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ABSTRACT

Presented is an approach to modelling session variability for GMM-
based text-independent speaker verification incorporating a con-
strained session variability component in both the training and test-
ing procedures. The proposed technique reduces the data labelling
requirements and removes discrete categorisation needed by previ-
ous techniques and provides superior performance. Experiments on
Mixer conversational telephony data show improvements of as much
as 46% in equal error rate over a baseline system. In this paper the
algorithm used for the enrollment procedure is described in detail.
Results are also presented investigating the response of the technique
to short test utterances and varying session subspace dimension.

1. INTRODUCTION

While research in the field of speaker recognition and verification
has been ongoing for many years, the greatest cause of errors still re-
mains the same. The issue of mismatch caused by session variability.
This term encompasses a number of phenomena including transmis-
sion channel effects, transducer characteristics, environment noise
and variability introduced by the speaker.

A number of techniques have been proposed to compensate for
various aspects of session variability at almost every stage in the
verification process with some success; a state of the art verifica-
tion system will often incorporate a number of these techniques. An
example system [1] from the NIST Speaker Recognition Evaluation
might include feature warping [2] and mapping [3, 4] to produce
more robust features as well as score compensation techniques such
as H- and T-Norm [5].

More recently a method for directly modelling the inter-session
variability has been proposed and has provided impressive reduc-
tions in verification error rates [6, 7]. The motivation behind the pro-
posed technique is to attempt to directly model session variability in
the model space without discrete categories and with less restrictive
data labelling requirements. The proposed technique incorporates
session differences into the speaker modelling process in the form of
session-dependent GMM mean offsets constrained to a low dimen-
sional “session variability” subspace. This effects both the training
and testing phases of the system.

This work draws heavily on the results of Kenny, et al. [6, 8]
with some distinct differences, and builds on the work presented
in [7]. In contrast to Kenny, et al. [6] the presented approach does
not include a “speaker factor” subspace adaptation adopting a more
traditional GMM-UBM structure and obviating the need to train a
speaker subspace transform and reducing training complexity. A
simplified verification score is also used that is more in line with
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the GMM-UBM approach. Finally, Z-Norm score normalisation is
additionally applied to correct for the differing responses of trained
speaker models.

This paper presents results on Mixer corpus data complement-
ing the Switchboard-II results previously presented [7]. Section 2
describes the approach to modelling speakers in the presence of ses-
sion variation, including the approach to representing a speaker dur-
ing training, and how to exploit this method during testing. A more
detailed explanation of the speaker enrollment algorithm is presented
in Section 2.2 with results contrasting possible configurations in Sec-
tion 3.2. Additional investigation is pursued on the effect of varying
the dimension of the session subspace and the effect of using very
short test utterances in Sections 3.1 and 3.3.

2. MODELLING SESSION VARIABILITY

The approach to modelling the session variability in telephony-based
speaker verification adopted in this paper is to introduce a con-
strained offset of the speaker’s Gaussian mixture model mean vec-
tors to represent the effects introduce by the session conditions. In
other words, the Gaussian mixture model that best represents the
acoustic observations of a particular recording is the combination
of a session-independent speaker model with an additional session-
dependent offset of the model means. This can be represented in
terms of the Ry × 1 concatenated GMM component means super-
vectors as

mh(s) = m + Dy(s) + Uzh(s),

where Ry = MD where the GMM is of order M and dimension D.
Here, the speaker s is represented by the offset y(s) from the

speaker independent (or UBM) concatenated mean supervector m,
scaled by the Ry × Ry diagonal matrix D. To represent the con-
ditions of the particular recording, designated with the subscript h,
an additional offset of Uzh(s) is introduced where zh(s) is a low-
dimensional representation of the conditions in the recording and U

is the low-rank transformation matrix from the constrained session
variability subspace of dimension Rz to the GMM mean supervector
space of dimension Ry .

With this formulation both the speaker offset y(s) and the ses-
sion factors zh(s) are assumed to belong to a standard normal dis-
tribution, N (0, I).

Ideally, a training algorithm will be able to accurately discern the
session-independent speaker model y(s) in the presence of session
variability.

2.1. Speaker Model Training

Speaker models are trained through the simultaneous optimisation
of all the model parameters over the set of training observations
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Xh(s). In this work the model parameters are the component means
offset supervector y, and the session dependent subspace factors
zh, h = 1, ..., H (s has been dropped from this notation for clarity).
The session variability vectors are not actually retained to model the
speaker but their estimation is necessary to accurately estimate the
true speaker means.

In this work the speaker mean offset supervector y is optimised
according to the maximum a posteriori (MAP) criterion often used
in speaker verification systems [9]. While the prior for this adap-
tation is the standard normal distribution, as stated above, with D

satisfying I = τDT
Σ

−1D this is equivalent to Reynolds’ prior
with a “relevance factor” of τ ; this form is referred to as relevance
MAP [10].

The MAP criterion is also employed for optimising each of the
session variability vectors zh. As described by Kenny, et al. [6] the
prior distribution is also assumed to be a standard normal distribu-
tion in the subspace defined by the transformation matrix U . The
optimisation of such a criterion has previously been described for
speaker recognition problems [10, 6].

The MAP criteria ensure that there is not a “race condition” be-
tween the simultaneous optimisation criteria as the prior information
ensures a unique (local) optimum.

An EM algorithm is used to optimise the session variability
model described above as there are no sufficient statistics for mix-
tures of Gaussians due to the missing information of mixture com-
ponent occupancy of each observation. The expectation step is es-
sentially identical to that used in iterative MAP adaptation [11] and
maximum likelihood estimation of GMMs, while the maximisation
step optimises both the speaker and session variables as described
below.

2.2. Maximisation of the Session Variability Model

The direct solution to the simultaneous optimisation equations in the
Maximisation step of this EM algorithm is possible, however it re-
quires the decomposition of an (Ry +HRz)× (Ry +HRz) matrix
for each iteration. This matrix is required to capture the relationships
and cross correlations between the variables being optimised. As
Ry = 12288 for the size of speaker model used in this work, this is
a large matrix decomposition (many current SV systems use signifi-
cantly larger models). Even with this matrix being positive-definite,
this is difficult both in memory and processing requirements.

For this reason a procedure analogous to the Gauss-Seidel
method for solving simultaneous equations is used as described in
Algorithm 1. In this algorithm, Nh refers to the MD × MD

diagonal component occupancy matrix with M diagonal blocks
NhcID×D where Nhc is the observation count for mixture compo-
nent c. SX,h refers to the first cumulant vector of the observations
Xh(s). These values are the required statistics to solve the MAP
adaptation estimates at lines 9 and 11 which are the subspace MAP
and relevance MAP estimates described above, respectively.

While this method converges more slowly than direct simultane-
ous optimisation, each iteration only requires the decomposition of
one Rz × Rz matrix per training session and the trivial decomposi-
tion of an Ry × Ry diagonal matrix for the speaker supervector.

There are several interesting aspects to this algorithm. Firstly the
question of the number of iterations that provide the best speaker ver-
ification performance. This algorithm adopts an iterative approach to
finding the best estimate for the speaker and channel variables in the
Gauss-Seidel algorithm and also for the estimation of the missing in-
formation of the mixture component occupancy in the EM algorithm.
While increasing the iterations will provide models that better opti-

Algorithm 1 Speaker Model Estimation

1: y ← 0; zh ← 0; h = 1, . . . , H

2: for i = 1 to max. iterations do
3: for h = 1 to H do
4: Calculate Nh and SX,h for session Xh where µh = m+

Dy + Uzh

5: end for
6: N ←

� H

h=1
Nh

7: SX ←
� H

h=1
SX,h

8: for h = 1 to H do
9: zh ← A−1

h bh

where Ah = I + UT
Σ

−1NhU

and bh = UT
Σ

−1 � SX,h|m − NhDy �
10: end for
11: y ← A−1

y by

where Ay = I + DT
Σ

−1ND

and by = DT
Σ

−1 � SX|m −
� H

h=1
NhUzh �

12: end for
13: return y

mise the MAP training criterion, this may not necessarily translate
to optimal recognition rates.

Also of interest on line 11 is the term
� H

h=1
NhUzh that links

the results of the session factor estimation to the estimation of the
speaker model parameters. Effectively, this calculation subtracts
from SX,h the portion explained by the estimated session variable
zh. If, instead, the speaker parameters were optimised on the statis-
tic SX this would be an independent estimation; the equivalent of
the Jacobi method.

These points will be investigated in Section 3.2.

2.3. Verification

The session variation introduced in the verification utterance must
also be considered. There are a number of possible methods to
achieve this that vary considerably in complexity and sophistication.
This paper investigates only one possibility that is only marginally
more complex than Top-N ELLR scoring [9] (the basis of most cur-
rent text-independent speaker verification systems). Alternative ap-
proaches are discussed in Section 4.

The approach used in this paper is to estimate the session vari-
ables zh of the verification utterance for each speaker prior to per-
forming standard Top-N ELLR scoring. This estimation is similar to
that described in Algorithm 1 with a few differences: It is a MAP es-
timation using the same standard normal prior distribution, however,
the speaker supervector is considered known from previous training
and not simultaneously estimated. Also, only a single EM iteration is
used. To substantially reduce the processing required, a further sim-
plification is made in that the mixture component occupancy statis-
tics for the observations are calculated based on the UBM (rather
than independently for each speaker). This allows for only one ad-
ditional pass of the verification utterance than standard scoring and
implies that only one matrix decomposition is necessary, regardless
of the number of speakers being tested.

3. EXPERIMENTS

The baseline recognition system used in this study utilises fully cou-
pled GMM-UBM modelling using iterative MAP adaptation and
feature-warped MFCC features with appended delta coefficients, as
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Fig. 1. DET plot for the 1-side condition when varying the number of
session subspace dimensions, Rz with and without ZT-Norm score
normalisation.

described in [2]. An adaptation relevance factor of τ = 8 and 512-
component models are used throughout.

The proposed technique was evaluated using data from the NIST
2004 Speaker Recognition Evaluation [12] with a modified testing
and training protocol. This data is drawn from the recent Mixer con-
versational telephony corpus which includes a wide variety of mis-
matched conditions with speakers using both landline and cellular
handsets and channels. The testing and training data from the 2004
evaluation was pooled and then separated into three splits (in a simi-
lar fashion to previous NIST EDT evaluations). This separation was
in order to facilitate cross validation of individual systems, tuning
and evaluation of fusion techniques and selecting of thresholds. A
total of 314 speakers with 925 models were tested in 139,084 trials.

3.1. Session Subspace Size

In [7] we noted the importance of severely constraining the dimen-
sion of the session variability subspace citing degrading performance
comparing results for the Rz = 50 case to Rz = 20. Further experi-
ments revealed this to not necessarily be the case. As Figure 1 shows,
increasing Rz from 20 to 50 results in worse performance based on
the raw output scores but after normalisation is applied the situation
has reversed, with Rz = 50 giving both superior minimum DCF
and EER (Table 1). Both configurations show significant advantages
over the reference system with as much as a 46% reduction of EER
and a 42% reduction of minimum detection cost after normalisation
is applied.

Raw Scores ZT-Norm
System DCF EER DCF EER
Reference .0389 10.6% .0300 9.0%
Rz = 20 .0358 8.7% .0211 5.4%
Rz = 50 .0391 9.4% .0174 4.8%

Table 1. Minimum DCF and EER results for the 1-side condition
when varying the number of session subspace dimensions, Rz .
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Fig. 2. DET plot for the 1-side training condition comparing opti-
misation algorithms in speaker enrolment, with and without score
normalisation.

The implications of this result are that increasing the power of
the system’s ability to model session variability can provide im-
proved performance but score normalisation is required to realise
these benefits. This leads to the conclusion that the session variabil-
ity modelling method produces inherently less calibrated raw scores
than standard GMM-UBM methods with ELLR scoring, particularly
as Rz is increased.

It is also apparent that it is not possible to make accurate conclu-
sions about the comparative performance of different configurations
after normalised based on raw system scores. In this work this point
has proven true numerous times.

3.2. Comparison of Training Methods

As stated in Section 2.2 there are several possibilities for the
algorithm used to simultaneously optimise the set of variables
{y, zh; h = 1, . . . , H} during speaker enrolment. Results using
several configurations are presented in Figure 2.

Simultaneously optimising using the Gauss-Seidel method (la-
belled “G-S 5 iters”) works better than independently optimising
(labelled “Indep 5 iters”) with multiple iterations however this ad-
vantage is surprisingly small.

Interestingly dropping back to only 1 iteration of the EM proce-
dure gives much better performance than using more iterations based
on the raw output scores without normalisation; a 40% reduction in
both minimum DCF and EER was observed in this case. While this
advantage was reduced with score normalisation, the 1-iteration ver-
sion was consistently ahead. The 1-iteration result may indicate that
it is better to fully optimise the session variables independently of
the speaker variable y and then determine the speaker parameters on
what is effectively the residual variability after removing the channel
effects and other forms of session variability.

3.3. Reduced Test Utterance Length

An important part of the session modelling method is estimating
the session vector zh for the test utterance. While this is a low-
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Fig. 3. DET plot for the 1-side training condition comparing baseline
and session compensation results for short test utterance lengths.

dimensional variable estimating it accurately will require a sufficient
quantity of speech. This experiment aims to determine the minimum
requirements for extracting improved results from the session com-
pensation method.

Figure 3 shows the impact of reducing the test utterance length
for both the session variability modelling method and standard
GMM-UBM modelling with test utterance lengths of 5, 10 and 20
seconds of active speech. These results indicate that approximately
10 seconds of speech is required to estimate the session factors suffi-
ciently accurately to produce results that improve on standard mod-
elling and scoring practice, while 20-second tests produce advances
in performance starting to approach those experienced with full-
length testing utterances, approximately 20% relative for both DCF
and EER.

4. DISCUSSION

The results presented in this paper confirm the effectiveness of mod-
elling session variability in a constrained subspace. The techniques
presented have translated well from Switchboard conditions to the
more challenging Mixer corpus which exhibits a greater variety of
channel conditions and handset types.

One of the major advantages of the approach presented in this
paper and related work is the more relaxed requirements for training
corpus labelling. This technique removes the necessity of labelling
databases for channel, handset type and other forms of session vari-
ability, which is often difficult, error prone and expensive if not im-
possible.

More sophisticated verification techniques are also possible. Fu-
ture research will investigate the effectiveness of Bayes factor tech-
niques in conjunction with modelling session variability in a similar
approach to [13]. Under this approach the speaker model parame-
ters are not assumed to be known at testing time, but rather to have
posterior distributions refined by the training procedure. A similar
formulation of the test utterance likelihood is also used as Kenny’s
verification criterion [6].

It may also be the case that the choice of scoring method also

invalidates some of the training method conclusions drawn from the
presented experiments; generally it is advantageous for the verifica-
tion and enrolment criteria to match.

5. CONCLUSION

This paper confirmed the effectiveness of the session modelling tech-
nique for speaker verification on Mixer corpus of conversational tele-
phony data by demonstrating a 46% reduction in EER and a 42%
reduction in minimum detection cost.

Experimental results also indicate the effectiveness of the Gauss-
Seidel training method and that approximately 10 seconds of speech
is the minimum test utterance length required for sufficiently accu-
rate estimates of the session variables to gain from the session mod-
elling approach.
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