
Experiments and Thoughts on Visual Navigation

C. Thorpe, I. Matthies, and H. Moravec

Carneyie-Mellon University

Abstract

We describe a second generation system that drives a camera-
equipped mobile robot through obstacle courses. The system,
which evolved from earlier work by Moravec [6], incorporates a new
path planner and has supported experiments with interest
operators, motion estimation algorithms, search constraints, and
speed-up methods. In this paper we concentrate on the effects of
constraint and on speed improvement. We also indicate some of
our plans for a follow-on system.

1. Introduction
F l D o is a navigation and vision system for a robot rover. Using

only stereo vision, it locates obstacles, plans a path around them,
and tracks the motion of the robot as it moves. FIDO’S main loop
repeatedly:

* picks about 40 points from one member of a stereo

stereo-ranges those points by a hierarchical correlation

0 plans a path that avoids those points
moves forward

*takes two new stereo pictures
* relocates those same points and stereo ranges them

* deduces vehicle motion from apparent point mot&

image pair

technique

again

This paper describes our experimental investigations and
improvements in FIDO’S performance. Early versions of FlDO and its
predecessor, the Stanford Cart programs, used 9-eyed stereo, took
15 minutes or more per step, and were not always reliable. By using
additional geometric constraints, we have been able to increase the
reliability while using only 2 stereo images instead of 9. With fewer
images and several optimizations, we reduced the run time from 15
minutes to less than a minute per step. We also explored using
parallel hardware for further speedups.

Section 2 of this paper discusses the constraints used and their
effects on system precision. Section 3 presents optimizations for
speed and prospects for parallelism. Finally, section 4 presents
some extrapolations on the FlDO experience.

The FIOO system has supported experiments in other aspects of
visual navigation, notably interest operators, used to pick points to
be tracked from image to image, and pa th planning. The results
have been presented elsewhere [8,9]. We found that the simple
interest operator used in the original Cart program worked as well
as more expensive ones, and it was retained with only slight
changes. FlDO does incorporate a new, more flexible, path planner
based on a grid combinatorial search and incremental path
smoothing.

1 . 1 Constraints
FIDO uses a variety of constraints to improve the accuracy of its

stereo vision and motion solutions. Most reduce the area of the
image to be searched by the correlator. A smaller search window
reduces the chance of finding a false makh and improves system
performance in several ways. First, as more points are tracked
correctly it becomes easier to identify those incorrectly tracked and
delete them. Secondly, more points (and higher precision) improve
the accuracy of the motion calculations [lo]. Finally, points can be
successfully tracked through more images, and over longer
distances, for more accurate long term navigation.

Some of the constraints arise from the known relationship
between the cameras and the vehicle. Other constraints Come from
vehicle motion estimates: the image location of an object that has
been stereo ranged on a previous step is constrained by
approximate knowledge of the vehicle’s new position.

We tested FIDO using various combinations of constraints in order
to judge their effect. We usually made a live vehicle run with the
current best settings, and saved all the images and Position
predictions in a file. Subsequent runs were done off-line using this
stored data, with different constraint settings. Such runs were
compared for accuracy of the final calculated position, number Of

features successfully tracked at each step, and occurrence of any
catastrophic failures.

1.2 Imaging Geometry Constraints
These constraints are the simplest to understand and to apply.

They depend only on camera and robot geometry, and .they are
applicable to stereo point matches of both new and PreviouslY
ranged points.

Near and Far Limits. Point distances are not permitted to be
greater than infinity (by the real world) or less than a Certain
distance (by the nose of the robot). This determines a maximum
and minimum stereo disparity of the feature match.

Epipolar Constraint. This is the standard stereo epipolar
constraint: if the point of view moves purely sideways the image Of

a point will also move sideways (in the opposite direction) but not
UP or down. In the real world of misaligned cameras and d is to~ed
vidicons, the image might appear to move a little vertically, SO we
allow Some slop (10% of the image height typical).

1.3 Motion Geometry
The estimated motion of the vehicle from step to step places a

strong constraint on point matches. It can be used either a priori to
limit the search area within an image, or a posterior; to gauge the
reasonableness of a match. The predicted position of the vehicle
can also be combined with the points tracked by vision in the
vehicle motion calculation. FIDO uses the motion geometry
constraints in the following 4 ways:

CH2152-7/85/0000/0830$01 .OO 0 1985 IEEE 830

Two D Motion. We usually run our robot on locally flat ground, in
which case we know it will not pitch, roll, or move vertically. This
reduces the problem of determining vehicle motion from 6 degrees
of freedom to 3, simplifying the computation and tightening the
constraints.

Reacquire Constraint. Given the 3D location of a point relative
to a previous vehicle position, and a dead reckoned new position
and heading for the vehicle, it is possible to predictwhere that point
should appear in the new stereo pair of images. If this constraint is
active FlDO will use the prediction to limit the stereo matcher’s
search. Three user-settable variables control the error estimates in
robot position and orientation, and consequently the size of the
search box around the predicted image position.

Prune. When all points from a previous position have been
reacquired at a new vehicle location and stereo-ranged, there is a
pruning step that looks for points that do not move rigidly with the
rest of the points. The points that do not appear to move rigidly
have probably been tracked incorrectly, and can be deleted before
the least-squares process that solves for vehicle motion. Activating
the Prune constraint causes the predicted vehicle position to be
included as one of the points in the rigidity test, perhaps weighting
the selection to the correctly matched points rather than a
coincidentally consistent incorrect set.

Motion Solution. The motion solver determines the motion that
minimizes the error between where points have been seen and
where they should have been seen given that motion. The
predicted vehicle position can be included as one of the Points in
this least-squares process, weighted more or less depending on the
assumed precision of the prediction.

1.4 Results
We made several runs of the FIDO system on Neptune, with fairly

consistent results. Data from June 24, 1984 was most extensively
analyzed. On that run a single large obstacle was Placed a Close 2
meters ahead of Neptune’s cameras, with the destination Set to the
far side. It was a tough test for FIDO, since it required the maximum
allowed turn (limited by the need to have significant overlap in the
views from successive positions) on each step to get around the
obstacle and back on course. We ran FlDO with each Constraint in
what we thought to be its best state, and saved images and dead
reckoning information. Then we made a series Of off-line runs On
the stored data, varying settings and watching the results. Several
runs differed in only one parameter from the original, a few others
changed two or three. The last group of runs began with one Using
none of the constraints, followed by a series each with Only one
constraint on.

Figure 6 summarizes the results. The most important measure Of
a run’s Success is the (program’s) calculated position at the end of
the run: the nearer to the actual (manually) measured position, the
better.

Some cautionary notes are in order. The relative success of the
run with only the far distance constraint is accidental. During that
run, there were two steps where the motion solution was completely
wrong but that by coincidence nearly offset each other. Many of
the other single constraint runs that appear worse actually had only
one wild miscalculation.

Some of the all-but-one constraint runs also appear too good. In
many of these cases the dead-reckoning information was
sometimes better than the visual tracking. The run with no epipolar
constraint has a better final position than the run with no reacquire
constraint, because, by luck, it tracked fewer points at the right

times and relied on dead reckoning while the latter placed too much
reliance on small numbers of tracked points.

Based on our experiences, we make the following observations:

0 The epipolar constraint is the single most powerful
constraint. Turning it off, and all the others on,
significantly decreases the minimum and average
number of features tracked and the accuracy of the
motion solution. Turning it on, with all others off,
significantly increased the number of points tracked. In
a sense, this is not surprising, since the epipolar
constraint rules out 90% of the image, more than any
other constraint.

0 NO single constraint makes the difference between a
successful and a catastrophic outcome.

In none of the runs was vision as accurate at
calculating translation as straight dead reckoning
based on motor commands, though in the best runs
vision determined the rotation more correctly. It would
have been better to use the dead reckoned motion
rather than the visually determined one if the number of
features tracked dropped below 6 or 7, rather than 4
which was the threshold, at least for the level of ground
roughness and mechanical accuracy in the
experiments.

We noticed that even the best runs have about a 20%
error in calculated translation, always on the short side.
We suspect a small camera calibration error, and
possibly systematic errors in representing uncertainty.
FlDO calculated a point’s 3D location by projecting rays
through the centers of the pixels .in the stereo images,
which gives a location on the near side of the range of
uncertainty of distance.

0 There is a problem in using all the geometric
constraints to cut down the search area since it leaves
none for verification and pruning. If we had very
accurate motion prediction, we wocld have to resort to
photometry instead of geometry to ideotify points that
had been occluded or otherwise lost.

2. Speed-up Methods
FIDO now takes 30 to 40 seconds per step on a Vax 11 1780 UndeF

Unix. To run in real time, we would have to reduce that to about’?
second per step. We have looked at several speed-up techniques;
including faster processors, dedicated hardware, coding hacks,
and parallel processing.

Faster General Purpose Computers
Our V A X is about a one-MIP (Million Instructions Per second)

machine. It is technically possible to get the required speedup by
simply obtaining a 30-MIP or faster computer. Budget and logistics
leave this as a tantalizing future possibility.

Commercial Array Processors
Buying a commercial array processor is more feasible for US than

buying a faster computer. About 90 percent of the runtime in FlDO
occurs in image array operations and geometric calculations,
particularly the convolutions in point matching. These are done by
Small pieces of code that work on large amounts of data, and are
we!! suited to the pipelined vector arithmetic Of available array

83 1

processors. We estimate, for instance, that a 100 MIP array
processor couid give us the desired factor of 30 speedup. We've
made several serious attempts to acquire one; so far, this remains
another tantalizing possibility.

Coding optimizations
Much effort has been expended on speeding up the Vax

implementation. We feel there is lrttle room for left for significant
improvements in a time-shared, paged-memory environment. The
basic routines, such as the correlator and the interest operator, fit
all the criteria for good candidates for optimization [2]: the code is
fairly well understood, stable, small, and accounts for a large
amount of run time. For instance, the implementation of the
correlator uses the following coding techniques:

e The calculations of parameters of the correlating
window are done once, outside the main loop.

.Sums and sums of squares for consecutive columns
and rows are calculated by Price's technique [7]. The
next window total is calculated by adding in the total for
the column that just entered the window and
subtracting off the total for the column that just left the
window.

e Squares are calculated by table lookup. Since the
squares are of sums of two pixel values, the table
needs only 51 1 entries.

Image windows are moved by pointer swapping, rather
than by data transfers.

e Loop indices count down to 0, since the V A X hardware
has an efficient test-for-not-0-and-branch instruction.

0 Formulas are rewritten to eliminate extra calculations.
For example,
2 * '(imgl * img2) =

gives a way of calculating the sum of the products of
the pixel values by additions (which are cheap) and
squares (which can be done by table lookup) rather
than multiplications. The individual sums are also used
in other parts of the calculation, so in this case the sum
of products comes for free.

Z((img1 + img2)T2) - Z(imglr2) - Z(img2t2)

*Loop unrolling. The code in the innermost loop is
written n times in line, rather than written once inside a
loop that counts to n. This saves n increments of the
counter and n tests for the end of tho loop.

o Register use. The most frequently used variables are
located in hardware registers.

These programming techniques reduce the run time of the
correlator from 140 ms per call for a straightforward implementation
to 4 to 5 ms per call. Similar optimizations have been performed on
the other tight loops, such as in the interest operator and the image
fine to coarse reduction routine. The user-level routines have been
optimized to the point that the single routine that uses the most
CPU time is now an image unpacker.

Dedicated hardware
A dedicated microcomputer running FIDO with enough memory to

store all the relevant images offered some hope. We tried an

implementation of the correlator on a IO-MHz MC68000 system,
with all the images held in integer arrays. After eliminating all
floating point operations the resulting code still took 29
microseconds per call to the correlator, compared with 4 to 5 on the
VAX.

2.1 Parallelism
There are several ways to break FIDO into separate processes that

can run in parallel on different machines, including pipelining on
macro or micro scales or the use of a master/slave System.

Macro Pipelining
One process might do the reductions, the next could do

reacquires, the next the match. another motion-solving, and the last
path planning. This organization improves throughput but not the
latency. The problem with this method is the sequential nature of
FIDO. Since all the image reductions have to be finished before the
reacquires can start, all the matches done before the path planning,
and so forth, each pipeline stage has to wait for the previous stage.
Since each step takes as long as on a serial machine, and since the
steps are done sequentially, the time to process any one set of
images is the same as on a single processor system.

Micro Pipelining
The processes could be subdivided more finely. For instance,

one processor might do the first level of match for one point after
another, handing its results to the process that does the next level
of match. When matches are finished, the pipeline could be
reconfigured for path planning, and so on. This approach requires
huge communication bandwidth between processes.

Master/slave
This method has one master process and several identical slave

processes. Each slave handles every image processing task:
reduction, matching, and interest operator. At any time all the
slaves work on the same task with different data. For example,
during image reduction, each slave reduces part of the image, and
during matching each slave processes its own queue of points.
The master process does tasks that require global knowledge such
as path-planning or motion-solving, and coordinates the slaves.
This more flexible organization avoids several delays inherent in
pipelines.

We implemented variants of this idea in our Ethernet-connected
multi-Vax environment. Given the existing uniprocessor code, the
task was not difficult. The slaves required new code for
communication with the master, but the actual work is done by calls
to the old image processing routines. The master contains the old
path planning and display code, and new communication code and
dispatch tables to keep track of each slave's activities. When a
slave completes a task the master updates its dispatch table, finds a
new task and puts the slave to work again. For instance during
point matching each slave is initially given one point to correlate.
When a slave finishes its correlation, the master hands it a new
point to find. When all the points are handed out the master
redundantly hands out points that are still in process on other
slaves, and accepts the first answer to be returned, giving some
protection against overloaded or crashed processors.

A version of the system that used several vAxes in parallel was
swamped, as expected, by the overhead of squeezing images
between machines through the Ethernet. Another version that used
multiple processes on a single Vax gave us some ldea of the
performance that might be possible if faster communication,
perhaps through shared memory, were available.

832

The single machine version uses the same decomposition as the
multiple machine version, and the same general-purpose
interprocess communication package. Because of limitations in the
communications package, each slave calculated its own image
pyramid.

2.2 Timings for a 28-Step Run

Single Processor 978

One Slave
Master 21 6
Slave 1 626

Five Slaves
Master
Slave 1
Slave 2
Slsve 3
Slave 4
Slave 5

Notes:

234
403
402
403
402
400

a The time for the Master varies little with the number of
slaves.

Without image acquisition or communication package
overhead the time for a single slave would be about 325
seconds or 12 seconds per step.

e Without image or communication overhead, and with
the time for picture reduction shared evenly, the time
for each of the five slaves would be 65 seconds, or
about 2.5 seconds per step.

a The work spreads very evenly among the slaves. With
5 slaves, the workload is balanced to within the
accuracy of our measurements.

* If the master process did not handle images, had zero-
cost communication, and didn’t have to do image
distortion correction, it could run in 75 to Bo seconds,
or about 3 seconds per step.

By comparison, the original uniprocessor system runs
in 978 seconds, or 35 seconds per step. With the
advantages we assumed above (no image handling
overhead) it would still have taken 503 seconds, or 18
seconds per step.

2.3 Remarks
Our experiments suggest that it is possible to decompose FlDO

into a 5 to 10 fold parallel set of efficiently cooperating parts
running on conventional processors. To realize the run times
suggested above we would need the following:

Shared main memory large enough to hold at least two
image pyramids without swapping or data packing. (2 *
[256 + 64 + 16 + 4 + 1 + .25] = 700 KiloBytes).

Fast interprocess communication for small messages.

At least 5 processors. It takes 5 slave processors to
bring the image processing time into the same range as
the master process’ time.

A device able to digitize images directly into the shared
memory.

Cameras with less image distortion than our current
vidicons, so image warping would not be needed.

3. T h e Next S y s t e m
Some simple hardware enhancements could improve FIDO’S

performance. A pan mechanism for the stereo cameras would
permit larger turns while still maintaining continuity of field of view.
Motion and heading sensors would improve navigational accuracy
and eliminate some catastrophic misperceptions.

Navigational accuracy could also by improved by modifying the
motion estimation algorithm, The current algorithm reacquires
features in new a image by searching for the features within
windows predicted by an a priori motion estimate. This makes poor
use of the assumption that objects do not move; that is, that they
appear to move rigidly from frame to frame. Since all search
windows are defined before any search begins, constraint is not
propagated from one match to another. A seemly better approach
is the iterative registration method [l], [3], [4]. In this method, 3-D
feature positions are projected onto a new image using an initial
motion estimate, then the motion estimate is refined to optimize
some measure of match in the image. We are currently
experimenting with the variation proposed by Lucas I41 and plan to
report empirical results in the near future.

Two bugbears in our systems to date have been the calibration of
camera and motor parameters and the represention of uncertainty
in the 3-D locations of perceived objects. We are considering an
adaptive approach that calibrates the cameras (semi-)continuously
on the fly and adjusts the motor control parameters from
observations of past vehicle motions. A simple technique like this
was used successfully in an early program that drove the Stanford
Cart in straight lines [5]. We are also looking at carrying along
uncertainties in feature locations and updating the uncertainty as
new measurements are taken. Eventually, we hope to automate the
process to the point where calibration simply requires turning on
the vehicle and letting it run by itself for a while.

A c k n o w l e d g e m e n t

This work has been supported by the Office of Naval Research
under contract number NO001 4-81 -K-0503.

83.3

References

1. H.G. Barrow, J.M. Tenenbaum, R.C. Bolles, H.C. Wolf.
Parametric Correspondence and Chamfer Matching. IJCAI-5, 1977.
2. Jon Louis Bentley. Software Series. Volume : Writing Efficient
Programs. Prentice-Hall, 1982.
3. D.G. Lowe. Solving for the Parameters of Object Models from
Image Descriptions. Proc. ARPA IUS Workshop, April, 1980.
4. B.D. Lucas, T. Kanade. Optical Navigation by the Method of
Differences. Proc. ARPA IUS Workshop, 1984.
5. Moravec, H. P. Towards Automatic Visual Obstacle Avoidance.
The 5th International Joint Conference on Artificial Intelligence,
MIT, Cambridge, Massachusetts, IJCAI, ugust, 1977, pp. 584.

6. H.P. Moravec. Obstacle Avoidance and Navigation in the Real
World by a Seeing Robot Rover. Ph.D. Th., Stanford, April 1980.
7. K.E. Price. Change Detection and Analysis in Multi-spectral
Images. Ph.D. Th., Carnegie-Mellon University, Department of
Computer Science, 1977.
8. C. Thorpe. An Analysis of Interest Operators for FIDO.
Proceedings of fEEE Workshop on Computer Vision:
Representation and Control, 1984.
9. C. Thorpe. Path Relaxation: Path Planning for a Mobile Robot.
Proceedings of AAAI-84, 1984.
10. Roger Tsai and Thomas Huang. Analysis of 3-D Time Varying
Scene. Tech. Rept. RC 9479 (#41904), IBM Watson Research
Center, July, 82.

Figure 1 : Far Limit

Figure 2: Near Limit

Figure 3: Epipolar Constraint

834

Figure 4: Combined Imaging Constraints

Figure 5: Reacquire Constraint

-75 -50 -16 0 25 50 I5 1
Figure 6: Distance calculated as percentage of actual distance traveled

835

