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Abstract: In order to expand the applications of cold-formed thin-walled steel structures, this study
proposes a new type of composite wallboard composed of cold-formed thin-walled C-shaped steel
and multi-layer concrete, in which C-shaped steel serves as the skeleton, foam concrete acts as the
thermal insulation material, and fine aggregate concrete and cement mortar play the part of envelopes.
The composite wallboard can be made in a factory assembly line, meeting the requirements of the
building (civil and structural) industry. Two steel-frame composite wallboard shear walls were
subjected to reciprocating loading, with the connection mode as the design parameter, to investigate
the seismic performance of the structure. The failure mode, hysteresis curve, skeleton curve, strength
degradation, stiffness degradation, ductility, and energy dissipation capacity of the specimens were
analyzed. On this basis, the finite element (FE) model of the steel-frame composite wallboard was
established, and the model’s accuracy was verified by comparing the bearing capacity and the
skeleton curve. Results show that the structure shows shear failure characteristics, and the cement
mortar layer and the fine aggregate concrete layer are separated from the C-shaped steel after being
crushed. The infilled foam concrete is also crushed, and the welding seams between the extended
C-shaped steel and steel frame of the WP-1 specimen are damaged. The hysteresis curves of the two
specimens have a clear pinch, but the area enclosed by the hysteresis loop is large, and the energy
dissipation capacity is also present. The yield load and ultimate load of the WP-2 specimen are higher
than those of the WP-1 specimen, indicating that the higher the connection strength between the
composite wallboard and the steel frame, the greater the ultimate carrying capacity of the specimen.
The established FE model can accurately estimate the seismic performance of steel-frame composite
wallboard shear walls.

Keywords: seismic performance; composite wallboard; cold-formed thin-walled steel; finite
element model

1. Introduction

Cold-formed thin-walled steel (CFS) structures are a novel type of structural system
composed of cold-formed thin-walled steel frames and sheathing material. Self-drilling
screws are used to connect the steel frame and the sheathing [1]. It has high strength, is
lightweight, makes easy connections, has convenient installation and recyclability, and is
widely used in low-rise buildings [2]. Ordinary sheathing materials include steel plates [3,4],
fiber cement boards (FCBs) [5], gypsum wallboards (GWBs) [6], oriented strand boards
(OSBs) [7], Bolivian magnesium boards (BMGs) [8], and calcium silicate boards (CSBs) [9].

Previous studies have demonstrated that the type of sheathing material significantly
affects the mechanical performance of CFS structures. Therefore, the load-bearing perfor-
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mance and seismic behavior of CFS cladded with different sheathing materials have been
investigated in past studies. For instance, Attari [10] reported an experimental study on the
seismic performance of six CFS shear walls with steel sheeting. The failure modes included
stud local buckling and sheeting edge rupture. DaBreo et al. [11] explored the influence
factor of CFS shear walls clad with flat steel under lateral and gravity loading and found
that the sheathing connection pattern is directly related to performance. Mohebbi et al. [12]
performed cyclic loading on six CFS shear walls cladded with GWBs and FCBs. The results
showed that the cladding increased the specimens’ lateral stiffness, shear strength, and
energy dissipation capacity. Zeynalian and Ronagh [13] examined the failure modes of CFS
walls sheathed by FCBs and estimated the seismic response modification factor. The screw
connections significantly influenced the system’s nonlinear behavior. In a series of mono-
tonic experiments, Serrette et al. [14] and Liu et al. [15] evaluated the static performance of
CFS walls sheathed with OSBs, GWBs, and other sheathing materials. They discovered that
the failure of the walls resulted from screws pulling through the panel or screws breaking
the edge of the panel. Karabulut and Soyoz [16] carried out cyclic loading tests on CFS
shear panels sheathed with GWBs. The contribution of board type, steel thickness, screw
spacing, and axial load on the hysteresis behavior of the specimen was examined. It was
found that the specimen’s ductility is mainly due to the connection screws between the
board and the CSF frame. Abeysiriwardena and Mahendran [17] conducted full-scale
standard fire tests on three CFS walls sheathed with GWBs and found that the stronger the
out-of-plane constraint, the higher the fire resistance of the wallboard.

Recently, more environment-friendly and recyclable materials have been used as
sheathing. Liu et al. [18] put expanded polystyrene boards or extruded polystyrene boards,
two kinds of thermal and sound insulation materials, in the cavity of the CFS frame and
sprayed lightweight mortar on both sides of the CFS frame. The test result showed that the
slippage between the sprayed lightweight mortar and the CFS frame improved stiffness
and restricted cracks. Straw boards are a reused material composed of plant straw and
protective paper. Xu et al. [19] and Zhang et al. [20] wrapped straw boards on both sides of
a CFS frame and investigated seismic behavior and axial performance, respectively. The
cracking of the straw board made the wall express better ductility and energy absorption.
Wu et al. [21] filled CFS walls with OSBs and GWBs with flue gas desulfurization gypsum,
a type of industrial waste. The infilled gypsum and the sheathing materials made up most
of the contributions to lateral stiffness, and the compressive failures of infilled gypsum and
screw connection failure were both limited states.

In some studies, it was found that the failure modes of CFS shear walls with sheathing
materials were the local buckling of the studs, the crushing of the sheathing, and self-scraw
failure [22]. Light sheathing not only serves as an enclosure but also limits the buckling of
thin-walled steel studs and increases the load-carrying capacity of CFS structures. Whether
the CFS shear wall can exert the material’s ultimate performance depends on the sheathing
material’s connection strength and the CFS frame [23]. At the same time, CFS shear walls
with sheathing materials can only be used in low-rise buildings, which limits the application
of CFS structures in high-rise buildings.

In this study, an innovative composite wallboard made of cold-formed thin-walled
C-shaped steel and multi-layer concrete, which can meet the demands of the building
industry, is proposed to broaden the use of CFS structures. Two full-scale specimens were
tested under cyclic load to analyze their seismic performance, including failure mode,
hysteresis and skeleton curves, strength and stiffness degradation, ductility, and energy
dissipation capacity. Additionally, using the software ABAQUS, the nonlinear finite element
(FE) model was established and used to understand the structures’ seismic performance
better. This study will promote the wider use of CFS structures in high-rise buildings.

2. Construction of the New Composite Wallboard

With increasingly severe population aging and labor shortages, prefabricated buildings
have been the primary selection of the building industry’s transformation and upgrading,
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the aims of which are to be highly industrialized, have low-carbon emissions, and be
sustainable and environmentally friendly [24,25]. To meet the requirements of prefabricated
construction and improve the integrity and thermal insulation performance of wallboard,
this study proposes a new type of composite multi-layer concrete wallboard, as shown
in Figure 1. It can be seen that the composite wallboard is composed of four parts: a fine
aggregate concrete layer, a cold-formed thin-walled C-shaped steel frame welded with
reinforcement mesh and wire mesh, a foam concrete layer, and a cement mortar layer. The
composite wallboard can be used independently as a shear wall in low-rise buildings and
can also be connected with a steel frame in high-rise buildings as an exterior shear wall.
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Figure 1. Diagram of the composite wallboard.

The following is how the composite wallboard is made:
(1) Erect the side formwork on the formwork platform according to the size of the

wallboard, lay the decorative materials on the formwork counter, and spray polymer mortar
with a thickness of 3–5 mm;

(2) Weld the cold-formed thin-walled C-shaped steel into a frame, and weld reinforce-
ment mesh on one side and wire mesh on the other side of the CFS frame; then, lift it into
the formwork;

(3) Pour fine aggregate concrete into the formwork and vibrate it tightly, subsequently
pouring foam concrete into the formwork;

(4) After the initial setting of the foamed concrete, the surface is plastered with
10–15 mm cement mortar and pressed into alkali-resistant glass fiber;

(5) Dismantle the side formwork and autoclave the wallboard for curing.
Compared to traditional CFS shear walls with sheathing materials, the manufacturing

of composite wallboard can be produced in factories at assembly lines, ensuring the
precision and production quality of the components and meeting the requirements of
the construction industry. The C-shaped steel mainly bears the axial load, and the fine
aggregate concrete layer provides the lateral stiffness of the wallboard. Foam concrete acts
as a filling material due to its effective thermal insulation and ability to withstand fires.
Meanwhile, related studies have shown that, due to the interaction between C-shaped
steel and foam concrete, foam concrete is considered effective in restraining the early local
buckling of C-shaped steel under compression [26,27]. Cement mortar serves as an interior
surface layer to facilitate interior decoration. Reinforcement mesh and wire mesh help to
improve the bond strength of C-shaped steel to the fine aggregate concrete and cement
mortar and enhance the integrity of the wallboard.

3. Experiments
3.1. Specimen Design

In order to investigate the cyclic performance of steel-frame composite wallboard
shear walls, two specimens, numbered WP-1 and WP-2, were designed with the connection
method as the parameter. The dimensions of the steel-frame composite wallboard shear
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wall, the arrangement of the angle steel connector, and the C-shaped steel of the composite
wallboard are shown in Figure 2. The composite wallboard in the WP-1 test piece was
welded with the steel frame through the extended C-shaped steel and the angle steel
connectors with the beam (shown in yellow); WP-2 had added angle steel connectors with
the column (shown in red) compared with WP-1.
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Figure 2. The structure (a) the steel-frame composite wallboard shear wall; (b) the arrangement of
the angle steel connector and the C-shaped steel of the composite wallboard.

Figure 3 depicts the composite wallboard’s cross-section. The thickness of the com-
posite wallboard is 210 mm, of which the thicknesses of the fine aggregate concrete layer,
cement mortar layer, and foam concrete layer are 50, 10, and 140 mm, respectively. The
cross-sectional dimensions of the C-shaped steel were 160 × 60 × 20 × 2.5 mm, and both
sides of the C-shaped steel were welded with a reinforcement mesh diameter of 6 mm and
a spacing of 200 mm and a wire mesh diameter of 3 mm and a spacing of 50 mm. The
strength grade of the fine aggregate concrete layer was C20, and the density of the foam
concrete was 500 kg/m3. The steel frame was made of a hot-rolled H-beam where the
cross-sectional dimensions, h × b × tb × tf, were 300 × 150 × 6.5 × 9 mm. The parameters
of the components of the specimen are shown in Table 1.
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3.2. Material Properties
3.2.1. The Steel

The specimens for the tensile material properties test were made according to the
relevant requirements GB/T 2975-2018 [28], and the material properties test results of
each section of the specimens are shown in Table 2. The two letters in the name of the
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sample represent the name of the sampling location, where CS stands for C-section steel, AS
stands for angle steel, FS stands for Flange steel, WS stands for Web steel, and the number
represents the thickness of the sample; t is the actual thickness, f y and f u are the yield and
ultimate strength, respectively, and u is the yield ratio of the sample. The elastic modulus
of the steel is 205 GPa.

Table 1. Parameters of the component.

Component Section Type Sectional Dimension (mm) Steel Grade

Steel Column Hot-rolled H-shaped 300 × 150 × 6.5 × 9 Q235
Steel Beam Hot-rolled H-shaped 300 × 150 × 6.5 × 9 Q235

Cold-formed Thin-walled Steel C-shaped 160 × 60 × 20 × 2.5 Q235
Connector with beam Hot-rolled equilateral angle 50 × 5 Q235

Connector with column Hot-rolled equilateral angle 40 × 4 Q235

Table 2. The material properties of the steel as used here.

Location Sample t (mm) f y (Mpa) f u (Mpa) u

C-shaped Steel CS-2 2.5 321.7 431.2 0.75
Wire Mesh WM-3 3.0 270.1 366.1 0.74

Reinforcement Mesh RM-6 6.0 348.7 469.5 0.74

Angle Steel AS-4 4.0 340.7 473.3 0.72
AS-5 5.0 336.2 465.0 0.72

Flange FS-9 9.0 326.5 475.0 0.69
Web WS-6 6.5 353.4 457.5 0.77

3.2.2. The Concrete

In accordance with the Chinese standard GB/T 50081-2019 [29], the test block was
a 150 mm cube, as shown in Figure 4. The test blocks and test pieces were poured at the
same time and cured under the same conditions. Table 3 describes the mix proportion and
material test results of fine aggregate concrete, cement mortar, and foam concrete.
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Table 3. The mechanical properties of the concrete.

Materials
Mix Proportion (kg/m3) Cube

Compressive
Strength (Mpa)Water Cement Sand Gravel Foaming

Agent

Fine aggregate concrete 213 419 652 1061 - 17.5
Cement mortar 310 200 1450 - - 3.7
Foam concrete 612 507 - - 1.8 2.0

3.3. The Test Device and the Measurement Scheme

The low-cycle reciprocating loading test device for the specimen is shown in Figure 5.
A rigid ground beam was fastened to the ground with anchor bolts, and the steel frame
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was attached to it by bolts. A lateral restraint device was set on the reaction frame, which
restrained the steel frame’s out-of-plane deformation through pulleys, to prevent the steel
frame from out-of-plane instability and damage during loading.
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The measurements included the specimen’s lateral displacement, the loading point’s
force and displacement, and the strain distribution in the C-shaped steel and fine aggregate
concrete. The arrangement of the linear variable displacement transducer (LVDT) and
the strain gauge of each component are shown in Figure 6. The actuator and LVDT
automatically collect the loading point’s force and displacement. The static strain collector
measures each component’s strain distribution in the core area of the node.
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wallboard; (b) the arrangement of strain gauges on the C-shaped steel.

3.4. The Loading Scheme

The force-displacement hybrid control approach was chosen in this paper. The loading
protocol is shown in Figure 7. The first-to-third displacement levels were performed
in load control mode, with one cycle applied at each displacement level. Displacement
control mode was used starting from the fourth displacement cycle, with three cycles
applied at each displacement level. The displacement level increased with increasing
yield displacement. It was found that the ∆y of the specimens was about 6 mm. In the
load control phase, the loading rate was 1 kN/s, and the displacement control phase was
0.5 mm/s. The test was terminated when the composite wallboard was damaged or the
bearing capacity dropped below 80% of the ultimate bearing capacity.
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4. Test Results and Analyses
4.1. Test Phenomena and Failure Modes

(1) WP-1
When the loading displacement was within 12 mm, there was no crack on the mor-

tar and concrete surface, and the specimen was in the elastic stage. When the loading
displacement reached 24 mm, 45◦ cracks appeared in the middle area of the mortar layer,
and a vertical crack emerged at the junction between the side of the concrete layer and
the C-shaped steel. When the loading displacement reached 30 mm, in the middle area of
the fine aggregate concrete layer, 45◦ cracks appeared, and the vertical cracks extended
upward. With the increase in displacement, the number and width of diagonal cracks in the
cement mortar layer and the concrete layer increased. When the controlled displacement
reached 42 mm, the lower corners of the mortar layer peeled off, exposing the skeleton, and
the filler materials inside the wallboard fell off, as shown in Figure 8a. When the loading
displacement reached 84 mm, the lower part of the mortar layer became warped, and the
concrete layer peeled off the wallboard. When the controlled displacement reached 90 mm,
the force dropped to 80% of the ultimate bearing capacity. At this time, some extended
C-shaped steel welds were torn. When the displacement reached 102 mm, the load dropped
to 80% of the maximum load, and the test was completed. The failure mode of WP-1 after
loading is shown in Figure 8b.
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(2) WP-2
When the loading displacement reached 12 mm, vertical cracks emerged in the lower

part of the side of the concrete layer. When the loading displacement reached 18 mm, a 45◦

inclined crack appeared in the middle of the mortar layer. When the loading displacement
reached 30 mm, the surface of the concrete layer had 45◦ inclined cracks, the vertical cracks
on the side of the concrete layer gradually extended upward with the loading, as shown
in Figure 9a, and the cracks on the mortar layer gradually increased with the loading.
When the loading displacement reached 42 mm, a loud noise was heard during the loading
process, and the lower part of the concrete layer rose. When the loading displacement
reached 54 mm, the lower part of the mortar layer began to peel, and the internal foam
concrete started to fall off. When the loading displacement reached 78 mm, the concrete
layer peeled off, the force declined to 80% of the peak load, and the loading ended. The
failure mode of WP-2 after loading is shown in Figure 9b.
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The above tests show that during the loading process, the cement mortar layer and
the fine aggregate concrete layer of the composite wallboard had successive diagonal
cracks. Then, the interface between the C-shaped steel and the cement mortar layer had
separation cracks. The corners of the cement mortar layer and fine aggregate concrete
layer were crushed, the fine aggregate concrete layer and the skeleton peeled off, and the
carrying capacity dropped significantly. When the specimen was damaged, dense inclined
45◦ cracks appeared in the cement mortar and the fine aggregate concrete layers. The
composite wallboard had the characteristics of shear failure. The difference between the
two test pieces was that the connecting weld between the extended C-shaped steel and the
steel frame of WP-1 was damaged, while the connecting weld of the WP-2 test piece was
not damaged due to the increase in the number of connectors.

4.2. The Hysteresis Curves

The hysteresis curves of the WP-1 and WP-2 specimens are shown in Figure 10. The
hysteresis curves of the two specimens are similar in shape, showing the inverse “S”
shape, which is related to the shear damage of the composite wallboard. However, the
area surrounded by the hysteresis loop is large, and the specimens have good energy
dissipation capacity.

In the elastic phase, the load–displacement curve is linear, the hysteresis loop’s sur-
rounding area is smaller, and the energy dissipation capacity of the sample can be neglected.

Cracks emerged and developed in the mortar and concrete layers as the displacement
increased. The lateral stiffness contributed by the composite wallboard gradually decreased,
the load–displacement curve entered the nonlinear stage, the load gradually increased, and
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the hysteresis loop’s surrounding area increased. The specimen consumed energy through
the deformation of the composite plate and the steel frame.
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In the damage phase, the corner of the fine aggregate concrete layer was crushed
under the action of the oblique pressure zone, and the bearing capacity of the specimen
was reduced. In contrast, the cement mortar layer and the fine aggregate concrete layer
were detached from the C-shaped steel, and the synergistic working performance of the
composite wallboard was reduced. The deformation of the steel frame and the composite
wallboard was not consistent, resulting in the pinching of the hysteresis curve.

4.3. The Skeleton Curve

The envelope of the load–displacement hysteresis curve obtained by the repeated load
test is called the skeleton curve. Figure 11 displays the skeleton curves of the WP-1 and
WP-2 specimens.
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Figure 11. The skeleton curves of WP-1 and WP-2.

The skeleton curves of both specimens are “S”-shaped, indicating that the specimens
have gone through three stages: elasticity, elastoplasticity, and damage degradation. The
stiffness of the two models is the same at the elastic stage, and the skeleton curves overlap.
As the deformation increased, cracks appeared and developed in the cement mortar and
fine aggregate concrete layers one after another, which led to a decrease in the stiffness and
slope of the skeleton curve. However, due to the higher connection strength between the
composite wallboard and the steel frame of the WP-2 specimen, the wall plate participated
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in the deformation to a greater extent; the lateral stiffness of WP-2 in the elastic-plastic
stage was higher than that of WP-1, and the slope of the skeleton curve was greater. The
specimen had reached the ultimate bearing capacity with the breaking and falling off of the
cement mortar layer and the fine aggregate concrete layer.

The bearing capacity of WP-1 reached the positive peak load of 197.40 kN, where the
forward displacement reached 71.96 mm, and the bearing capacity reached the negative
peak load of 247.99 kN, where the negative displacement reached 66.04 mm. When the
positive loading displacement reached 52.65 mm, the bearing capacity of WP-2 reached a
peak load of 224.75 kN, and when the negative displacement reached 46.67 mm, the bearing
capacity reached a peak load of 267.99 kN. The negative bearing capacity of WP-1 and WP-2
were higher than the positive by 25.6% and 19.0%, respectively. This happened because
the detachment of the fine aggregate concrete layer appeared in the lower right corner first.
When the forward displacement of the wall slab occurred, it affected the formation of the
compression zone in the diagonal direction of the concrete layer. Due to the higher negative
ultimate bearing capacity, the crushing damage caused by the concrete layer was mainly
concentrated in the lower left corner. The positive and negative peak loads of the WP-2
specimen were increased by 13.9% and 8.1%, respectively, compared with the WP-1 sample.
This indicates that enhancing the connection strength between the composite wallboard
and the steel frame can improve the specimen’s carrying capacity and synergistic force.

When the positive loading displacement of WP-1 was in the range of 24~36 mm, the
bearing capacity was unchanged with the increase in displacement, mainly due to the
loosening of the lateral restraint pulley during the loading process and the out-of-plane
deformation of the steel beam. After adjusting the lateral restraint device and the continuing
load, the bearing capacity resumed its growth trend.

4.4. Ductility

Ductility refers to the ability of structural members to deform without a significant
reduction in bearing capacity. The displacement ductility coefficient can be used for
quantitative expression; the calculation formula is as follows (Equation (1)):

µ =
∆u

∆y
(1)

where ∆y and ∆u are the displacements when the specimen reaches the yield and ultimate
load, respectively. This paper uses the equivalent energy elastic-plastic method with the
AISI standard [30] to calculate the above values. As shown in Figure 12, the maximum load
and related displacement on the envelope curves were computed at the peak point (∆max,
Pmax). The elastic point (∆e, Pe) is situated at 0.4 Pmax. The secant stiffness of the load, Pe,
can be used to calculate the initial lateral stiffness, k0, and point C is the yield point. The
ideal perfectly elastic-plastic bilinear model that can dissipate a comparable amount of
energy (area S1 = S2) was used to arrive at the yield point (∆y, Py). The 80% post-peak load
was determined to be at the ultimate point (∆u, Pu).

Table 4 depicts the characteristic values of the test results. The positive and negative
yield loads of the WP-1 specimens were 153.07 and 213.60 kN, respectively, and the negative
yield load was 39.54% higher than the positive yield load. The positive and negative
yielding loads of the WP-2 specimens were 203.83 and 245.09 kN, respectively, and the
negative yielding load was 20.24% higher than the positive yielding load. The ductility
coefficients were 2.90 and 2.38 for the WP-1 specimen in the positive and negative directions,
respectively, and 2.66 and 2.59 for WP-2, respectively. The higher ductility coefficient values
in the positive direction of the WP-1 specimen were mainly related to the out-of-plane
deformation. In general, the displacement ductility coefficient of the steel frame-composite
wallboard shear walls was around 2.6; the ductility of the specimen is not excellent, which
is mainly related to the structure of the composite wallboard. After the fine aggregate
concrete layer was crushed and detached from the C-shaped steel, the composite wallboard
was damaged and the bearing capacity decreased rapidly.
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Table 4. The characteristic values.

Specimen Direction Py (kN) ∆y (mm) Pmax (kN) ∆max (mm) Pu (kN) ∆u (mm) µ

WP-1
Positive 153.07 35.00 197.40 71.96 157.92 101.52 2.90

Negative 213.60 36.53 247.99 66.04 198.39 86.98 2.38
Average value 183.33 35.77 222.70 69.00 178.16 94.25 2.64

WP-2
Positive 203.83 27.93 224.75 52.65 179.80 74.23 2.66

Negative 245.09 24.66 267.99 46.67 214.39 63.87 2.59
Average value 224.46 26.30 246.37 49.66 197.10 69.05 2.63

4.5. Strength Degradation

Strength degradation is the process by which the displacement level stays constant
while the specimen’s load capacity declines over cycles. The strength degradation coeffi-
cient is denoted by λi and is calculated as follows (Equation (2)):

λi =
Pi

j

P1
j

, (2)

where λi indicates the strength degradation coefficient, Pj
1 and Pj

i are the peak load of the
first and i-th loading cycles at the j-th displacement level, respectively.

The strength degradation coefficients of the specimens are shown in Figure 13. The
λi of the WP-1 specimen is between 0.9–1.0 and that of the WP-2 specimen is between
0.85–0.90. The specimens’ strength degradation degree is not very apparent, which suggests
that the bearing capacity is more stable during the loading process.
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4.6. Rigidity Degradation

The rigidity degradation law can be expressed by the secant stiffness, Ki, under the
same cycle, which is calculated as follows (Equation (3)):

Kj =

n
∑

i=1
Pi

j

n
∑

i=1
ui

j

, (3)

where Pj
i and uj

i are the peak load and displacement of the i-th cycle at the j-th displacement
level, respectively.

The equivalent stiffness of the specimen is shown in Figure 14. The initial stiffness of
the WP-1 specimen was 13.96 kN/mm and that of the WP-2 specimen was 13.11 kN/mm.
In the elastic stage, both connection methods can ensure the coordinated deformation of
the composite wallboard and steel frame, and the ring line stiffness of the two specimens
was basically the same.
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During the elastic-plastic phase, the specimens’ stiffness steadily decreased as cracks
developed in the mortar and concrete layers. However, the composite wall panel and steel
frame in the WP-2 specimen demonstrated a better capacity for coordinated deformation
due to the stronger connection between the composite wall panel and the steel frame, and
the secant stiffness was higher than that of the WP-1 specimen. When the mortar layer and
the concrete layer broke and fell off, the stiffness of the specimen decreased.

4.7. Energy Dissipation Capacity

The hysteresis curve’s width shows the specimen’s energy dissipation capacity under
cyclic loading. The energy dissipation capacity is inversely proportional to the hysteresis
curve width, typically expressed as the equivalent viscous damping coefficient (he), which
is calculated as follows (Equation (4)):

he =
Ed
2π

=
1

2π

SABC + SCDA

SOBE + SODF
, (4)

where S(ABC+CDA) is the area enclosed by the hysteresis loop, and S(OBE+ODF) is the corre-
sponding triangle’s enclosed area, as shown in Figure 15. It may be concluded that the
he values of the two specimens changed with the development of loading displacement
in the same trend, both showing a trend of first increasing, then decreasing, and then
slowly increasing.
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At the early loading stage, the composite wall plate and steel frame deformed together,
the hysteresis curve was full, and the equivalent viscous damping coefficient increased
gradually. With the development of cracks in the cement mortar layer and concrete layer, the
lateral stiffness of the specimen gradually decreased. At the same time, the hysteresis curve
was pinched, and the equivalent viscous damping coefficient of the specimen gradually
decreased due to the decrease in the synergistic deformation ability of the composite wall
panel and steel frame after the concrete layer was detached from the C-shaped steel.

At the later loading stage, when the specimen reached the ultimate bearing capacity,
the specimen stiffness was mainly provided by the steel frame, and the contribution of the
composite wall plate was negligible. The steel frame mainly provided energy dissipation
performance, and the equivalent viscous damping coefficient increased slowly with the
increase in steel frame deformation.

Figure 16 shows the cumulative energy dissipation of the two specimens, which
correspond to each level of loading displacement. It can be concluded that the steel-frame
composite wallboard shear walls had qualitatively good energy dissipation capacity. The
curves of the WP-1 and WP-2 specimens have similar trends, and the loading displacement
is slightly higher for the WP-2 specimen than the WP-1 specimen, indicating that the
enhanced connection between the composite wallboard and the steel frame can improve
the energy dissipation capacity of the specimens.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 21 
 

At the early loading stage, the composite wall plate and steel frame deformed to-
gether, the hysteresis curve was full, and the equivalent viscous damping coefficient in-
creased gradually. With the development of cracks in the cement mortar layer and con-
crete layer, the lateral stiffness of the specimen gradually decreased. At the same time, the 
hysteresis curve was pinched, and the equivalent viscous damping coefficient of the spec-
imen gradually decreased due to the decrease in the synergistic deformation ability of the 
composite wall panel and steel frame after the concrete layer was detached from the C-
shaped steel. 

At the later loading stage, when the specimen reached the ultimate bearing capacity, 
the specimen stiffness was mainly provided by the steel frame, and the contribution of the 
composite wall plate was negligible. The steel frame mainly provided energy dissipation 
performance, and the equivalent viscous damping coefficient increased slowly with the 
increase in steel frame deformation. 

Figure 16 shows the cumulative energy dissipation of the two specimens, which cor-
respond to each level of loading displacement. It can be concluded that the steel-frame 
composite wallboard shear walls had qualitatively good energy dissipation capacity. The 
curves of the WP-1 and WP-2 specimens have similar trends, and the loading displace-
ment is slightly higher for the WP-2 specimen than the WP-1 specimen, indicating that the 
enhanced connection between the composite wallboard and the steel frame can improve 
the energy dissipation capacity of the specimens. 

 
Figure 16. The loop energy of the specimen. 

5. The FE Model 
In order to study the seismic behavior of the steel-frame composite wallboard shear 

wall, finite element analyses of WP-1 and WP-2 were performed using ABAQUS/Stand-
ard. The geometry dimension, loading pattern, and boundary conditi0ons of the finite el-
ement models were all in accordance with those utilized in the experiment. 

5.1. Stress–Strain Relationship 
5.1.1. The Steel 

The constitutive model of the steel in the FE model was established using a bilinear 
stress–strain relationship, which is as follows (Equation (5)): 

s i i y

i y s i y y i u

u u i

0.01 ( )
E

f E
f

ε ε ε
σ ε ε ε ε ε

ε ε

≤
= + − < ≤
 <

 (5) 

where σi and εi are the equivalent stress and strain, respectively; εy and εu indicate the 
yield and ultimate, respectively. 

Figure 16. The loop energy of the specimen.



Buildings 2023, 13, 282 14 of 20

5. The FE Model

In order to study the seismic behavior of the steel-frame composite wallboard shear
wall, finite element analyses of WP-1 and WP-2 were performed using ABAQUS/Standard.
The geometry dimension, loading pattern, and boundary conditi0ons of the finite element
models were all in accordance with those utilized in the experiment.

5.1. Stress–Strain Relationship
5.1.1. The Steel

The constitutive model of the steel in the FE model was established using a bilinear
stress–strain relationship, which is as follows (Equation (5)):

σi =


Esεi εi ≤ εy

fy + 0.01Es(εi − εy) εy < εi ≤ εu
fu εu < εi

(5)

where σi and εi are the equivalent stress and strain, respectively; εy and εu indicate the yield
and ultimate, respectively.

5.1.2. The Concrete

The concrete consists of foam concrete, fine aggregate concrete, and cement mortar,
and the concrete plastic damage model was selected in ABAQUS to simulate the concrete.
The foam concrete’s stress–strain relationship is as follows [31] (Equations (6)–(8)):

y =


−1.041x3 + 1.019x2 + 1.028x − 0.017 (0 ≤ x ≤ 1)

204x3 − 674x2 + 737.1x − 266.1 (1 ≤ x ≤ 1.2)
−0.005x3 + 0.052x2 − 0.211x + 0.559 (x ≥ 1.2)

(6)

x =
ε

εfc
(7)

y =
σ

ffc
(8)

where f fc and εfc represent the ultimate stress and corresponding strain of the foam
concrete, respectively.

The constitutive model of fine aggregate concrete and cement mortar in compression
and tension is followed by Chinese Code GB 50010-2010 [32], and the relationship in
compression is as follows (Equations (9)–(14)):

y =

{
αax + (3 − 2αa)x2 + (αa − 2)x3 x 6 1

x
αd(x−1)2+x

x > 1 (9)

x =
ε

εc
(10)

y =
σ

fc
(11)

εc =
(

700 + 172
√

fc

)
× 10−6 (12)

αa = 2.4 − 0.0125 fc (13)

αd = 0.157 f 0.785
c − 0.905 (14)

where f c and εc are the peaking stress and corresponding strain of the foam concrete, and
αa and αc represent the calculation parameters.
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In tension, the expressions for the stress–strain relationship are Equations (15)–(19):

y =

{
1.2x − 0.2x6 x 6 1

x
αt(x−1)1.7+x

x > 1 (15)

x =
ε

εt
(16)

y =
σ

ft
(17)

εt = ft
0.54 × 65 × 10−6 (18)

αt = 0.312 ft
2 (19)

where σt and εt are the ultimate stress and strain of the concrete in tension, respectively;
αt is the calculation parameters of the descending stage. Figure 17 shows the constitutive
model of steel and concrete.
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5.2. Element Type and Interaction

There are eight parts in the FE model, including the steel frame, the C-shaped steel, the
wire mesh, the reinforcement mesh, the angle steel connector, the fine aggregate concrete,
the cement mortar, and the foam concrete. The C3D8R solid element was selected to
simulate the steel frame, the angle steel connector, the fine aggregate concrete, the cement
mortar, and the foam concrete. Shell element S4R was used for C-shaped steel. The T3D2
truss element simulated the wire mesh and reinforcement part.

The “TIE” option was used to simulate the interaction between the fine aggregate
layer, the cement mortar layer, and the foam concrete, respectively, which provided the
full compatibility of the displacements. At the same time, the welding seams between the
extended C-shaped steel, the angle steel connector, and the steel frame were established by
the “TIE” interaction. In the production process, the wire mesh and reinforcement mesh
were welded with the C-shaped steel skeleton, which can be regarded as one whole piece,
so the three parts were merged into one part and “EMBEDDED” in the concrete to reduce
the amount of “interaction” in the FE model.

5.3. Boundary Conditions

In the FE model, a reference point (RP) was set at the center of the top steel beam, and
the reference point was coupled to the steel beam section. The loading step was to apply the
reciprocal displacement at the RP. All displacement and rotation constraints were selected
on the bottom steel beam to simulate the fixed boundary with the rigid beam. The top steel
beam’s out-of-plane displacement was restricted so that it was displaced in the loading
plane to avoid torsion. The finite element model of the specimen is shown in Figure 18.
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Figure 18. The finite element model.

5.4. Verification

Figure 19 compares the skeleton curves of WP-1 and WP-2 obtained from FEA with
the experiment. The two curves basically coincide in the elastic stage, and the develop-
ment trend in the elastic-plastic stage is consistent. However, there are clear differences
between the curves in the failure stage, which may have been caused by the following
reasons: the concrete layer in the finite element model was constrained by “TIE” and the
“EMBEDDED” contact between the C-shaped steel skeleton and the concrete was adopted
without considering the bond–slip relationship between them.
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Figure 19. Comparison of the skeleton curves: (a) WP-1; (b) WP-2.

The Von Mises stress distributions of some components when WP-2 reached the
ultimate load are given in Figure 20. There are stress concentrations in the bottom steel
beam at the corner of the connection with the rigid beam, the stress distribution of the fine
aggregate concrete is along the diagonal direction, and the stress is higher at the connection
between the outreach C-shaped steel and the steel frame. All these stress distribution
characteristics are close to the damage characteristics of the specimen.

Table 5 compares the yield load and bearing capacity of the specimen between the FE
model and the test. The average value of the ratio of yield load calculated by the FE model
to the test-measured value is 1.057, and the average value of the ratio of ultimate bearing
capacity is 1.058. The standard deviation of the yield load and ultimate bearing capacity
ratio is 0.084 and 0.091, respectively.
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Table 5. Load capacity comparison between the test and the FE model.

Specimen Load
Direction Py,test (kN) Py,fem (kN) Py,fem/Py,test

Pmax,test
(kN)

Pmax,fem
(kN) Pmax,fem/Pmax,test

WP-1
Positive 153.07 161.18 1.067 197.40 207.28 1.050

Negative 213.60 224.49 0.964 247.99 263.07 1.061

WP-2
Positive 203.83 217.49 1.043 224.75 240.31 1.069

Negative 245.09 259.06 1.039 267.99 282.37 1.054

Average 1.057 Average 1.058

Standard deviation 0.084 Standard deviation 0.091

Note: Py,test and Py,fem are the yield carrying capacity obtained from the test and the FE model, respectively; Pu,test
and Pu,fem are the ultimate bearing capacity obtained from the test and the FE model, respectively.

Based on the above failure modes, skeleton curves, and bearing capacity comparisons,
the FE model established in this study can accurately estimate the seismic behavior of steel
frame-composite wallboard shear walls.

5.5. Parameter Analysis

To quantify the influence of the fine aggregate concrete layer and foam concrete layer
on the bearing capacity and initial stiffness of composite wallboards, three finite element
models carried out pushover analyses with WP-1 as a reference. Table 6 shows the design
parameters of the FE models.

Table 6. Design parameters of the FE models.

Specimen tac (mm) tfc (mm) tmc (mm) tcw (mm) Pmax (kN) Ki
(kN/mm)

WP-1 140 50 20 210 207.28 18.19
WP-3 - - - - 50.74 0.87
WP-4 0 190 20 210 173.86 8.29
WP-5 190 0 20 210 340.34 67.27

Note: tac means the thickness of the fine aggregate concrete, tfc is the thickness of the foam concrete, tmc represents
the mortar cement’s thickness, tcw is the thickness of the composite wallboard, and Ki is the initial stiffness of
the model.

Figure 21 represents the load–displacement curves of the FE models. The WP-3 model,
consisting of the steel frame and the C-shaped steel skeleton only, had the smallest Pmax
and Ki of 50.74 kN and 0.87 kN/mm, respectively. Additionally, the Pmax and Ki of the
WP-5 model, with fine aggregate concrete instead of foam concrete, were the largest, with
340.34 kN and 67.27 kN/mm, respectively. Compared with the WP-1 model, the Pmax and
Ki of the WP-5 model increased by 64.19% and 269.82%, respectively. The Pmax and Ki of
WP-4 specimens with foam concrete instead of fine stone concrete were reduced by 16.12%
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and 54.42%, respectively, compared with the WP-1 model. Therefore, the fine aggregate
concrete layer provides higher lateral force resistance in the WP-1 model. At the same time,
at a certain value of composite wallboard thickness, the greater the thickness of the fine
aggregate concrete layer, the higher the bearing capacity and initial stiffness of the model.
However, the relationship is not linear and is related to the interfacial contact between the
two materials.
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6. Conclusions

In this study, cycling load tests of two steel-frame composite wallboard shear walls
were conducted to investigate the seismic performance of the specimens. The main conclu-
sions are as follows:

1. The specimens underwent shear damage, and the main damage characteristics of
the sample were the cracking, the crushing of the cement mortar layer and fine
aggregate concrete layer, and the separation from the C-shaped steel. Meanwhile, the
infilled foam concrete was also crushed, and the welding seams between the extended
C-shaped steel and the steel frame of the WP-1 specimen were damaged.

2. The deformations of the composite wallboard and the steel frame were not coordinated
after the composite wallboard was damaged, resulting in a clear “pinch” effect in the
hysteresis curves of the two specimens. The average ultimate bearing capacity of WP-
2 in positive and negative directions was 10.6% higher than that of WP-1, indicating
that enhancing the connection strength between the composite wallboard and the
steel frame improves synergistic deformation and increases the bearing capacity of the
specimens. The negative bearing capacity of the WP-1 and WP-2 specimens was 25.6%
and 19.0% higher than the positive bearing capacity, respectively, which is related to
the damaged position of the concrete layer.

3. The displacement ductility coefficient of the specimen was around 2.6, and the duc-
tility was not excellent, which was mainly related to the structure of the composite
wallboard. The strength degradation coefficient was within the range of 0.85–1.0
during loading, which indicated that the bearing capacity was stable.

4. The ratios of the yield and ultimate bearing capacity of the WP-1 and WP-2 specimens,
calculated by the FE model to the measured values, were 1.057 and 1.058, respectively.
The finite element model established can accurately estimate the seismic behavior of
steel-frame composite wallboard shear walls.

5. Parametric analysis shows that in the WP-1 model, the fine aggregate concrete layer
provides higher lateral force resistance, and the greater the thickness of the fine aggre-
gate concrete layer, the higher the bearing capacity and initial stiffness of the model.

Finally, it should be understood that this study is only a preliminary attempt to apply
composite wallboards as a shear wall structure to steel frames. Before being applied to
actual projects, there is still some work to be done, such as finding a reasonable thickness
for each layer of the concrete, the improvement of the connection between the composite
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wallboard and the steel frame, and the consideration of the interaction between different
layers of concrete.
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