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Abstract

In this paper we investigate large scale view based lo-

calization in urban areas using panoramic images. The pre-

sented approach utilizes global gist descriptor computed for

portions of panoramic images and a simple similarity mea-

sure between two panoramas, which is robust to changes

in vehicle orientation, while traversing the same areas in

different directions. The global gist feature [14] has been

demonstrated previously to be a very effective conventional

image descriptor, capturing the basic structure of different

types of scenes in a very compact way. We present an ex-

tensive experimental validation of our panoramic gist ap-

proach on a large scale Street View data set of panoramic

images for place recognition or topological localization.

1. Introduction

Recent interest in large scale acquisition of visual im-

agery of large urban areas gives rise to many novel appli-

cations and also needs to develop automated methods for

organizing, geo-registering and annotating the data. In this

paper we investigate qualitative view based localization in

large urban areas using panoramic views. Given a database

of reference panoramas covering a large urban area, and

a new query view, we would like to find its nearest refer-

ence view in the database. This problem has been typically

addressed in the last years using image representations in

terms of scale invariant features [15, 5, 3, 8] computed ei-

ther over individual views or the entire panoramas. The

large scale issues have been addressed using various forms

of visual vocabularies and inverted file index. Some ap-

proaches, e.g. [8], additionally use GPS measurements to

constrain the image similarity evaluation. However, GPS

measurements are not always accurate or available and they

do not provide orientation information. Therefore, we in-

tend to investigate approaches based on vision only, where

indeed GPS restrictions can easily be included if available.

Scale-invariant features have been shown to be very ef-

fective and to achieve good performance rates in view based
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localization. As image similarity measure, the most com-

monly used models adopted the so called bags of features

models, where in initial voting the spatial relationships be-

tween features were not considered. It has been also shown

[12, 5] that the performance of these approaches depends on

the size of the visual vocabulary. These factors are likely to

be emphasized further with the increasing scale of the prob-

lem and large variations in considered visual appearance.

In this paper we investigate alternative image based lo-

calization using global gist descriptor proposed by [14]

adapted to omni-directional views. We postulate that to

achieve accurate view based localization at large scales in

the absence of other sensors such as GPS, the data has to

be organized based on simple computable notions of visual

similarity. The gist descriptor introduced in [13] has been

shown to suitably model semantically meaningful and vi-

sually similar scenes. Although the descriptor is not very

discriminative, the attractive feature of this representation

is that it is very compact, fast to compute and that roughly

encodes spatial information. The gist descriptor enables us

to obtain a small number of visually similar clusters of alike

locations, e.g., large open areas, suburban areas, large high-

rise buildings etc. Each of these visually similar areas could

then be endowed with its own visual vocabulary.

We demonstrate the performance of this representation

for large scale place recognition in urban areas, focusing

on two tasks: 1) given gist representation of a conventional

view, we adapt it for panoramas and show how effective

it is to find the nearest panorama in a reference database;

2) given gist representation of each panorama in a sequence,

we endow it with a topological model and evaluate the ef-

fectiveness of the gist panorama for topological mapping.

Figure 1. Street view data set of panoramic views used, dataset-L.



2. Related work

Our work is closely related to recent trends in large scale

vision based localization and topological mapping using

omni-directional views. We briefly review some represen-

tative related works from each of them.

Large Scale Location Recognition. Several approaches

attempted recently to tackle the problem of location recog-

nition in large scale. These advances are mostly facilitated

by the design and matching of scale and viewpoint invari-

ant features [9] and large scale nearest neighbour methods

[12] or classification methods which use large number of

features [8]. In the feature based setting, the central prob-

lem of location recognition is the following: given a current

query view, find the nearest view in the database of refer-

ence images. In [3] the scalability and speed were achieved

by using a version of vocabulary tree along with inverted

file index, used to retrieve the top k-views with the closest

visual word signatures. In [8] vocabulary trees and random-

ized trees are used to retrieve the top k-views, which were

limited only to the views which were in the vicinity of the

current location determined by GPS.

In this work we would like to explore the efficiency and

suitability of the gist descriptor in retrieving the closest

views of street scenes. We adjust the gist representation

to be suitably adapted to deal with panoramic images, en-

abling the full 360o panoramic image localization, assum-

ing a discrete set of orientations of the vehicle.

Topological localization. Localization using omni-

directional images has been shown very effective in the

context of topological localization. The wide field of view

allows the representation of the appearance of a certain

place (topological location) with a minimal amount of

reference views. Besides, omnidirectional images provide

bigger intersection areas between views, and therefore

facilitate the feature correspondence search. Topological

maps, or visual memories, based on different types of

omnidirectional vision sensors have been used already for

several years for environment representation and navigation

in robotics framework [6, 10, 17] with very good results.

We find works for both offline and online topological map

building [7, 19], topological localization based on local

features indoors (room recognition) [21] or outdoors [20]

or hierarchical approaches to integrate global and local

features similarity evaluation [11].

Works on place or scene recognition using conventional

images such as [4, 16, 2] are also related to our location

recognition goals.

3. Panorama Gist

Street panoramas. We create one panoramic image by

warping the radially undistorted perspective images onto
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Figure 2. Panorama acquisition device. (a) Point Grey LadyBug

camera. (b) A panoramic piecewise perspective image as an outer

surface of the prism.

the sphere assuming one virtual optical center. One vir-

tual optical center is a reasonable assumption considering

that the structure around the sensor is very far compared to

the discrepancy between optical centers of all the cameras.

The sphere is backprojected into a quadrangular prism to

get a piecewise perspective panoramic image, see Fig. 2.

Our panorama is composed then of four perspective images

covering in total 360o horizontally and 127o vertically. We

do not use the top camera as there is not much information.

The panorama is then represented by 4 views (front, left,

back and right) which we will refer to as F, L, B, R in the

later text. We discard the bottom part of all views, to convert

them into squared views, discarding the areas of the images

that captured parts of the car acquiring the panoramas.

3.1. The gist descriptor

The gist descriptor [13, 14] is a global descriptor of an

image that represents the dominant spatial structures of the

scene in the image. Each image is represented by a 320 di-

mensional vector (per color band). The feature vector corre-

sponds to the mean response to steerable filters at different

scales and orientations computed over 4 x 4 sub-windows.

For a more intuitive idea of what this descriptor encloses,

see the clustering results and average images obtained when

clustering gist values from a big set of outdoor images,

shown later in Figs. 4, 5. The advantage of this descrip-

tor is that it is very compact and fast to compute. The gist

has been shown effective in holistic classifications of scenes

into categories containing tall buildings, streets, open areas,

highways and mountains etc [18] and has been used effec-

tively for retrieving nearest neighbors from large scale im-

age databases.

In order to obtain the gist descriptor for the entire

panorama, we estimate the standard gist descriptor for each

of the 4 views and subset of reference views. We then quan-

tize the space of all descriptors to build a vocabulary of gist

words and later on represent each view by an index of the

closest gist word obtained in our gist vocabulary. The fi-

nal gist descriptor includes then 4 indexes of closest visual

words in the gist vocabulary.

3.2. Gist vocabulary

The motivation for quantizing the space of gist descrip-

tors is two fold. First due to the nature of the gist descriptor



Front views Back views

Left views Right views
Figure 3. Similarity matrix of the gist in single views.

we would like to demonstrate that the clusters in the gist

descriptors space correspond to visually similar views of

urban environments. Second, we would like to increase the

efficiency of the gist descriptor matching stage, where in-

stead of finding exact nearest neighbour, we seek the near-

est cluster of the gist in each view, limiting the number of

reference views which will be considered in the later stage.

To demonstrate the visual similarity between neighbor-

ing panoramas, as well as other similar areas, Fig. 3 shows

four plots that represent the affinity matrices between gist

signatures of all views from each type (front, left, back,

right). Dark blue areas represent the higher visual similarity

(smaller gist distances). We can observe that certain areas

naturally form clusters demonstrated by blocks in the gist

affinity matrix. The clearest division occurs for the last set

of panoramas, indexes 9700 to the end, where the trajectory

(see Fig. 1) goes out of downtown area to enter a highway

area. Highway areas have very different structure than any

downtown area, so they get a quite distinct gist descriptor.

We could also observe in the affinity matrices when we

are traversing intersection areas, such as frames around

number 500, where gist in front and back views are very

similar for a while, but the lateral views get higher distance

between the same consecutive areas. Besides, it can be ob-

served when there are areas which are re-visited: in differ-

ent sets of rows we see multiple block diagonal structures

of similar panoramas with the same structure as the main

diagonal in the images (e.g. around frame 3500 with 6500).

A subset of the panoramas, which we will call reference

panoramas, is used for building the visual vocabulary. We

run a simple k-means algorithm on all gist descriptors from

all 4 views of reference panoramas. The k-centroid gist val-

ues obtained with this clustering technique are the most rep-

resentative views we find in our dataset. We will call them

the k words of our gist vocabulary, following the terminol-

ogy typically used in object recognition, where visual vo-

cabularies are build from scale invariant features [12].

Fig. 4 shows a set of elements in some of the clusters

computed (in our experiments we use a k = 35). There, we

can see how views with similar basic structure are classified

together. Fig. 5 presents an average image of all views that

belong to the same cluster for one of the panorama refer-

ence sets used. Notice that qualitatively different features

of urban areas are revealed by individual clusters.



Figure 4. Clustering of the reference panorama view gists into a 35-words vocabulary: a few views from some of the clusters. Each image

includes on top the number of views (elements) that fall into that cluster and how many are distributed in each type of view [F, L, B, R].

Figure 5. Average view in each of the gist-vocabulary clusters built

from ≈ 1000 reference panoramas (4000 views).

3.3. Panorama Gist matching

Once we have computed the view-gist vocabulary, we

can efficiently compare panoramas with the following ap-

proach. For each query panorama:

a) Compute the gist of each of the 4 views in the

panorama and obtain 4 gist descriptors for the panorama

g = [gf , gl, gb, gr].
b) Estimate which word of the reference view-gist vo-

cabulary is closer to each of the view-gist: we get 4 word

indexes [wi, wj , wk, wl] that represent the structure of the

query panorama.

c) We look for the reference panoramas which share as

many visual words as possible with the query view, and

these words are in the same relative positions (i.e, if we find

one reference panorama with four words in common, we

only keep panoramas with 4 words in common). To verify

the relative position, we check the relative offset we would



need to align the panoramas. Since the gist representation is

not rotationally invariant, the relative offsets at the level of

visual words reflects the fact that we are at the same loca-

tion but with different orientation. For example, if we have

a query panorama with words [w1, w2, w3, w8] and a ref-

erence panorama words [w5, w1, w2, w3], both panoramas

have three words in common with same ”relative position”:

words 1, 2 and 3 from the vocabulary, with an offset of −1.

d) We compute the Euclidean distance between the

four aligned views of each panorama. The distance from

the query panorama Q and each of the selected ref-

erence panoramas properly aligned R is computed as:

distG(Q, R) = ‖(gQ,gR)‖.

e) Finally, a reference panorama is considered ”simi-

lar enough” and accepted as candidate match if we find at

least two corresponding words to align the panoramas and

the distG(Q, R) is below a threshold. This threshold is

established relative to the average distance within cluster

elements of the gist vocabulary. Otherwise, the reference

panorama is discarded for this query. The accepted panora-

mas are the candidate matching set. We keep the top N can-

didates, if there are more than N , sorted by distG(Q, R). In

the following section we analyze in detail the performance

obtained for different configurations of these parameters.

4. Experimental Results

We demonstrate the performance of our approach in a

large dataset of 12,000 street view panoramas, dataset-L.

This data set is composed of a 13 mile long run in urban

area and can be seen in Fig. 1. First we compute the gist-

vocabulary from the reference panorama set, as shown in

section 3.2. To extract the explained gist descriptor, we

have used the code available on the web 1. We show the

performance on the following experiments using two dif-

ferent sets of reference panoramas: one composed by every

4th frame from the dataset sequence (around 3000 reference

panoramas, let’s name it refset-3000), and another one com-

posed by every 10th frame from the sequence (around 1000

reference panoramas, let’s name it refset-1000).

We evaluate the performance of our representation on

two tasks: panorama matching and place recognition, both

using the gist-based similarity evaluation proposed in pre-

vious section 3.3.

4.1. Panorama matching.

The goal is to identify the reference panorama that is

more similar to a certain query panorama. We run the simi-

larity evaluation for all the panoramas not used to build the

gist vocabulary (reference panoramas). Fig. 6 shows a few

test panoramas and the reference panoramas that were se-

lected as most similar. The number of matched panoramas

1http://people.csail.mit.edu/torralba/code/spatialenvelope/

is variable, depending how many have passed the similarity

evaluation test (see section 3.3). The last two row exam-

ples are four panoramas that did not get any match. This

happens because of the restriction that we impose on hav-

ing more than one gist-word in common with the matched

panoramas. We have observed that in some cases, a failure

can be originated by the fact of view-gist words wrongly es-

timated for a particular gist. We are currently investigating

soft assignment strategies to avoid these effects.

query test1

query test2

query test3

query test4

Query images from the failed test examples.

Figure 6. Examples of the panoramas matched to a particular query

(panorama on the top-left in each block). Last two rows are the

query images that failed to be matched.

Fig. 7 shows the same three tests than previous figure,

but on an overview of the whole scene/trajectory. The two

first examples are clearly correct matches, first case with

just one selected match that is from the correct location,

and second case with several selected matches, all of them

correct. However, test 3 corresponds to a test that fails to

recognize the correct place: it gets too many candidates ac-

cepted far from the real location, so if we select a small N



test 1 test 2 test 3 test 4
Figure 7. Examples of the matched panoramas (yellow circles) considered similar enough, to a particular query panorama (red pin). Same

four tests than Fig. 6.

Figure 8. Test 4. Example of local feature matching between a query (top panorama) and the top-5 candidates to select the best one.

for the top N matches selected, we do not include any cor-

rect one. Test 4 presents another situation where we also

obtain several matches accepted, some of them correct and

some from an incorrect place.Many times the correct so-

lution could be established running local feature matching

with the panoramas in the accepted candidate set. Fig. 8

shows an example of a simple nearest-neighbour matching

with SURF features [1] with the top-5 candidates in test 4,

where we could clearly detect than the last candidate is the

correct one according to the local feature matches.

The average performance of the following visual local-

ization experiments is presented in Table 1, where we can

observe several interesting issues detailed next.

Experiment 1. Vocabulary & panoramas from dataset-L.

First we run several tests using only the main dataset avail-

able, dataset-L. The left part of the table presents the results

when using the smaller set of reference images (every 10th

panorama, refset-1000), and the middle part presents the re-

sults using a bigger reference set of panoramas (every 4th

panorama, refset-3000). Not surprisingly, with smaller ref-

erence set results are slightly better since it suffers less from

hard cluster assignment in the visual vocabulary. This is re-

flected by the fact that having less reference panoramas also

implies having less chances of discarding the right reference

panorama.

Experiment 2. Vocabulary from dataset-L & panora-

mas from dataset-S. In this second part of experiments,

we try to go a bit further, and check how general the kind

of gist-words that we have obtained are when we work on

completely separated datasets (with the only common char-

acteristic of being urban areas). So these tests have used

the same vocabulary as before, computed from panoramas

from dataset-L, but the reference and test panoramas used

are from a different dataset, dataset-S. This set is from a

completely separated urban area, composed of around 600

panoramas from a trajectory of approximately 600 meters.

Right part of Table 1 shows the matching ratios with this

configuration.

Each row from the same Table shows the ratio of tests

with the closest match to a reference panorama at a certain



Table 1. Results for place recognition based only on gist comparisons, using a gist-vocabulary computed from dataset-L panorama views.
Experiment 1 Experiment 2

dataset-L, refset-1000 dataset-L, refset-3000 dataset-S

top 5 top 10 top 20 top 30 top 40 top 50 top 60 top 5 top 10 top 20 top 30 top 40 top 50 top 60 top 5 top 10 top 20

distG < 5m 0.58 0.61 0.62 0.63 0.63 0.65 0.65 0.52 0.57 0.61 0.62 0.63 0.63 0.64 0.55 0.59 0.60

distG < 10m 0.68 0.71 0.73 0.75 0.76 0.77 0.78 0.59 0.63 0.67 0.68 0.69 0.70 0.70 0.65 0.69 0.69

distG < 20m 0.71 0.74 0.76 0.77 0.78 0.79 0.80 0.63 0.68 0.71 0.73 0.73 0.74 0.75 0.77 0.79 0.80

distG < 40m 0.73 0.76 0.78 0.80 0.80 0.81 0.82 0.66 0.71 0.74 0.76 0.77 0.78 0.78 0.86 0.87 0.87

distG < 60m 0.75 0.78 0.80 0.81 0.82 0.83 0.84 0.68 0.73 0.76 0.78 0.79 0.80 0.80 0.92 0.93 0.93

No Match 0.0008 0.001 0.002

Place detected 0.71 0.73 0.74 0.74 0.74 0.75 0.76 0.7 0.74 0.76 0.77 0.77 0.78 0.78 0.73 0.75 0.76

distance (under 5 meters, under 10 meters, etc.); row No

Match shows how many query views did not pass the match-

ing criteria. Each column presents the same results but if

we consider only the best 5, 10, 20, etc. matches (sorted

by smaller panorama-gist distance). Final row of each table

explains the visual localization results taking into account

the segmentation into places of the reference panorama set,

detailed in next subsection.

We can notice than a considerable amount of tests only

achieve a correct localization within more than 50 meters.

As mentioned before, this localization would be easily made

more accurate by running a local feature matching, e.g. us-

ing [9, 1], between the query panorama properly aligned to

the reference matched panoramas.

4.2. Place recognition using panorama gist.

We can organize automatically the reference panoramas

using the same panorama similarity evaluation used for

panorama matching. The reference set of panoramas can

be automatically segmented into clusters, sections or places

with a simple online approach:

- If the panorama-gist, 4-sorted gists, is similar enough

to previous panorama, the same place is still assigned.

- Else a new place is initialized. We could try to merge it

with a previously visited cluster, but gist only is not enough

to distinguish if we are re-visiting an area or we are just in a

similarly structured area, we would need to use odometry or

extra-features to confirm that we have a ”re-visit” candidate.

Experiment 1. Fig. 9 shows how the reference set of

panoramas gets clustered into different sections or areas.

We can use this division to evaluate if the visual localiza-

tion performed in previous subsection 4.1 is correct: place

recognition is achieved if there is any panorama in the can-

didate set selected that belongs to the same place than the

test panorama. As ground truth, a test panorama is con-

sidered to be at the same place than the closest reference

panorama (according to additional GPS image tags).

Last row of table 1, Place detected, shows the ratio of

tests where the place was correctly identified. The results

are promising, since the number of correct real places could

be easily still improved: the automatic segmentation of the

reference frames into places is still too simple, since we

should work on detecting re-visited areas, to tag them as the

same place. Right now the following situation is likely to

be considered wrong, and it would be corrected if we would

filter the re-visited places in the topological map: the query

belongs to the second time we traversed a certain street, but

the selected reference image belongs to the first time we tra-

versed this same street, so they have been assigned to dif-

ferent sections or places although they should be the same.

Figure 9. Experiment 1, dataset-L. Top: aerial image of dataset

trajectory. Bottom: online clustering of refset-1000 panoramas.

Experiment 2. In this second experiment, we obtain

pretty similar results than in previous experiment 1 to or-

ganize this new dataset into a set of reference panoramas

segmented into places, as well as to localize a set of test

panoramas with regard to those places. Fig. 10 shows the

segmentation into places of the reference panoramas in this

experiment over the aerial picture of the area. Right part of



Figure 10. Experiment 2, dataset-S. Segmentation of reference

panoramas into places (topological map).

Table 1 shows the statistics for place recognition results in

this experiment. It is expected than the ratios if we accept

localization within 60 meters are a bit higher because this

dataset covers a much smaller area than experiment 1.

5. Conclusions and Future Work

In this paper we have presented an approach for

panorama similarity evaluation based on gist features. The

goal of our work is to contribute on visual localization

techniques focused on large scale omnidirectional image

datasets. We have tested the presented ideas in a large scale

dataset composed of panoramas of an urban area. The re-

sults achieved are very promising, with good ratios of cor-

rect panorama localization and nice segmentation of the ref-

erence panoramas into clusters or places of a reference topo-

logical map. The proposal still has several open issues that

would easily improve the current performance, such as tak-

ing into account re-visited places in the topological map, to

avoid false negatives in place recognition and more com-

plex similarity measures. Other tasks yet to be explored are

to determine the minimum amount of reference information

necessary or to use as reference panorama-gist the average

values of each topological map place.
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