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Abstract

Annular combustion chambers of gas turbines and aircraft engines are subject to unstable azimuthal thermoacoustic

modes leading to high amplitude acoustic waves propagating in the azimuthal direction. For certain operating condi-

tions, the propagating direction of the wave switches randomly. The strong turbulent noise prevailing in gas turbine

combustors is a source of random excitation for the thermoacoustic modes and can be the cause of these switching

events. A low-order model is proposed to describe qualitatively this property of the dynamics of thermoacoustic az-

imuthal modes. This model is based on the acoustic wave equation with a destabilizing thermoacoustic source term

to account for the flame’s response and a stochastic term to account for the turbulent combustion noise. Slow-flow

averaging is applied to describe the modal dynamics on times scales that are slower than the acoustic pulsation. Under

certain conditions, the model reduces formally to a Fokker-Planck equation describing a stochastic diffusion process

in a potential landscape with two symmetric wells: One well corresponds to a mode propagating in the clockwise di-

rection, the other well corresponds to a mode propagating in the anticlockwise direction. When the level of turbulent

noise is sufficient, the stochastic force makes the mode jump from one well to the other at random times, reproducing

the phenomenon of direction switching. Experiments were conducted on a laboratory scale annular combustor fea-

turing 12 hydrogen-methan flames. System identification techniques were used to fit the model on the experimental

data, allowing to extract the potential shape and the intensity of the stochastic excitation. The statistical predictions

obtained from the Fokker-Planck equation on the mode’s behaviour and the direction switching time are in good

agreement with the experiments.
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1. Introduction

Thermoacoustic instabilities are a major issue in the

development of new aeroengines combustion chambers

aligned with the current ecological challenges because

they induce vibrations that can severely damage the

combustor and the turbine. The seriousness of this prob-

lem lies in the fact that despite decades of intense re-

search, these instabilities are still very difficult to pre-

dict, which calls for further advances in their modelling

and understanding [1]. The present study falls within

this context and deals with the modelling of an intrigu-

ing phenomenon occuring in annular aeroengine com-

bustors: the intermittent transitions between clockwise

and counterclockwise spinning thermoacoustic modes.

Indeed, in modern aeroengines, the combustor is an-

nular, which has advantages in terms of weight, main-

tenance and manufacturing, and the instabilities fre-

quently involve the first azimuthal eigenmodes of the

annulus. Based on acoustic measurements in the com-

bustors of practical gas turbines [2, 3], in academic an-

nular chambers [4–6] and on high fidelity numerical

simulations [7], these self-sustained azimuthal thermoa-

coustic modes have been classified as spinning modes

that propagate at the speed of sound in the clockwise

or the anticlockwise direction, standing modes whose

nodal line stays at a constant azimuthal position or drifts

slowly compared to the speed of sound, or mixed modes

that result from the sum of a standing mode and a spin-

ning mode. Many studies dealing with the dynamics of

these modes have been published over the last ten years,

covering several aspects of the underlying physics such

as the effects of spatial asymmetries, turbulent com-

bustion noise, mean azimuthal flow or specific types

of nonlinearities in the flame response, e.g. [8–13].

However, no detailed studies have been published on

the intermittent transition events between mixed and

standing modes and between clockwise-spinning and

anticlockwise-spinning mixed modes. This paper aims

at filling this gap with new experimental data and a low-

order model, which is derived from first principles and

describes the stochastic dynamics of these transitions in

the same way as thermally activated barrier crossing in

reaction rate theory [14].

The experimental setup and data are presented in section

2. Section 3 presents the low-order model. In section 4,

the validity of this model is assessed using the experi-

mental data, and its parameters are identified. Section 5

introduces the potential representation. The calibrated

model is then used in section 6 to shed light on the

mechanisms associated with the intermittent transitions

of the spinning direction.

(a) (b)

Figure (1) (a): Sketch view from the top of the chamber

with the 12 burners and the location of the 6 microphones.

(b): measured PDF of the acoustic amplitude A for different

equivalence ratios. The colors correspond to the 3 cases stud-

ied in the paper: Φ = 0.525, Φ = 0.55, Φ = 0.60.

2. Experiments

Figure 1a shows the experimental setup used in this

study. It consists in an annular combustion chamber at

atmospheric pressure, with 12 regularly spaced flames

anchored on axisymmetric bluff bodies. The fuel is a

gaseous mixture of CH4 (contributing to 30% of the

thermal power) and H2 (70% of the thermal power) that

are premixed in a plenum. The inner and outer walls

of the chamber are cooled with water. The setup is de-

scribed more in detail in [15]. Acoustic measurements

are performed with 6 pressure transducers Kulite XCS-

093-05D flush mounted in the burner’s pipes at equidis-

tant azimuthal positions. All the experiments are run

with the same thermal power of 12×6 = 72 kW and

equivalence ratios Φ comprised between 0.4 and 0.62.

This is achieved by keeping the fuel mass flow constant

at 320 sl/min and by varying the air mass flow between

2600 sl/min and 1670 sl/min. The mass flows are con-

trolled with several Alicat mass flow controllers. Fig-

ure 1b shows the evolution of the acoustic amplitude for

different equivalence ratios: The signature of a super-

critical Hopf bifurcation is detected from the acoustic

time traces when Φ is increased: below 0.4, the sys-

tem is stable. The Hopf point is located at Φ = 0.51

: above this value, a thermoacoustic instability is de-

tected. To ensure stationarity of the thermoacoustic dy-

namics, acoustic records are performed at least 60 s

after ignition at each operating points so that thermal

transient behavior of the combustor has ended. At this

time, the measured inner wall temperature and acous-

tic root-mean-square amplitudes are stabilized. In this

paper, we focus on three specific operating points to

illustrate our conclusions: Φ = 0.525, Φ = 0.55 and

Φ = 0.60. The equivalence ratios at these conditions are

beyond the Hopf point and the associated acoustic spec-
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(a)

(b)

(c)

(d)

Figure (2) (a): Complete microphones time traces at 3 az-

imuthal locations for Φ = 0.55. (b,c,d): Detail of the micro-

phones timetraces for Φ = 0.525, Φ = 0.55, Φ = 0.6 (from

the top to the bottom). Left panel: raw timetrace. Right panel:

timetrace filtered with a rectangular filter of bandwidth 100

[Hz] centered around the main frequency in the spectrum.

tra are dominated by one single peak close to 1.1 kHz,

which corresponds to an acoustic eigenmode with one

wavelength spanning the circumference of the annular

chamber. Figure 2 shows portions of the correspond-

ing acoustic pressure time series. One can see in Fig.

2b, 2c, 2d that the acoustic oscillations are almost sinu-

soidal even before applying any spectral filtering. Fig-

ure 2b corresponds to Φ=0.525, and one can conclude

from the time traces that around t = 40 s, the acoustic

oscillation corresponds to a standing mode. This is be-

cause all the microphone signals are in phase or exactly

in phase opposition and exhibit different amplitudes. In

Fig. 2c, the signals are not in phase and the amplitude

depends on the angular position, which corresponds, at

that instant, to a mixed mode. In Fig. 2d, the signals ex-

hibit phase differences of about 120◦ with similar am-

plitudes which also corresponds to a mixed mode, but

with a stronger spinning component.

At a given axial position, the pressure field associ-

ated to the first azimuthal mode is represented with the

quaternion ansatz introduced in [16]:

p̃(Θ, t) = A(t)ei(θ(t)−Θ)e−kχ(t)e j(ωt+ϕ(t)). (1)

where i, j and k are the quaternion imaginary units. The

real-valued azimuthal mode state variables ϕ, θ, A, and

χ are slowly varying in time with respect to the acous-

tic period 2π/ω. They describe the slow dynamics of

the mode [16, 17]: ϕ is a slow temporal phase drift,

θ is the direction of the antinodal line of the pressure

(a)

(b)

(c)

Figure (3) Time traces of the slow-flow variables: (a): A,

(b): χ, (c): θ for 3 different equivalence ratios: Φ = 0.525

(blue), dynamics centered around a standing mode. Φ = 0.55

(red), dynamics switching between anticlockwise and clock-

wise mixed modes. Φ = 0.6 (green), the mode is mixed and

spins in the clockwise direction during the whole experiment.

oscillations and A is the oscillation amplitude. The na-

ture angle χ characterizes the mode type: χ = 0 for a

pure standing mode, χ = π/4 for a pure anticlockwise

spinning mode, χ = −π/4 for a pure clockwise spin-

ning mode, −π/4 > χ > 0 and 0 > χ > −π/4 for a

anticlockwise and for a clockwise mixed mode respec-

tively. The real pressure p(Θ, t) is obtained by taking

the real part of the quaternion ansatz p̃. This quater-

nion representation describes the modal dynamics in a

non-ambiguous way [16]. To obtain the time traces of

the slow variables A, χ, θ and ϕ, we first write the pres-

sure field associated to the first azimuthal mode with

the ansatz p(Θ, t) = η1(t) cos(Θ) + η2(t) sin(Θ). Since

the number of microphones is greater than 2, the signals

η1 and η2 are obtained from the filtered microphones

time traces by inverting an overdetermined system with

a least-square method, with an error smaller than 5% for

the present experiments. Then, the procedure to obtain

the slow variables from the bivariate signal (η1, η2) is

described in [16].

Figure 3 shows the time traces of A, χ and θ for the

three considered operating points (Φ = 0.525, Φ = 0.55

and Φ = 0.60). The amplitude increases with the equiv-

alence ratio, and the fluctuations of the amplitude A

are relatively low during the 100 s of recording. For

Φ = 0.55, the antinodal line θ remains locked all the
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(a) (b)

Figure (4) (a): experimental PDF of ϕ for Φ = 0.60. (b):

experimental PDF of ϕ̇ for Φ = 0.525 (blue) , Φ = 0.55 (red),

Φ = 0.60 (green).

time in the same direction. ForΦ = 0.525 andΦ = 0.60,

θ shows some jumps between two values distant of π,

which are in fact describing the same antinodal line

[16]. In Fig. 4a, one can see that ϕ does not show a

preferential value, its PDF is flat. The time derivative of

ϕ gives information on the frequency drift. The PDF of

ϕ̇ shown in Fig. 4b suggests that this drift remains close

to 0 and is small compared to the instability frequency.

The nature angle χ behaves completely differently be-

tween the three cases: for Φ = 0.525, it fluctuates ran-

domly around 0, which corresponds to a predominant

standing mode state. For Φ = 0.55, χ switches ran-

domly between a positive value and its negative, which

indicates a statistically dominant mixed mode whose

propagating direction changes randomly. For Φ = 0.60,

χ is locked on a negative value close to −π/4, corre-

sponding to an almost pure spinning mode propagating

in the clockwise direction.

3. Theoretical model

We introduce now a low-order model that describes

the dynamics of azimuthal thermoacoustic eigenmodes

in an idealized one dimensional annular combustor. The

four parameters of this model will be afterward identi-

fied from the experimental data presented in the previ-

ous section. It will be shown that the calibrated model

quantitatively reproduce the dynamics of the slow-flow

variables, which shows that it can used as a minimal

model for describing the state of eigenmodes exhibiting

an azimuthal component in real 3 dimensional combus-

tors. It is important to stress that this model is not in-

tended to be used for prediction of thermoacoustic sta-

bility in real systems. The chamber is modelled as a 1D

annular waveguide of radius R. The azimuthal angular

coordinate is referred to as Θ. The wave equation for

the acoustic pressure in the chamber in presence of a

thermoacoustic source term is

∂2 p

∂t2
+ α
∂p

∂t
−

c2

R2

∂2 p

∂Θ2
= (γ − 1)

∂Q̇

∂t
+ Ξ(Θ, t), (2)

where c is the speed of sound, α is the acoustic damping,

γ is the heat capacity ratio, Ξ is a random forcing repre-

senting the turbulent heat release rate fluctuations, and

Q̇ is the coherent component of the heat release rate of

the flames. The latter is responsible of the thermoacous-

tic instability phenomenon, and it is modelled with a 3rd

order nonlinearity: (γ−1)Q̇ = β[1+c2 cos(2Θ)]p−κp3,

where β[1 + c2 cos(2Θ)]p influences the linear stability

of the thermoacoustic modes and κp3 governs the satu-

ration to limit cycles [3, 8, 18, 19]. To account for spa-

tial asymmetries in the coherent heat release rate fluc-

tuations, only the second term c2 of the spatial Fourier

expansion of the source term distribution was kept. In-

deed, it was shown in previous works that it is the only

term having an effect on the dynamics of the first az-

imuthal mode [8]. In [19], the quaternion formalism

of Eq. (1) is introduced in the wave equation (2), and

methods of spatial and slow time averaging are applied

to obtain a first order system of coupled Langevin equa-

tions for A, χ, θ and ϕ. Based on the experimental data

presented in Fig. 3, we consider that the fluctuations of

the antinodal line direction are weak enough to set θ as

a constant in the equations. Under these assumptions,

the equations for A and χ are:







































































Ȧ =

(

ν +
c2β

4
cos(2χ)

)

A

−
3κ

64
(5 + cos(4χ)) A3 +

3Γ

4ω2A
+ ζA

χ̇ =
3κ

64
A2 sin(4χ) −

c2β

4
sin(2χ)

−
Γ

2ω2

tan(2χ)

A2
+

1

A
ζχ

(3)

where ν = (β − α)/2. The constant Γ is the intensity

of the noise coming from the projection of the random

fluctuation Ξ on the first azimuthal mode shape [19].

ζA and ζχ are uncorrelated gaussian noises of intensities

Γ/2ω2. In the considered experimental time traces, A is

almost constant and will be replaced by its mean value

A0 in the equation for χ. In the equation for A, χ ap-

pears in the terms cos(2χ) and cos(4χ). However, for the

considered experimental conditions, the standard devia-

tion of cos(2χ) never exceeds 0.15. Under the assump-

tion that c2β/4 is of the same order as ν or smaller, the

fluctuations of cos(2χ) are neglected and χ is replaced

by the average value of its absolute value χ0 = 〈|χ|〉.

The standard deviation of cos(4χ) in the experiments

is always under 0.5, which has small effect in the sum

(5+ cos(4χ)). Therefore, χ is also replaced by χ0 in this
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Figure (5) Fitting of Γ/2ω2, FA and Fχ on the experimental data for the case Φ=0.55. The obtained values are: A0 = 904 [Pa],

ν = 19.5 [s−1], κ = 1.27.10−4 [Pa−2.s−1], Γ/ω2 = 4.89.105 [Pa2s−1], c2β = 31.9 [s−1].

term. The two equations are in this way decoupled:

Ȧ =

(

ν +
c2β

4
cos(2χ0)

)

A

−
3κ

64
(5 + cos(4χ0)) A3 +

3Γ

4ω2A
+ ζA, (4)

χ̇ =
3κ

64
A2

0 sin(4χ) −
c2β

4
sin(2χ)

−
Γ

2ω2

tan(2χ)

A2
0

+
1

A0

ζχ. (5)

In a more compact form Ȧ = FA(A) + ζA and χ̇ =

Fχ(χ) + ζχ/A0, where all the deterministic terms are

grouped in the functions FA and Fχ, which are the drift

coefficients of the Fokker-Planck (FP) equations gov-

erning the evolution of the probability density P(A) and

P(χ). The FP equations have also a diffusion coefficient.

The latter is equal to Γ/2ω2 in the FP equation for P(A).

4. Model parameters calibration

It is now interesting to make use of the experimental

data to identify the model parameters, and therefore cal-

ibrate it for each of the stationary operating conditions

investigated in this work. This can be achieved by fol-

lowing the framework proposed in [20, 21], which has

been already applied in a thermoacoustic context, e.g.

[22]. It is based on the fact that one can compute from

time series the drift and diffusion coefficients of a FP

equation by using their statistical definition [20, 21, 23]:

FA(A) ≡ lim
τ→0

1

τ

∫

(a − A)P(a, t + τ|A, t) da (6)

Fχ(χ) ≡ lim
τ→0

1

τ

∫

(x − χ)P(x, t + τ|χ, t) dx (7)

The noise intensity Γ is obtained with the second order

moment for the time traces of A

Γ

2ω2
≡ lim
τ→0

1

τ

∫

(a − A)2P(a, t + τ|A, t) da. (8)

In Eq. 6, the transition probability P(a, t + τ|A, t) is the

probability of the amplitude a at a time t + τ knowing

that the amplitude at the time t was A. These probabili-

ties are extracted for τ & 1/∆ f with ∆ f the bandwidth

of the filter applied on the microphones timetraces [24].

The limits for τ → 0 are obtained by extrapolation, as

explained in [24]. The next step is to fit the theoretical

model on the extracted drift and diffusion coefficients

to identify the parameters Γ/ω2, κ and c2β. Although

the noise intensity does not depend on the amplitude

in the model, Figure 5a shows that the extracted dif-

fusion coefficient presents a parabolic shape. This is

due to limitations in the extrapolation method for the ex-

treme values of A. However, a validation on numerically

generated data has shown that a reliable estimation of

the noise intensity Γ/2ω2 can be obtained by weighting

these extrapolated points with the experimental proba-

bility density function of A for the fit of Γ/2ω2. Once

Γ/2ω2 is known, ν and κ are identified using the ex-

tracted drift function FA (Fig 5b). With the knowledge

of Γ/2ω2 and κ, c2β is identified using Fχ (Fig. 5c). As

a final remark, it is important to note that modeling the

nonlinear saturation with a cubic term only is too sim-

plistic for the considered operating conditions, which

are far away from the bifurcation point [25]. Conse-

quently, although the identified values for ν, c2 and κ

allows to capture the topology of the phase space, they

shall only be considered as indicative values.
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Figure (6) Contributions to the potential.

5. Potential description

The equation for χ is now written in a potential form:

χ̇ = −
dU

dχ
+

1

A0

ζχ, (9)

where the potential U is defined as:

U(χ) =
3κ

256
A2

0 cos(4χ) −
c2β

8
cos(2χ)

−
Γ log(cos(2χ))

4ω2A2
0

. (10)

Equation (9) is formally similar to the equation of a par-

ticle of negligible mass evolving in a potential landscape

and undergoing a stochastic force ζχ/A0 and a strong

fluid friction [14]. It has to be noted that in eq. (9),

the noise intensity Γ affects not only the amplitude of

the stochastic noise ζχ, but also the shape of the po-

tential landscape U. The expression (10) of the po-

tential has three terms: the first term, proportional to

A2
0

cos(4χ), grows with the limit cycle amplitude A0 and

promotes spinning modes. The second term, propor-

tional to c2β cos(2χ), grows with the asymmetry coeffi-

cient c2 and promotes standing modes. The third term

increases with the ratio Γ/A2
0
, which depends on the rel-

ative importance of the noise compared to the limit cy-

cle amplitude, it also promotes standing modes and cre-

ates potential barriers in ±π/4, preventing the occurence

of pure spinning modes. These terms and their contri-

bution to the potential shape are represented on Fig. 6.

Depending on the relative importance of these three

terms, two situations can be encountered: the one-well

potential leading to a dynamic centered around stand-

ing modes, and the two-well potential leading to a dy-

namic centered around two mixed modes spinning in

opposite directions. The first situation occurs when

(3κ/16)A2
0
≤ c2β/2 + Γ

2/(ω2A2
0
). Then, the contribu-

tion of the asymmetry and the deterministic contribu-

tion of the turbulent noise in U predominate over the

term coming from the nonlinear saturation, and Fχ has

only one stable equilibrium point in χ = 0, correspond-

ing to a one-well potential around the standing mode,

corresponding to the blue line in Fig. 7b. The noise ex-

citation will make χ wander randomly around its equi-

librium point, but the dynamics will be centered around

a standing mode. The second situation occurs when

(3κ/16)A2
0
> c2β/2 + Γ

2/(ω2A2
0
). Then, the term com-

ing from the nonlinear saturation in Fχ(χ) predominates

over the terms coming from the asymmetry and the de-

terministic contribution of the turbulent noise, and Fχ
has two symmetric stable equilibrium point ±χeq cor-

responding to symmetric mixed modes propagating in

opposite directions, and one unstable equilibrium point

in χ = 0. This corresponds to a potential landscape fea-

turing two wells in ±χeq separated by a potential barrier

in χ = 0. Figure 7b shows examples of potentials pre-

senting this two-well shape (red and green lines). The

noise excitation will make χ wander randomly around

one of the mixed modes and eventually trigger random

jumps from one well to the other, making the propagat-

ing direction of the wave switch randomly.

For the cases showing two potential wells, the rate of

jumps from one well to the other depends on the noise

intensity. When χ is in one of the wells, Kramers theory

will allow us to compute the probability that χ crosses

the barrier after a certain time [14]. The probability

density function of χ is governed by the Fokker-Planck

equation

∂P(χ, t)

∂t
= −
∂FχP

∂χ
+

Γ

4A2
0
ω2

∂2P

∂χ2
(11)

which is equivalent to the Langevin equation (9). We

assume that χ is initially in one of the wells, e.g the

positive one, χ = χeq. This is modelled with an initial

condition P(χ, 0) = δ(χ−χeq) for the probability density.

An absorbing boundary condition is placed in χ = 0.

We then consider Pc(t) = 1 − P(χ > 0, t), which is

the probability that χ crossed the barrier in 0 at a time

τ ≤ t. Pc is initially 0 and increases with t because

of the absorbing condition. Pc(t) =
∫ t

0
ρ(τ)dτ with ρ

the probability density function of the first passage time

though the barrier. When the potential and the noise

intensity are known, the Fokker-Planck equation can be

solved numerically, giving access to ρ by differentiation

of the cumulative distribution function Pc.

6. Discussion

Figure 7 summarizes how the shape of the potential

landscape explains the differences in the dynamics of

This is a pre-print version. Published in Proceedings of the combustion institute (2020) Vol. 38,
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(a)

(b)

(c)

Figure (7) Comparison of the potentials and PDFs of the 3

cases. Φ=0.525 (blue), standing mode. Φ=0.55 (red), switch-

ing mixed mode. Φ=0.60 (green), clockwise spinning mixed

mode. (a): Experimental timetraces of χ. (b): potential U(χ)

whose parameters are calibrated from the experimental data.

The dashed lines show the typical range of χ which is ex-

plored by the system under a stochastic excitation of inten-

sity Γ/(4ω2A0). Inset: Drift coefficient for each case. (c):

Solid lines: PDF computed from the stationary Fokker-Planck

equation. Dashed lines: PDF of the experimental timetraces

the nature angle between the three considered cases.

Fig. 7b shows the potential landscapes associated with

the calibrated model, whose parameters where identi-

fied from experimental data for each of the three cases,

as explained in the previous section. The Φ = 0.525

case (blue line) shows a single potential well in χ = 0,

so that the stochastic forcing leads to a predominantly

standing mode. The Φ = 0.55 (red line) and Φ = 0.60

cases (green line) both present two symmetric potential

Figure (8) PDF of escape time for Φ = 0.55. Bars: experi-

mental statistics. Red line: PDF obtained from the numerical

resolution of the Fokker-Planck equation

wells separated by a potential barrier in χ = 0. For the

Φ = 0.55 case (red), the noise intensity and the height

of the potential barrier are of the same order of mag-

nitude. The turbulent noise is therefore strong enough

to drive χ from one well to the other, causing the ob-

served phenomenon of intermittent transitions between

clockwise and counterclockwise mixed modes. Con-

versely, the Φ = 0.60 case (green) presents a slightly

smaller level of noise, due to the stronger amplitude,

and a higher potential barrier. The noise level is small

compared to the height of the potential barrier, making

any switching event very unlikely: χ will remain con-

fined in one well, corresponding to a constant spinning

direction. The choice of the well depends only on the

initial conditions. Fig. 7c compares the theoretical sta-

tionary PDFs against the experimental ones. It has to be

noted that for the Φ = 0.60 case (green), the solution of

the stationary Fokker-Planck equation gives a bimodal

distribution while the experiments show a single peak.

This is because the solution of the stationary Fokker-

Planck equation gives the repartition obtained for an in-

finite time. The duration of the experiment is too short

to observe any switching event. For Φ = 0.55, the prob-

ability density function of switching time ρ has been ob-

tained numerically and compared to experimental statis-

tics, showing good agreement (Fig. 8).

7. Conclusion

A low order model was used to describe the dynamics

of the first azimuthal mode in an idealized annular com-

bustion chamber subject to turbulent combustion noise.

Considering a wave equation with coherent and stochas-

tic source terms, we obtain an equation describing the

modal dynamics as a stochastic diffusion process in a

potential landscape. This equation gives a model for the

spontaneous symmetry breaking that is observed on a

real combustor, and which leads to either a clockwise

spinning or a counter-clockwise spinning mode for suf-

ficiently large values of the bifurcation parameter. The

This is a pre-print version. Published in Proceedings of the combustion institute (2020) Vol. 38,
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decomposition of the model’s potential landscape al-

lows us 1) to attribute the predominance of a spinning

to the nonlinear saturation of the flame, while turbulent

forcing and spatial asymmetries favor predominance of

standing modes, and 2) to explain the intermittent tran-

sitions induced by the turbulent forcing when the po-

tential barrier separating the two counter-spinning at-

tractors has a height that is similar to the normalized

stochastic forcing intensity. The model was able to re-

produce quantitatively the statistics of these intermittent

transitions, showing that it is a suited minimal model for

describing the complex topology of the phase space.
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