EXPERIMENTS IN ECOLOGY

Their logical design and interpretation using analysis of variance

A. J. UNDERWOOD

Institute of Marine Ecology, University of Sydney

Technische Universität Darmstadt FACHBEREICH 10 — BIOLOGIE — Bibliothek — Schnittspahnstraße 10 D-64287 Darmstadt

Inv.-Nr. 14141

Contents

Ack	nowle	edgements I	oage xvii			
1	Introduction					
2	A fra	amework for investigating biological patterns and	-			
	processes					
	2.1 Introduction					
	2.2 Observations					
	2.3	Models, theories, explanations	10			
		2.3.1 Models of physiological stress	10			
		2.3.2 Models based on competition	10			
		2.3.3 Grazing models	10			
		2.3.4 Models to do with hazards	11			
		2.3.5 Models of failure of recruitment	11			
	2.4	Numerous competing models	12			
	2.5	Hypotheses, predictions	13			
	2.6 Null hypotheses					
	2.7 Experiments and their interpretation					
	2.8 What to do next?					
	2.9	Measurements, gathering data and a logical structure	19			
	2.10	A consideration: why are you measuring things?	21			
	2.11	Conclusion: a plea for more thought	22			
3	Рорі	Populations, frequency distributions and samples				
	3.1	Introduction	24			
	3.2	Variability in measurements	24			
	3.3	Observations and measurements as frequency				
	distributions					

~

Contents

3.4 Defining the population to be observed							
	3.5	The need for samples	30				
	3.6	The location parameter	30				
	3.7	Sample estimate of the location parameter					
	3.8	The dispersion parameter					
	3.9	Sample estimate of the dispersion parameter					
	3.10	Degrees of freedom	37				
	3.11	Representative sampling and accuracy of samples	38				
	3.12	2 Other useful parameters	4 4				
		3.12.1 Skewness	44				
		3.12.2 Kurtosis	47				
4	Stat	tistical tests of null hypotheses	50				
	4.1	Why a statistical test?	50				
	4.2	An example using coins	51				
	4.3	The components of a statistical test	55				
		4.3.1 Null hypothesis	55				
		4.3.2 Test statistic	56				
		4.3.3 Region of rejection and critical value	56				
	4.4	Type I error or rejection of a true null hypothesis	57				
	4.5	Statistical test of a theoretical biological example	58				
		4.5.1 Transformation of a normal distribution to the					
		standard normal distribution	59				
	4.6	One- and two-tailed null hypotheses	62				
5	Stat	tistical tests on samples	65				
	5.1	Repeated sampling	65				
	5.2	The standard error from the normal distribution of					
		sample means	70				
	5.3	Confidence intervals for a sampled mean	70				
	5.4	Precision of a sample estimate of the mean	73				
	5.5	A contrived example of use of the confidence interval					
		of sampled means	74				
	5.6	Student's <i>t</i> -distribution	76				
	5.7	Increasing precision of sampling					
		5.7.1 The chosen probability used to construct the					
		confidence interval	78				
		5.7.2 The sample size (n)	78				
		5.7.3 The variance of the population (σ^2)	80				
	5.8	Description of sampling	81				

х

Contents					
	5.9	Student's <i>t</i> -test for a mensurative hypothesis	82		
	5.10	Goodness-of-fit, mensurative experiments and logic	84		
	5.11	Type I and Type II errors in relation to a null			
		hypothesis	87		
	5.12	Determining the power of a simple statistical test	91		
		5.12.1 Probability of Type I error	92		
		5.12.2 Size of experiment (n)	93.		
		5.12.3 Variance of the population	95		
	5.12.4 'Effect size'				
	5.13	Power and alternative hypotheses	97		
6	Simp	le experiments comparing the means of two populations	100		
	6.1	Paired comparisons	100		
	6.2	Confounding and lack of controls	104		
	6.3	Unpaired experiments	106		
	6.4	Standard error of the difference between two means	107		
		6.4.1 Independence of samples	108		
		6.4.2 Homogeneity of variances	109		
	6.5	Allocation of sample units to treatments	114		
	6.6	Interpretation of a simple ecological experiment	118		
	6.7 Power of an experimental comparison of two				
		populations	124		
	6.8	Alternative procedures	128		
		6.8.1 Binomial (sign) test for paired data	128		
6.8.2 Other alternative procedures		6.8.2 Other alternative procedures	130		
	6.9 Are experimental comparisons of only two population				
		useful?	132		
		6.9.1 The wrong population is being sampled	132		
		6.9.2 Modifications to the <i>t</i> -test to compare more			
		than two populations	137		
		6.9.3 Conclusion	139		
7	Ana	llysis of variance			
	7.1	Introduction	140		
	7.2	Data collected to test a single-factor null hypothesis	141		
	7.3	Partitioning of the data: the analysis of variation	143		
	7.4	A linear model	145		
	7.5	What do the sums of squares measure?	149		
	7.6	Degrees of freedom	152		
	7.7	Mean squares and test statistic	153		

ι ζ

.

e.

	7.8	Solution to some problems raised earlier 👋 🏂	154				
	7.9	So what happens with real data?	155				
	7.10 Unbalanced data 7.11 Machine formulae						
	7.11	Machine formulae	157				
	7.12	2 Interpretation of the result					
	7.13	Assumptions of analysis of variance					
	7.14	Independence of data					
		7.14.1 Positive correlation within samples	160				
		7.14.2 Negative correlation within samples	166				
		7.14.3 Negative correlation among samples	168				
		7.14.4 Positive correlation among samples	172				
	7.15	Dealing with non-independence	179				
	7.16	Heterogeneity of variances	181				
		7.16.1 Tests for heterogeneity of variances	183				
	7.17	Quality control	184				
	7.18	Transformations of data	187				
		7.18.1 Square-root transformation of counts (or					
		Poisson data)	188				
		7.18.2 Log transformation for rates, ratios,					
		concentrations and other data	189				
		7.18.3 Arc-sin transformation of percentages and					
		proportions	192				
		7.18.4 No transformation is possible	192				
	7.19	Normality of data	194				
	7.20	The summation assumption	195				
8	Mor	e analysis of variance	198				
	8.1	Fixed or random factors	198				
	8.2	Interpretation of fixed or random factors					
	8.3	Power of an analysis of a fixed factor	209				
		8.3.1 Non-central F-ratio and power	209				
		8.3.2 Influences of α , n , σ_k^2 and A_i values	211				
		8.3.3 Construction of an alternative hypothesis	214				
	8.4	Power of an analysis of a random factor	216				
		8.4.1 Central F-ratios and power	216				
		8.4.2 Influences of α , n , σ_e^2 , σ_A^2 and a	218				
		8.4.3 Construction of an alternative hypothesis	220				
	8.5	Alternative analysis of ranked data	223				
	8.6 Multiple comparisons to identify the alternative						
		hypothesis	224				

~

(

Contents				xiii		
	8.6.1 Introduction					
		8.6.2	Problems of excessive Type I error	225		
		8.6.3	A priori versus a posteriori comparisons	226		
		8.6.4	A priori procedures	227		
		8.6.5	A posteriori comparisons	234		
			· ·	÷		
9	Nest	ed anal	yses of variance	243		
	9.1	Introd	uction and need	243		
	9.2	Hurlbe	ert's 'pseudoreplication'	245		
	9.3	Partiti	oning of the data	245		
	9.4	The lir	near model	250		
	9.5	Degree	es of freedom and mean squares	254		
	9,6	Tests a	and interpretation: what do the nested bits			
		mea	n?	259		
		9.6.1	F-ratio of appropriate mean squares	259		
		9.6.2	Solution to confounding	260		
		9.6.3	Multiple comparisons	261		
		9.6.4	Variability among replicated units	261		
	9.7	Poolin	g of nested components	268		
		9.7.1	Rationale and procedure	268		
		9.7.2	Pooling, Type II and Type I errors	269		
	9.8	Balanc	ed sampling	273		
	9.9	Nested	l analyses and spatial pattern	275		
9.10 Nested analysis and temporal pattern				279		
9.11 Cost-benefit optimization				283		
9.12 Calculation of power				289		
	9.13	Residu	al variance and an 'error' term	291		
10	Fact	orial ex	periments	296		
	10.1	Introd	uction	296		
	10.2	Partiti	oning of variation when there are two			
		expe	erimental factors	300		
	10.3	Appro	priate null hypotheses for a two-factor			
		expe	eriment	305		
	10.4 A linear model and estimation of components by mea			204		
	10.5	Squa Where A	nus la a factorial experiment?	210		
	10.5	1051	Information about interactions	212		
		10,3,1	Efficiency and cost effectiveness of fectorial	515		
		10.3.2	Enciency and cost-enectiveness of factorial	216		
			designs	510		

	10.6	Meaning and interpretation of interactions	318		
	10.7	7 Interactions of fixed and random factors			
	10.8	Multiple comparisons for two factors	331		
		10.8.1 When there is a significant interaction	331		
		10.8.2 When there is no significant interaction	331		
		10.8.3 Control of experiment-wise probability of			
		Type I error	333		
	10.9	Three or more factors	335		
	10.10	Interpretation of interactions among three factors	335		
	10.11	.11 Power and detection of interactions			
	10.12	10.12 Spatial replication of ecological experiments			
	10.13 What to do with a mixed model				
	10.14 Problems with power in a mixed analysis				
	10.15 Magnitudes of effects of treatments				
		10.15.1 Magnitudes of effects of fixed treatments	348		
		10.15.2 Some problems with such measures	348		
		10.15.3 Magnitudes of components of variance of	~		
		random treatments	351		
	10.16	Problems with estimates of effects	355		
		10.16.1 Summation and interactions	355		
		10.16.2 Comparisons among experiments or areas	356		
		10.16.3 Conclusions on magnitudes of effects	357		
		•			
11	Const	ruction of any analysis from general principles	358		
	11.1	General procedures	358		
	11.2	Constructing the linear model	361		
	11.3	Calculating the degrees of freedom			
	11.4	Mean square estimates and F-ratios			
	11.5	Designs seen before	370		
		11.5.1 Designs with two factors	370		
		11.5.2 Designs with three factors	370		
	11.6	Construction of sums of squares using orthogonal			
	designs				
	11.7	Post hoc pooling	375		
	11.8	Quasi F-ratios			
	11.9	Multiple comparisons	378		
	11.10	Missing data and other practicalities	380		
		11.10.1 Loss of individual replicates	382		
		11.10.2 Missing sets of replicates	383		

~

Cor	itents		XV
12	Some	common and some particular experimental designs	385
	12.1	Unreplicated randomized blocks design	385
	12.2	Tukey's test for non-additivity	389
	12.3	Split-plot designs	391 -
	12.4	Latin squares	401
	12.5	Unreplicated repeated measures	403
	12.6	Asymmetrical controls: one factor	408
	12.7	Asymmetrical controls: fixed factorial designs	409
	12.8	Problems with experiments on ecological	
		competition	414
	12.9	Asymmetrical analyses of random factors in	
		environmental studies	415
13	Analy	yses involving relationships among variables	419
	13.1	Introduction to linear regression	419
	13.2	Tests of null hypotheses about regressions	422
	13.3	Assumptions underlying regression	424
		13.3.1 Independence of data at each X	425
		13.3.2 Homogeneity of variances at each X	427
		13.3.3 X values are not fixed	428
		13.3.4 Normality of errors in Y	429
	13.4	Analysis of variance and regression	431
	13.5	How good is the regression?	431
	13.6	Multiple regressions	434
	13.7	Polynomial regressions	439
	13.8	Other, non-linear regressions	444
	13.9	Introduction to analysis of covariance	444
	13.10	The underlying models for covariance	447
		13.10.1 Model 1: Regression in each treatment	448
		13.10.2 Model 2: A common regression in each	
		treatment	449
		13.10.3 Model 3: The total regression, all data	
		combined	454
	13.11	The procedures: making adjustments	457
	13.12	Interpretation of the analysis	462
	13.13	The assumptions needed for an analysis of covariance	464
		13.13.1 Assumptions in regressions	464
		13.13.2 Assumptions in analysis of variance	465
		13.13.3 Assumptions specific to an analysis of	
		covariance	466

• •

~

 \sim

<

۰

13.14 Alternatives when regressions differ				471	
		13.14.1	A two-factor scenario	໌ 47 1	
		13.14.2	The Johnson–Neyman technique	473	
		13.14.3	Comparisons of regressions	474	
	13.15 Extensions of analysis of covariance to other designs				
		13.15.1	More than one covariate	475	
		13.15.2	Non-linear relationships	476	
		13.15.3	More than one experimental factor	476	
14	Concl	usions: w	here to from here?	478	
	14.1	Be logica	al, be eco-logical	478	
14.2 Alternative models and hypotheses			ive models and hypotheses	480	
14.3 Pilot experiments: all experiments are preliminary				481	
	14.4	Repeate	d experimentation	481	
	14.5	Criticism	ns and the growth of knowledge	484	
D ((· · ·	49.0	
Refe	References				
Aut	Author index				
Sub	Subject index 4				

. .

p: