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Abstract 

We describe a second generation system that drives a camera- 
equipped mobile robot through obstacle courses. The system, 
which evolved from earlier work by Moravec [6], incorporates a new 
path planner and has supported experiments with interest 
operators, motion estimation algorithms, search constraints, and 
speed-up methods. In this paper we concentrate on the effects of 
constraint and on speed improvement. We also indicate some of 
our plans for a follow-on system. 

1. Introduction 
F l D o  is a navigation and vision system for a robot rover. Using 

only stereo vision, it locates obstacles, plans a path around them, 
and tracks the motion of the robot as it moves. FIDO’S main loop 
repeatedly: 

* picks about 40 points from one member  of a stereo 

stereo-ranges those points by a hierarchical correlation 

0 plans a path that avoids those points 
moves forward 

*takes two new  stereo pictures 
* relocates those same points and stereo ranges them 

* deduces vehicle motion from apparent point mot& 

image  pair 

technique 

again 

This paper describes our experimental investigations and 
improvements in FIDO’S performance. Early versions of FlDO and  its 
predecessor, the Stanford Cart programs, used 9-eyed stereo, took 
15 minutes or more per  step, and were not always reliable. By using 
additional geometric constraints, we  have been able to increase the 
reliability while using only 2 stereo images instead of 9. With fewer 
images and several optimizations, we reduced the run time from 15 
minutes to less than a minute per step. We also explored using 
parallel hardware for further speedups. 

Section 2 of this paper discusses the constraints used and their 
effects on  system precision. Section 3 presents optimizations for 
speed and prospects for parallelism. Finally, section 4 presents 
some extrapolations on the FlDO experience. 

The FIOO system has supported experiments in other aspects of 
visual navigation, notably interest  operators, used to  pick  points to 
be tracked from image to image, and pa th  planning. The results 
have been presented elsewhere [8,9]. We found that the simple 
interest operator used in the original Cart program worked as well 
as more expensive ones, and it was retained with only slight 
changes. FlDO does incorporate a new, more flexible, path planner 
based on a grid combinatorial search and incremental path 
smoothing. 

1 . 1  Constraints 
FIDO uses a variety of constraints to improve the accuracy of its 

stereo vision and motion solutions. Most reduce the area of the 
image to be searched by the correlator. A smaller search window 
reduces the chance of finding a false makh and improves system 
performance in several ways. First, as more points are tracked 
correctly it becomes easier to identify those incorrectly tracked and 
delete them. Secondly, more points (and higher precision) improve 
the accuracy of the motion calculations [lo]. Finally, points can be 
successfully tracked through more images, and over longer 
distances, for more accurate long term navigation. 

Some of the constraints arise from the known relationship 
between the cameras and the vehicle. Other constraints Come from 
vehicle motion estimates: the image location of an object that has 
been stereo ranged on a previous step is constrained by 
approximate knowledge of the vehicle’s new position. 

We  tested FIDO using various combinations of constraints in order 
to judge their effect. We usually made a live vehicle run with the 
current best settings, and saved all the images and Position 
predictions in a file. Subsequent runs were done  off-line using this 
stored data, with different constraint settings. Such runs were 
compared for accuracy of the final calculated position, number Of 

features successfully tracked at each step, and occurrence of any 
catastrophic failures. 

1.2 Imaging  Geometry  Constraints 
These constraints are the simplest to understand and to apply. 

They depend only on camera and robot geometry, and  .they are 
applicable to stereo point matches of both new and PreviouslY 
ranged points. 

Near  and  Far  Limits. Point distances are not permitted to  be 
greater than infinity (by the real world) or less than a Certain 
distance (by the nose of the robot). This determines a maximum 
and minimum stereo disparity of the feature match. 

Epipolar  Constraint. This is the standard stereo epipolar 
constraint: if the point of  view moves purely sideways the image Of 

a point will also move sideways (in the opposite direction) but  not 
UP or down. In the real world of misaligned cameras and d is to~ed 
vidicons, the image might appear to move a little vertically, SO we 
allow Some slop (10% of the image height typical). 

1.3 Motion  Geometry 
The estimated motion of the vehicle from step to step places a 

strong constraint on point matches. It can be used either a priori to 
limit the search area within an image, or a posterior; to gauge the 
reasonableness of a match. The predicted position of the vehicle 
can also be combined with the  points tracked by vision in the 
vehicle motion calculation. FIDO uses the motion geometry 
constraints in the following 4 ways: 
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Two D Motion. We usually run  our  robot on  locally flat ground,  in 
which case  we know  it  will  not  pitch, roll, or move vertically. This 
reduces  the  problem of determining vehicle motion  from 6 degrees 
of freedom to 3, simplifying the  computation and tightening  the 
constraints. 

Reacquire  Constraint. Given the 3D location of a point  relative 
to a  previous  vehicle position, and a  dead  reckoned new position 
and heading  for the vehicle, it  is possible to  predictwhere that point 
should appear in  the new  stereo pair of images. If this constraint is 
active FlDO will use the  prediction to limit  the  stereo  matcher’s 
search. Three  user-settable variables control  the error estimates in 
robot  position and orientation, and consequently  the size of the 
search box around the predicted image position. 

Prune. When all points from a  previous  position have been 
reacquired at a new vehicle location and stereo-ranged,  there is a 
pruning  step  that  looks for points that do not move rigidly  with  the 
rest of the points. The points that do not appear to move rigidly 
have probably been tracked  incorrectly, and can  be  deleted  before 
the  least-squares  process that solves for vehicle motion. Activating 
the Prune  constraint  causes  the  predicted vehicle position  to  be 
included as  one  of the points in  the  rigidity test, perhaps  weighting 
the  selection  to  the  correctly  matched  points  rather  than  a 
coincidentally  consistent  incorrect set. 

Motion  Solution. The motion solver determines  the motion that 
minimizes the error between  where points have been seen and 
where they  should have  been  seen given  that  motion. The 
predicted vehicle position can be  included as one of the Points in 
this least-squares process,  weighted  more or  less depending on the 
assumed precision of the prediction. 

1.4 Results 
We  made several runs of the FIDO system on Neptune, with fairly 

consistent results. Data from June 24, 1984 was  most extensively 
analyzed.  On that  run  a single large obstacle was Placed  a Close 2 
meters  ahead of Neptune’s cameras, with the  destination Set to  the 
far side. It was a  tough test  for FIDO, since it required the maximum 
allowed  turn  (limited  by  the need  to  have significant  overlap  in  the 
views from  successive positions) on each step to get around  the 
obstacle and back on course. We ran FlDO with each  Constraint in 
what we thought to be  its best state, and  saved  images  and dead 
reckoning  information. Then  we  made a series Of off-line  runs On 
the stored data, varying settings and watching  the results. Several 
runs differed in only  one  parameter  from the original, a few others 
changed two or three. The last group of runs  began  with one  Using 
none  of  the constraints, followed by a series each  with Only one 
constraint on. 

Figure 6 summarizes the results. The most important measure Of 
a  run’s Success is the (program’s) calculated  position at the end of 
the run: the nearer to  the  actual (manually)  measured position, the 
better. 

Some cautionary  notes are in order.  The relative success  of  the 
run with only the far distance  constraint  is  accidental.  During  that 
run, there were  two steps where the  motion  solution was completely 
wrong  but  that by coincidence nearly offset each other. Many of 
the other  single  constraint  runs that appear  worse actually had  only 
one wild miscalculation. 

Some  of the  all-but-one  constraint  runs also  appear too  good. In 
many  of these cases the  dead-reckoning  information was 
sometimes better  than the visual tracking. The run with  no  epipolar 
constraint has a  better final position  than the run with no  reacquire 
constraint,  because, by luck,  it  tracked fewer points at the  right 

times  and relied on dead  reckoning  while  the  latter  placed  too  much 
reliance on small numbers  of tracked points. 

Based on  our experiences,  we make the  following  observations: 

0 The epipolar constraint  is  the  single most powerful 
constraint.  Turning  it off, and all the  others on, 
significantly  decreases  the minimum and average 
number of features tracked  and  the  accuracy of the 
motion  solution.  Turning  it on, with  all  others  off, 
significantly  increased  the number  of points tracked. In 
a sense, this is not surprising,  since  the  epipolar 
constraint  rules out 90% of the image, more  than any 
other constraint. 

0 NO single constraint makes the  difference  between a 
successful and a  catastrophic outcome. 

In none of the  runs was vision as  accurate at 
calculating translation as straight  dead  reckoning 
based on  motor commands, though  in  the best  runs 
vision determined the rotation more correctly.  It  would 
have been  better to use the dead reckoned  motion 
rather than  the visually determined one if the number of 
features tracked  dropped  below 6 or 7, rather than 4 
which was the threshold, at least for the level of ground 
roughness and mechanical  accuracy  in  the 
experiments. 

We noticed  that even the best runs have about  a 20% 
error in  calculated translation, always on the short side. 
We suspect  a small  camera calibration error, and 
possibly systematic errors in  representing uncertainty. 
FlDO calculated  a  point’s 3D location by projecting rays 
through the centers of the pixels .in the  stereo images, 
which  gives  a  location on the near side of the  range of 
uncertainty of distance. 

0 There  is  a  problem  in  using all the  geometric 
constraints  to cut down the search  area  since it leaves 
none for verification and pruning. If we  had  very 
accurate  motion  prediction, we wocld have to resort to 
photometry instead of geometry to  ideotify  points that 
had  been occluded or otherwise lost. 

2. Speed-up  Methods 
FIDO now takes 30 to 40 seconds per step  on  a Vax 11 1780 UndeF 

Unix.  To run  in real time, we would  have to reduce  that to about’? 
second per step. We have looked at several speed-up  techniques; 
including faster processors,  dedicated hardware, coding  hacks, 
and parallel  processing. 

Faster  General  Purpose  Computers 
Our V A X  is  about  a one-MIP (Million Instructions Per second) 

machine. It is technically  possible to get  the  required  speedup by 
simply  obtaining  a 30-MIP  or  faster  computer. Budget and logistics 
leave this as a tantalizing future possibility. 

Commercial  Array  Processors 
Buying  a  commercial array processor  is more feasible for US than 

buying  a faster  computer.  About 90 percent  of  the  runtime  in FlDO 
occurs  in image  array operations and geometric calculations, 
particularly  the  convolutions in point  matching. These are  done by 
Small pieces of code  that work  on large  amounts of data, and  are 
we!! suited to  the pipelined vector arithmetic Of available array 
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processors. We estimate, for instance,  that a 100 MIP array 
processor couid give us the  desired  factor of 30 speedup.  We've 
made  several  serious  attempts to acquire one; so far,  this  remains 
another  tantalizing  possibility. 

Coding  optimizations 
Much effort has  been  expended on speeding  up  the Vax 

implementation. We feel  there  is lrttle room  for left for significant 
improvements in a  time-shared, paged-memory  environment. The 
basic  routines,  such as the correlator and  the interest operator, fit 
all the criteria for  good  candidates  for  optimization [2]: the code is 
fairly  well  understood,  stable,  small,  and accounts  for  a  large 
amount of run time.  For  instance,  the  implementation  of the 
correlator uses  the  following coding techniques: 

e The calculations of parameters  of the  correlating 
window  are done once,  outside  the  main loop. 

.Sums and  sums of squares for consecutive columns 
and rows  are  calculated  by  Price's technique [7]. The 
next  window  total is calculated  by  adding in the  total for 
the column that  just  entered  the  window  and 
subtracting off the  total  for  the  column that just left the 
window. 

e Squares  are  calculated by table  lookup.  Since  the 
squares  are of sums  of  two  pixel  values, the  table 
needs  only 51 1 entries. 

Image  windows  are  moved  by pointer swapping,  rather 
than  by  data  transfers. 

e Loop  indices  count down to 0, since  the V A X  hardware 
has an efficient test-for-not-0-and-branch instruction. 

0 Formulas  are  rewritten to eliminate  extra calculations. 
For example, 
2 * '(imgl * img2) = 

gives a way of calculating the  sum of the  products of 
the  pixel values  by  additions (which are  cheap) and 
squares (which  can be  done  by table  lookup) rather 
than  multiplications. The individual  sums  are  also  used 
in other  parts of the calculation, so in this  case the  sum 
of products comes for free. 

Z((img1 + img2)T2) - Z(imglr2) - Z(img2t2) 

*Loop unrolling. The code in the innermost loop is 
written n times in line, rather than written once inside a 
loop that counts to n.  This  saves n  increments of  the 
counter  and  n tests  for the end of tho loop. 

o Register  use.  The  most  frequently  used  variables  are 
located in hardware  registers. 

These  programming  techniques reduce the run time of the 
correlator from 140 ms per call for a  straightforward implementation 
to 4 to 5 ms  per call. Similar  optimizations have been  performed on 
the other  tight  loops,  such as in the  interest operator and  the  image 
fine to coarse reduction routine.  The user-level  routines have  been 
optimized to the  point  that the  single  routine  that uses  the  most 
CPU time is now  an  image  unpacker. 

Dedicated  hardware 
A dedicated microcomputer running FIDO with enough  memory to 

store all the relevant  images  offered  some  hope. We tried  an 

implementation  of  the correlator  on  a IO-MHz MC68000 system, 
with all the  images held in integer  arrays.  After  eliminating all 
floating point operations  the  resulting code  still  took  29 
microseconds  per  call to the correlator, compared with 4 to 5 on the 
VAX. 

2.1 Parallelism 
There are  several  ways to break FIDO into separate  processes that 

can  run  in parallel  on different machines, including  pipelining  on 
macro  or micro scales  or  the  use of a master/slave System. 

Macro  Pipelining 
One  process  might do  the  reductions, the  next could do 

reacquires,  the next  the match.  another motion-solving, and the  last 
path  planning. This organization  improves throughput  but not the 
latency. The problem  with this method  is the sequential nature of 
FIDO. Since all the image reductions have to be finished before  the 
reacquires  can  start, all the  matches done  before  the path  planning, 
and so forth,  each  pipeline  stage  has to wait for  the previous  stage. 
Since each  step  takes  as long as on  a serial machine, and since  the 
steps  are done sequentially,  the  time to process any one  set of 
images  is the same  as on  a single  processor  system. 

Micro  Pipelining 
The  processes could  be subdivided more finely.  For  instance, 

one  processor  might do the first level of match  for one point  after 
another,  handing its results to the  process that  does the  next  level 
of match. When  matches  are  finished, the  pipeline  could be 
reconfigured  for path planning, and so on. This  approach  requires 
huge  communication  bandwidth between  processes. 

Master/slave 
This  method  has  one  master  process  and  several identical slave 

processes.  Each  slave  handles  every  image processing task: 
reduction, matching,  and  interest  operator. At  any time all  the 
slaves  work  on  the  same  task  with different data.  For  example, 
during image reduction,  each slave  reduces  part of the  image, and 
during matching  each  slave  processes its own  queue  of  points. 
The  master  process  does  tasks  that require  global knowledge such 
as path-planning or motion-solving, and coordinates the  slaves. 
This  more  flexible  organization  avoids  several  delays inherent in 
pipelines. 

We implemented  variants  of  this idea  in our Ethernet-connected 
multi-Vax  environment.  Given  the  existing  uniprocessor code,  the 
task  was  not difficult. The  slaves  required  new code  for 
communication with the  master,  but the actual  work  is done by calls 
to the old image processing routines.  The  master contains  the  old 
path planning  and  display code, and  new communication  code  and 
dispatch  tables to keep track of each  slave's  activities.  When a 
slave  completes a task  the  master  updates its dispatch  table, finds  a 
new  task  and puts the  slave to work  again.  For  instance during 
point matching  each  slave is initially  given one  point to correlate. 
When a slave  finishes its  correlation, the  master  hands it  a new 
point to find. When all the points  are handed out  the  master 
redundantly  hands out points that are  still  in process  on other 
slaves,  and  accepts the  first answer to be returned, giving some 
protection against  overloaded  or  crashed  processors. 

A version of the  system that used  several  vAxes in parallel  was 
swamped,  as  expected,  by  the  overhead  of  squeezing  images 
between  machines through  the Ethernet.  Another  version  that  used 
multiple  processes on  a  single Vax gave us some ldea of the 
performance that might be possible  if  faster  communication, 
perhaps through shared  memory,  were  available. 
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The single machine version uses the same decomposition as the 
multiple machine version, and the same general-purpose 
interprocess communication package. Because of limitations in  the 
communications package, each slave calculated its own image 
pyramid. 

2.2 Timings  for a 28-Step Run 

Single Processor 978 

One Slave 
Master 21 6 
Slave 1 626 

Five Slaves 
Master 
Slave 1 
Slave 2 
Slsve 3 
Slave 4 
Slave 5 

Notes: 

234 
403 
402 
403 
402 
400 

a The time  for the Master varies little  with the number of 
slaves. 

Without image acquisition or communication package 
overhead the time for a single slave would be about 325 
seconds  or 12 seconds per step. 

e Without image or communication overhead, and with 
the  time  for  picture  reduction shared evenly, the time 
for each of the five slaves would be 65 seconds, or 
about 2.5 seconds per step. 

a The work spreads very evenly among the slaves. With 
5 slaves, the workload is balanced to within  the 
accuracy of  our measurements. 

* If the master process did  not handle images, had zero- 
cost communication, and didn’t have to do image 
distortion  correction,  it  could  run  in 75 to Bo seconds, 
or about 3 seconds per step. 

By comparison, the  original uniprocessor system runs 
in 978 seconds, or 35 seconds per  step. With the 
advantages we  assumed above (no image handling 
overhead) it would still have taken 503 seconds, or  18 
seconds per step. 

2.3 Remarks 
Our experiments suggest that it is possible to decompose FlDO 

into a 5 to 10 fold parallel set of efficiently cooperating parts 
running on conventional processors. To realize the run times 
suggested above we would need the following: 

Shared main memory large enough to  hold at least two 
image pyramids without swapping or data packing. (2 * 
[256 + 64 + 16 + 4 + 1 + .25] = 700 KiloBytes). 

Fast interprocess communication for small messages. 

At least 5 processors. It takes 5 slave processors to 
bring  the image processing time into  the same range as 
the master process’ time. 

A device able to digitize images directly into the shared 
memory. 

Cameras with less image distortion  than  our  current 
vidicons, so image warping would not be needed. 

3. T h e  Next S y s t e m  
Some simple hardware enhancements could  improve FIDO’S 

performance. A pan mechanism for the stereo cameras would 
permit larger turns while still maintaining continuity of field of view. 
Motion and heading sensors would improve navigational accuracy 
and eliminate some catastrophic misperceptions. 

Navigational accuracy could also by improved by modifying  the 
motion estimation algorithm, The current  algorithm  reacquires 
features in new a image by searching for the features within 
windows predicted  by an a priori motion estimate. This makes poor 
use of the assumption that objects  do not move; that is, that they 
appear to move rigidly from frame to frame. Since  all  search 
windows are defined before any search begins, constraint is not 
propagated from one match to another. A seemly better approach 
is the iterative registration method [l], [3], [4]. In this method, 3-D 
feature positions  are  projected  onto a new image using an initial 
motion estimate, then  the  motion estimate is refined to optimize 
some measure of match in the image. We are currently 
experimenting with the variation proposed by Lucas I41 and  plan to 
report  empirical results in the near future. 

Two bugbears in our systems to date have been  the  calibration of 
camera and motor parameters and the represention of uncertainty 
in  the 3-D locations of perceived objects. We are considering an 
adaptive approach that calibrates  the cameras (semi-)continuously 
on the fly and adjusts the motor control parameters from 
observations of past vehicle motions. A simple technique like this 
was used successfully in an early program that drove  the  Stanford 
Cart in straight lines [5]. We are also looking at carrying  along 
uncertainties in feature locations and updating  the  uncertainty as 
new measurements are taken. Eventually, we hope  to automate the 
process to  the  point where calibration simply requires  turning  on 
the vehicle and letting it  run by itself for a while. 
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Figure 1 : Far  Limit 

Figure 2: Near Limit 

Figure 3: Epipolar  Constraint 
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Figure 4: Combined  Imaging  Constraints 

Figure 5: Reacquire Constraint 
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Figure 6: Distance  calculated as percentage of actual  distance  traveled 
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