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Abstract

We present a novel application of inductive logic programming (ILP) in

the area of quantitative structure-activity relationships (QSARs). The activ-

ity we want to predict is the biodegradability of chemical compounds in water.

In particular, the target variable is the half-life in water for aerobic aqueous

biodegradation. Structural descriptions of chemicals in terms of atoms and

bonds are derived from the chemicals' SMILES encodings. De�nition of sub-

structures are used as background knowledge. Predicting biodegradability is

essentially a regression problem, but we also consider a discretized version of

the target variable. We thus employ a number of relational classi�cation and

regression methods on the relational representation and compare these to pro-

positional methods applied to di�erent propositionalisations of the problem.

Some expert comments on the induced theories are also given.

1 Introduction

The persistence of chemicals in the environment (or to environmental inuences)

is welcome only until the time the chemicals ful�ll their role. After that time or if

they happen to be at the wrong place, the chemicals are considered pollutants. In

this phase of chemicals' life-span we wish that the chemicals disappear as soon as

possible. The easiest way (though ecologically hardly acceptable) to 'disappear' to

nondisturbing concentrations is of course dillution, i.e. spreading in the environ-

ment. On the contrary, the most ecologically acceptable and also very cost-e�ective

way of 'disappearing' is degradation to components which are not considered pollut-

ants (e.g. mineralization of organic compounds). Degradation in the environment

can take several forms, from physical pathways (erosion, photolysis, etc.), through

chemical pathways (hydrolysis, oxydation, diverse chemolises, etc.) to biological

pathways (biolysis). Usually the pathways are combined and interrelated, thus

making degradation even more complex. In our study we focus on biodegradation

in an aqueous environment under aerobic conditions, which a�ects the quality of

surface- and groundwater.
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The problem of properly assessing the time needed for ultimate biodegradation

can be simpli�ed to the problem of determining the half-life time of that process.

However, very few measured data exist and even these data are not taken under

controlled conditions. It follows that an objective and comprehensive database on

biolysis half-life times can not be found easily. The best we were able to �nd was

in a handbook of degradation rates (Howard et al. 1991). The chemicals described

in this handbook were used as the basis of our study.

Usually, authors try to construct a QSAR model/formula for only one class of

chemicals, or congeners of one chemical, e.g. phenols. This approach to QSAR

model construction has an implicit advantage that only the variation wrt the class

mainstream should be identi�ed and properly modelled. Contrary to the described

situation, our database comprises several families of chemicals, e.g. alcohols, phen-

ols, pesticides, chlorinated aliphatic and aromatic hydrocarbons, acids, ketones,

ethers, diverse other aromatic compounds, etc. From this point of view, the con-

struction of adequate QSAR models/formulae is a much more di�cult task.

We apply several machine learning methods, including several inductive logic

programming methods, to the above database in order to construct SAR/QSAR

models for biodegradability. The remainder of the paper is organized as follows.

Section 2 describes the dataset and how the representations used by the di�erent

machine learning systems were generated. Section 3 �rst lists the representation

and the machine learning systems employed, then describes the experimental setup.

Section 4 presents the experimental results, including expert comments on some of

the induced rules. Section 5 gives further discussion, Section 6 comments on related

work, and Section 7 concludes and gives some directions for further work.

2 The dataset

The database used was derived from the data in the handbook of degradation rates

(Howard et al. 1991). The authors have compiled from available literature the

degradation rates for 342 widely used (commercial) chemicals. Where no measured

data on degradation rates were available, expert estimation was performed. The

main source of data employed was the Syracuse Research Corporation's (SRC)

Environmental Fate Data Bases (EFDB), which in turn used as primary sources of

information DATALOG, CHEMFATE, BIOLOG, and BIODEG �les to search for

pertinent data.

For each considered chemical the book contains degradation rates in the form

of a range of half-life times (low and high estimate) for overall, biotic and abiotic

degradation in four environmental compartments, i.e., soil, air, surface water and

ground water. We focus on surface water here. The overall degradation half-life

is a combination of several (potentially) present pathways, e.g., surface water pho-

tolysis, photooxydation, hydrolysis and biolysis (biodegradation). These can occur

simultaneously and have even synergistic e�ects, resulting in a half-life time (HLT)

smaller than the HLT for each of the basic pathways. We focus on biodegradation

here, which was considered to run in unacclimated aqueous conditions, where biota

(living organisms) are not adapted to the speci�c pollutant considered. For bio-

degradation, three environmental conditions were considered: aerobic, anaerobic,

and removal in waste water treatment plants (WWTP). In our study we focus on

aqueous biodegradation HLT's in aerobic conditions.

The HLT's in the original database of Howard et al. (1991) are given in hours,

days, weeks and years. In our database, we represented them in hours. We took the

arithmetic mean of the low and high estimate of the HLT for aqueous biodegradation

in aerobic conditions: the natural logarithm of this mean was the target variable

for machine learning systems that perform regression.
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A discretized version of the arithmetic mean was also considered in order to en-

able us to apply a broader range of machine learning systems to the problem. There

are still relatively few learning systems that can deal with continuous class variables,

especially among ILP systems. Four classes were de�ned as follows: chemicals de-

grade fast if the mean estimate HLT is up to 7 days, moderately fast if it is one to

four weeks, slowly if it is one to six months, and are resistant otherwise.

From this point on, we proceeded as follows. The CAS (Chemical Abstracts

Service) Registry Number of each chemical was used to obtain the SMILES (Wein-

inger 1988) notation for the chemical. In this fashion, the SMILES notations for

328 of the 342 chemicals were obtained.

The SMILES notation contains information on the two-dimensional structure of

a chemical. So, an atom-bond representation, similar to the representation used in

experiments to predict mutagenicity, can be generated from a SMILES encoding of

a chemical. A DCG-based translator that does this has been written by Michael

de Groeve and is maintained by Bernhard Pfahringer. We used this translator to

generate atom-bond relational representations for each of the 328 chemicals. Note

that the atom-bond representation here is less powerful than the QUANTA-derived

representation, which includes atom charges, atom types and a richer selection of

bond types. Especially the types carry a lot of information on the substructures

that the respective atoms/bonds are part of.

A global feature of each chemical is its molecular weight. This was included

in the data. Another global feature is logP, the logarithm of the compound's

octanol/water partition coe�cient, used also in the mutagenicity application. This

feature is a measure of hydrophobicity, and can be expected to be important since

we are considering biodegradation in water.

The basic atom and bond relations were then used to de�ne a number of

background predicates de�ning substructures / functional groups that are pos-

sibly relevant to the problem of predicting biodegradability. These predicates

are: nitro (�NO

2

), sulfo (�SO

2

or �O � S � O

2

), methyl (�CH

3

), methoxy

(�O � CH

3

), amine, aldehyde, ketone, ether, sul�de, alcohol, phenol, carboxylic

acid, ester, amide, imine, alkyl halide (R-Halogen where R is not part of a reson-

ant ring), ar halide (R-Halogen where R is part of a resonant ring), epoxy, n2n

(�N = N�), c2n (�C = N�), benzene (resonant C

6

ring), hetero ar 6 ring (res-

onant 6 ring containing at least 1 non-C atom), non ar 6c ring (non-resonant C

6

ring), non ar hetero 6 ring (non-resonant 6 ring containing at least 1 non-C atom),

six ring (any type of 6 ring), carbon 5 ar ring (resonant C

5

ring) non ar 5c ring

(non-resonant C

5

ring), non ar hetero 5 ring (non-resonant 5 ring containing at

least 1 non-C atom), and �ve ring (any type of 5 ring). Each of these predicates

has three arguments: MoleculeID, MemberList (list of atoms that are part of the

functional group) and ConnectedList (list of atoms connected to atoms in Member-

List, but not in MemberList themselves).

3 Experiments

3.1 Representations

Molecular weight, logP and the abovementioned predicates form the basic relational

representation (denoted by R1) considered in our experiments. Two propositional

representations were derived from this. The �rst one (denoted P1) has an attribute

fgCount for each three-argument predicate fg of the background knowledge, which

is the number of distinct functional groups of type fg in a molecule. Including logP

and molecular weight, this representation has 31 attributes.
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The second propositional representation (denoted P2) has been derived by count-

ing all substructures of two and three atoms plus all four-atom substructures of a

star-topology (no chains). Substructures that appear in at least three compounds

(59 of them) are taken into account. For each such substructure we have a fea-

ture counting the number of distinct substructures of that kind in a molecule. The

second propositional representation also includes logP and molecular weight.

Many of the functional groups have been selected from the PTE (predictive

toxicology evaluation) domain theory (Srinivasan et al. 1997), where the task is to

predict carcinogenicity of chemicals. In this domain, the approach of (Dehaspe et

al. 1999) to discover (count) most frequent substructures that occur in the dataset

and use these in conjunction with propositional learners has been among the most

successful. Our small substructure representation has been derived along these lines.

3.2 Systems

A variety of classi�cation and regression systems were applied to the classi�ca-

tion, respectively regression version of the biodegradability problem. Propositional

systems were applied to representations P1 and P2. For classi�cation, these were

the decision-tree inducer C4.5 (Quinlan 1993a) and the rule induction program

RIPPER (Cohen 1995). For regression, the regression-tree induction program M5'

(Wang and Witten 1997), a reimplementation of M5 (Quinlan 1993b) was used. It

can construct linear models in the leaves of the tree.

Relational learning systems applied include ICL (De Raedt and Van Laer 1995),

which induces classi�cation rules, SRT (Kramer 1996) and TILDE (Blockeel and De

Raedt 1998). The latter are capable of inducing both classi�cation and regression

trees. ICL is an upgrade of CN2 (Clark and Boswell 1991) to �rst-order logic,

TILDE is an upgrade of C4.5, and SRT is an upgrade of CART (Breiman et al.

1984). TILDE cannot construct linear models in the leaves of its trees; SRT can.

Finally, FFOIL (Quinlan 1996) was also applied to the classi�cation version of

the problem. It used a representation (denoted R2) based on the atom and bond re-

lations, designed to avoid problems with indeterminate literals. New predicates are

introduced, which stand for conjunctions of the form atom(M;X;Element1; ; ),

bond(M;X; Y;BondType); atom(M;Y;Element2; ; ). For example, o2s(M;X; Y )

stands for atom(M;X; o; ; ); bond(M;X; Y; 2); atom(M;Y; s; ; ).

Regarding parameter settings, default settings were employed for all systems

wherever possible. Deviations from default parameter settings will be mentioned

where appropriate in the results section.

3.3 Evaluation

Performance on unseen cases was estimated by performing �ve 10-fold cross-vali-

dations. The same folds were used by all systems. Performances reported are

averages over the 5 cross-validations. Some of the induced models were inspected

by B. Kompare, acting here as a domain expert, who provided some comments on

their meaning and agreement with existing knowledge in the domain.

For the regression systems, correlation between the actual and predicted values

of the log mean half-time of aerobic aqueous biodegradation is reported. We also

measure classi�cation accuracy (as described below) achieved by discretizing the

real-valued predictions.

For the classi�cation systems, classi�cation accuracy is reported. We are dealing

with ordered class values and misclassi�cation of, e.g., fast as slow is a bigger mistake

than misclassi�cation of fast as moderate. We thus also record accuracy where only

misclassi�cation by more than one class up or down counts as an error (e.g., fast as

slow, or resistant as moderate). This is denoted as Accuracy (+/-1) in Table 1.
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Table 1: Performance of machine learning systems predicting biodegradability.

System Representation Accuracy Accuracy (+/-1) Correlation (r)

C4.5 P1 55.2 86.2 -

C4.5 P2 56.9 82.4 -

RIPPER P1 (-S0) 52.6 89.8 -

RIPPER P2 57.6 93.9 -

M5' P1 53.8 94.5 0.666

M5' P2 59.8 94.7 0.693

FFOIL R2 53.0 88.7 -

ICL R1 55.7 92.6 -

SRT-C P1 50.8 87.5 -

SRT-C P1+R1 55.0 90.0 -

SRT-R P1 49.5 91.9 0.572

SRT-R P1+R1 51.6 92.8 0.626

TILDE-C R1 51.0 88.6 -

TILDE-C P1+R1 52.0 89.0 -

TILDE-R R1 52.6 94.0 0.622

TILDE-R P1+R1 52.4 93.9 0.623

BIODEG 0.607

4 Results

Table 1 gives an overview of the performance of the di�erent classi�cation and re-

gression systems as applied to the problem of predicting biodegradability. SRT-C

denotes SRT used to learn classi�cation trees, while SRT-R denotes SRT used to

learn regression trees. TILDE-C and TILDE-R have similar meaning. The �rst

column lists the system applied, the second the representation used. The second

column also lists some parameters changed from their default values. The repres-

entations are described in Section 3.1 (P1,P2, R1) and 3.2 (R2). The performance

measures listed in the next three columns are described in Section 3.3.

4.1 C4.5

C4.5 was used on the two di�erent propositional representations. Better perform-

ance was achieved using P2. Default parameters were used. The trees generated

were too bushy for expert inspection. C4.5 performs worst in terms of large misclas-

si�cation (e.g. fast as slow) errors, i.e. in terms of the measure Accuracy (+/-1).

4.2 RIPPER

Of the classi�cation systems applied, RIPPER achieves highest accuracy. With

its default parameters RIPPER prunes drastically, producing small rule sets. The

rule set derived from the entire dataset for representation P2 is given in Figure 1,

together with some comments provided by our domain expert.

The expert liked the rule-based representation and the concise rules very much

(best of the representations shown to him, which included classi�cation and regres-

sion trees induced by M5', SRT and TILDE, as well as clausal theories induced by

ICL). The rules make sense, but are possibly pruned too much and cover substantial

numbers of negative examples.

Pruning was then turned down in RIPPER (option -S0), producing larger sets

of longer rules, at a moderate loss of accuracy. The accuracy for representation P2

is in this case 54.8 % (again estimated by doing �ve 10-fold cross-validations).
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resistant :- logP>=4.91, 'C[H]'<=15 (27/4).

% Nonpolar (hydrophobic) compounds degrade less readily

resistant :- 'C[Cl]'>=3, mweight<=165.834 (7/1).

% Halogenated compounds are resistant

fast :- mweight<=110.111, 'O[H]'>=1 (18/4).

% Alcohols (alkyl -OH) are fast to degrade

fast :- mweight<=108.096, 'C=O'>=1 (15/7).

% C=O readily degrades

slow :- 'N=O'>=1, mweight<=130.19 (10/0).

% Compounds with N(-)O degrade slowly

slow :- logP>=1.52, 'C[H]'<=5 (31/16).

slow :- 'CN'>=1, logP>=1.7, mweight>=249.096 (11/3).

% Very heavy and possibly toxic

slow :- 'C=O'<=0, mweight>=121.182, 'CN'>=1 (23/15).

default moderate (85/51).

Figure 1: Rules for predicting biodegradability induced by RIPPER.

4.3 M5'

M5' achieves best results among the systems applied in terms of both regression

accuracy (almost 0.7) and classi�cation accuracy (almost 60 %, respectively 95 %).

M5' was used with pruning turned down (-f0.0), as this seemed to perform best in

terms of accuracy. Linear models are by default allowed in the leaves of the trees.

Trees generated with these settings were too large and cumbersome to interpret.

Trees were generated from the entire dataset with more intensive pruning to

ensure they were of reasonable size for interpretation by the domain expert. The

tree generated from representation P2 is shown in Figure 2. The setting -f1.2 was

used for pruning. The numbers in brackets denote the number of examples in a leaf

and the relative error of the model in that leaf on the training data. So LM1 was

constructed from 80 examples and has 49.7 % relative error on these 80 examples.

Unsurprisingly, the most important feature turns out to be logP, the hydrophobi-

city measure. For compounds to biodegrade fast in water, it helps if they are less

hydrophobic. When a compound is not very hydrophobic (logP < 4.005), molecular

weight is an important feature. With relatively low molecular weight (< 111.77),

the presence of an �OH group indicates smaller half-life times. With no �OH

groups (LM1), halogenated compounds degrade more slowly and so do compounds

with CN substructures (positive coe�cients in LM1). This is also consistent with

the expert comments on the RIPPER rules.

4.4 FFOIL

FFOIL uses the R2 representation (Section 3.2). The settings -d10 and -a65 were

used. The setting -d10 allows the introduction of "deeper variables" (this does not

seem to have any impact), and -a65 means that a clause must be 65% correct or

better FFOIL's default is 80 %, which seems too demanding in this domain.

FFOIL only uses the atom and bond relations, molecular weight and logP, but

not the functional group relations/predicates. On the entire dataset, FFOIL in-

duces 54 rules. It is interesting that some of these rules use negation. The rule

activity(A,fast) :- mw(A,C), logp(A,D), not(c1cl(A, 1, 2)), C>104.151,

D>1.52, C <=129.161, D<=3.45, !. states that a compound A degrades fast if

it is not halogenated, is relatively light, and relatively nonhydrophobic.
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logP <= 4.005

| mweight <= 111.77

| | 'O[H]' <= 0.5 LM1 (80/49.7%)

| | 'O[H]' > 0.5 LM2 (22/50.7%)

| mweight > 111.77

| | 'C=O' <= 0.5 LM3 (112/65.4%)

| | 'C=O' > 0.5

| | | 'CO' <= 1.5

| | | | 'CN[H]' <= 1.5

| | | | | 'C[Cl]' <= 1.5 LM4 (7/0%)

| | | | | 'C[Cl]' > 1.5 LM5 (2/6.68%)

| | | | 'CN[H]' > 1.5 LM6 (9/33.8%)

| | | 'CO' > 1.5

| | | | 'C[H]' <= 12.5

| | | | | 'N[H]' <= 0.5

| | | | | | 'CO' <= 2.5 LM7 (5/0%)

| | | | | | 'CO' > 2.5 LM8 (10/46.1%)

| | | | | 'N[H]' > 0.5 LM9 (5/16.3%)

| | | | 'C[H]' > 12.5

| | | | | logP <= 2.26 LM10 (5/0%)

| | | | | logP > 2.26 LM11 (4/2.42%)

logP > 4.005

| logP <= 4.895 LM12 (27/53.9%)

| logP > 4.895

| | 'C[H]' <= 15.5 LM13 (31/55%)

| | 'C[H]' > 15.5 LM14 (9/45.9%)

Linear models at the leaves:

Unsmoothed (simple):

LM1: class = 6.1 + 0.525'C[Cl]' + 0.618'CN' - 1.09'C=O' - 0.559'CN[H]'

LM2: class = 4.71

LM3: class = 7.38 - 0.00897mweight + 0.889'C[Br]' + 0.576'C[Cl]'

+ 0.522'CN' + 0.113'N=O'

LM4: class = 6.04

LM5: class = 6.7

LM6: class = 9.83 - 1.8'N[H]'

LM7: class = 4.56

LM8: class = 5.6

LM9: class = 6.15

LM10: class = 6.04

LM11: class = 6.52 - 0.252'O[H]'

LM12: class = 6.77 + 0.182'C[Cl]' - 0.357'CO'

LM13: class = 9.43 - 1.52'CN'

LM14: class = 12.2 - 0.0157mweight

Figure 2: Regression tree for predicting biodegradability induced by M5'.
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activ(A,B)

carbon_5_ar_ring(A,C,D) ?

+--yes: [9.10211] % Aromatic compounds are relatively slow to degrade

+--no: aldehyde(A,E,F) ?

+--yes: [4.93332] % Aldehydes are fast

+--no: atm(A,G,h,H,I) ? % If H not present should degrade slowly

+--yes: mweight(A,J) , J =< 80 ?

| +--yes: [5.52184] % Low weight ones degrade faster

| +--no: ester(A,K,L) ? % Esters degrade fast

| +--yes: mweight(A,M) , M =< 140 ?

| | +--yes: [4.93332]

| | +--no: [5.88207]

| +--no: mweight(A,N) , N =< 340 ?

| +--yes: carboxylic_acid(A,O,P) ? % Acids degrade fast

| | +--yes: [5.52288]

| | +--no: ar_halide(A,Q,R) ? % Halogenated - slow

| | +--yes: alkyl_halide(A,S,T) ?

| | | +--yes: [11.2742]

| | | +--no: [7.81235]

| | +--no: phenol(A,U,V) ?

| | +--yes: mweight(A,W) , W =< 180 ?

| | | +--yes: [4.66378]

| | | +--no: [7.29547]

| | +--no: [6.86852]

| +--no: [8.28685]

+--no: mweight(A,X) , X =< 100 ?

+--yes: [6.04025]

+--no: [8.55286]

Figure 3: A regression tree for predicting biodegradability induced by TILDE.

4.5 ICL

ICL was applied to representation R1 only. In terms of accuracy, it achieves better

results than all other systems not using P2, and in terms of Accuracy (+/-1) it

performs better than all classi�cation systems except RIPPER on P2. The theory

induced from the entire dataset contains 87 rules.

An example rule is: moderate(M) :- atom(M,A1,Elem1, , ), Elem1 = s,

mweight(M,MW),lt(MW,190),gt(MW,90))'). It states that a compound with a

sulphur atom and molecular weight between 90 and 190 degrades moderately fast.

The expert comments that sulphur slows down biodegradation.

Another rule states that a compound is fast to degrade if it contains a benzene

and a phenol group and is lighter that 170. The expert comments that in this case

degradability is probably due to hydrolisis and photolysis.

4.6 SRT

As mentioned above, SRT upgrades CART to a relational representation. From

CART it inherits error-complexity pruning. It can construct linear models in the

leaves and extends CART methodology by cross-validating these models. No linear

models in the leaves were, however, allowed in the experiments reported here.

The SRT results were not obtained by using default settings. Results for un-

modi�ed error-complexity pruning were not competitive. We thus forced SRT to

over�t by taking the largest tree within one standard error of the best one in the

sequence of pruned trees. The resulting trees were too large to be inspected by the

domain expert.

Both a propositional (P1) and a relational representation (P1+R1) were used.

Adding the relational information improves accuracy, the greatest jump being ob-

served for classi�cation accuracy of SRT-C. SRT-C is better than SRC-R on accur-

acy, but worse on Accuracy (+/-1).
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4.7 TILDE

TILDE was used for both classi�cation and regression, once using only relational

information (R1) and once using the functional group counts in addition (P1+R1).

Using the functional group counts doesn't change the performance of TILDE. Better

performance is achieved with regression, not in terms of classi�cation accuracy, but

in terms of the Accuracy (+/-1) measure.

TILDE-C was used with default settings. TILDE-R was used with its ftest

parameter set to 0.01. This causes the system to use an F-test as stopping cri-

terion: a node is split only if the best split can be shown to reduce the variance at

signi�cance level 0.01. The trees thus obtained not only are much smaller than for

the default setting, they also have slightly higher predictive quality.

An example regression tree induced by TILDE-R from the entire dataset is given

in Figure 3. This tree has actually been generated without using logP information.

It was analysed and commented upon by the domain expert. The fact that it does

not use logP actually makes it easier for the inuence of the functional groups on

biodegradability to be identi�ed. Namely, when logP is used, a large part of the

tree uses logP only. Some of the expert comments are given in the tree itself.

5 Discussion

Overall, propositional systems applied to representation P2 yield best performance.

M5' on this representation yields the highest overall accuracy, Accuracy (+/-1)

and correlation. RIPPER follows with the second best classi�cation accuracy and

Accuracy (+/-1) matched only by TILDE-R. Of the relational learning systems, ICL

performs best with highest classi�cation accuracy and Accuracy (+/-1) comparable

to that of SRT-R and TILDE-R.

Regression systems perform better than classi�cation ones. This does not clearly

show when one looks at accuracy alone, but it becomes clearer when one looks at

Accuracy (+/-1). It thus seems that regression problems can best be handled by

regression systems.

Using relational information in addition to the propositional formulation P1

does not bring drastic improvements. SRT and TILDE perform slightly better or

the same on P1 + R1 as compared to P1. SRT and TILDE used for regression on

P1 + R1 still perform (slightly) worse than M5' on P1. The reason for this might be

the fact that M5' was using linear regression in the leaves, while SRT and TILDE

were not.

Note that the propositional representations P1 and P2 contain structural fea-

tures derived 1) directly from the functional group relations and 2) from the atom

and bond relations. These features count occurences of substructures within com-

pounds. P1 contains de�nitions of both small and larger groups (such as rings),

while P2 mainly contains small structures (up to 4 atoms).

6 Related work

Related work includes QSAR applications of machine learning and ILP, on one hand,

and constructing QSAR models for biodegradability, on the other hand. On the ILP

side, QSAR applications include drug design (e.g. King et al., 1992), mutagenicity

prediction (e.g. Srinivasan et al., 1996), and toxicity prediction (Srinivasan et al.,

1997). The latter two are closely related to our application. In fact, we have used

a similar representation and reused parts of the background knowledge developed

for them.
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On the biodegradability side, the work by Howard et al. (1992) is closest to

ours. The last row of Table 1, marked BIODEG, gives the correlation between the

actual values of the continuous class and predictions made by the BIODEG program

(Howard and Meylan 1992). The correlation is calculated for all 328 chemicals in

our database, since the BIODEG program has been derived independently. This

program estimates the probability of rapid aerobic biodegradation in the presence

of mixed populations of environmental organisms. It uses a model derived by linear

regression (Howard et al. 1992).

The best results of our experiments (correlation of 0.7) are considerably better

than the BIODEG program predictions (correlation 0.6). Furthermore, while the

reported performance results for the machine learning systems are for unseen cases,

some of the chemicals used in developing BIODEG also appear in our database

and the correlation reported is not necessarily the same for unseen cases. We are

currently investigating the exact extent of the overlap.

Work on applying machine learning to predict biodegradability includes Kom-

pare (1995), who compared several AI tools on the same domain and data and

found these to yield better results than the classical statistical and probabilistic

approaches, Zitko (1991), Cambon and Devillers (1993) who applied neural nets,

and Gamberger et al. (1993) who applied several di�erent approaches.

7 Conclusions and further work

Predicting biodegradability is a QSAR problem, similar to predicting mutagenicity

or toxicity. We have applied a range of machine learning systems, including ILP

systems, to several representations derived from a relational description of a set of

compounds. Best performance was achieved on good propositionalisations derived

by counting substructures. This is in agreement with e.g. the predictive toxicology

evaluation results, where best results were achieved by propositional systems using

relational features representing the presence/count of frequent substructures.

M5', which achieves the best results, outperforms an approach derived by bio-

degradability experts, implemented in the program BIODEG. The theories induced

by the machine learning systems were easy to interpret (size permitting) and made

sense to the domain expert. Given that the biodegradation rates that we used as

values of the target variable are mostly estimates and not measured values, overall

performance is satisfactory.

There is a variety of directions for further work. One possibility is to combine the

two propositional representations P1 and P2, which are in a sense complementary.

P1 namely contains larger functional groups, such as rings, while P2 contains small

substructures.

Another possibility is to study overall degradation and biodegradation compar-

atively. Identifying chemicals whose degradation and biodegradation time di�er is

an important topic. Characterising such chemicals would be an interesting learning

problem.

This raises the issue of how performance should be evaluated when only es-

timates of the target variable are provided. One could argue that if the learned

theory predicts a value which is between the lower and upper estimate provided by

an expert, its prediction is correct. In a sense, we may have applied a too strict

evaluation criterion here, trying to �t the log mean half-life time, while providing

a value in the provided interval would have been su�cient. This should also be

investigated in further work.
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