B. Schilit. Place lab: Device
positioning using radio beacons in the wild. InPervasive, 2005.

[24] A. J. Nicholson, S. Wolchok, and B. D. Noble. Juggler: Virtual
networks for fun and profit. InUniversity of Michigan, Technical
Report CSE-TR-542-08, April 2008.

[25] L. Peterson, T. Anderson, D. Blumenthal, D. Casey, D. Clark,
D. Estrin, J. Evans, D. Raychaudhuri, M. Reiter, J. Rexford,
S. Shenker, and J. Wroclawski. GENI design principles.IEEE
Computer, 39(9), September 2006.

[26] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences
building PlanetLab. InOSDI, November 2006.

[27] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh. Overview of the

ORBIT radio grid testbed for evaluation of next-generationwireless
network protocols. InWCNC, March 2005.

[28] G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee. Wireless
virtualization on commodity 802.11 hardware. InWinTech,
September 2007.

[29] L. Sweeney. k-Anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5), January 2002.

[30] Trango virtual processors. http://trango-vp.com.
[31] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks. In
OSDI, December 2002.

[32] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang. Study
of a bus-based disruption tolerant network: Mobility modeling and
impact on routing. InMobiCom, September 2007.

